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Abstract. Cross-Document Fact Verification (CDFV) aims to retrieve evidence 

from multiple documents to verify the factuality of a given claim. However, ex-

isting CDFV approaches fail to capture complex semantic relationships and fine-

grained information in the evidence. To address these issues, we propose a Fine-

Grained Graph Neural Network (FGGNN) for CDFV. FGGNN constructs a sen-

tence-level graph during the evidence selection stage and efficiently propagates 

information within the graph using Graph Attention Networks (GAT), accurately 

capturing the complex relationships between sentences. This enables FGGNN to 

select trustworthy and relevant evidence. In the claim verification stage, FGGNN 

constructs a word-level evidence graph to capture fine-grained relationships at 

the word level. It then uses a Relational Graph Convolutional Network (RGCN) 

[1] to propagate and update information within the graph, fully uncovering the 

potential logic in the evidence. Additionally, an attention mechanism is intro-

duced to weight the evidence based on its relevance to the claim, emphasizing 

the importance of key evidence. Finally, FGGNN considers all the evidence and 

claim information to accurately predict the label of the claim. Experimental re-

sults on the CHEF dataset demonstrate the effectiveness of FGGNN in achieving 

accurate fact verification. 

Keywords: Fact Verification, Evidence selection, Claim Verification. 

1 Introduction 

The exponential growth of online information has raised significant concerns about the 

proliferation of false and misleading content. Claim Verification with Document-based 

Fact-checking (CDFV) addresses this challenge by automatically retrieving evidence 

from public sources to validate claims [2]. A typical fact verification system categorizes 

claims into three labels: Supported, Refuted, or Not Enough Information, based on 

whether the evidence confirms, contradicts, or is insufficient to judge the claim. 

 

In the CHEF corpus [3], gold-standard evidence comprises manually annotated sen-

tences from documents, serving as ground truth for validating claims. Recent advances 

in fact verification have primarily adopted a three-stage pipeline: document retrieval, 

evidence selection, and claim verification [4]. Prior research [5-10] has focused on fine-



tuning pre-trained language models (PLMs) or using homogeneous graph-based mod-

els. In the fine-tuning approach, PLMs are fine-tuned with concatenated evidence. In 

the graph-based approach, a fully connected evidence graph is constructed [11-13], 

where nodes represent individual evidence, and a graph neural network (GNN) propa-

gates neighborhood information to aggregate semantic representations. 

 

Although these existing methods have shown certain effectiveness, they suffer from 

two major drawbacks. Firstly, fact verification requires the capture of semantic rela-

tionships among diverse evidence items, which in turn demands sophisticated modeling 

of the connections between evidence. Transformer-based approaches often prove inad-

equate as they simply concatenate evidence or handle claim-evidence pairs in isolation, 

failing to thoroughly explore the complex interconnections between different pieces of 

evidence. Secondly, most graph-based methods construct sentence-level graphs with 

claim-evidence pairs as nodes and use PLMs to represent these nodes [14]. These mod-

els have limitations in capturing fine-grained details within the evidence. They primar-

ily function at the sentence level, overlooking the rich semantic information hidden at 

the word and phrase levels. 

  

To deal with the previously mentioned challenges, we propose a novel Fine-Grained 

Graph Neural Network (FGGNN) for fact verification. Specifically, for documents, we 

decompose them into sentences and construct a sentence-level graph. We use GNN to 

conduct an in-depth exploration of the relationships between sentences, thereby filter-

ing out valid evidence. This approach fully considers the contextual information of sen-

tences within the documents and their potential semantic connections, enabling it to 

locate key evidence more accurately than traditional methods. For the evidence, to cap-

ture fine-grained relationships between words, we construct a word-level evidence 

graph. We use RGCN [1] to propagate and update information, thereby obtaining a 

more comprehensive and accurate semantic representation of the evidence. Then, we 

employ an attention mechanism to allocate weights to diverse evidence segments., 

highlighting the role of key evidence. Finally, we fuse the weighted evidence represen-

tation with the claim representation, comprehensively considering all relevant infor-

mation to classify the claim's label. The primary contributions of our research are pre-

sented below: 

 

1. We create an evidence selection component that can efficiently choose evidence 

sentences from multiple documents. It captures sentence semantic relationships and 

learns from gold evidence to boost selection accuracy.  

 

2. We propose a claim verification module using word-level evidence graph and 

RGCN [1] to capture fine-grained relationships and integrate evidence for verification. 

 

3. Thorough experiments carried out on established benchmark datasets reveal that 

our method outperforms the current state-of-the-art approaches, demonstrating its ef-

fectiveness and superiority in CDFV. 
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Fig. 1. Architecture of FGGNN. 

2 Method 

This section outlines the framework of FGGNN through three components: task defi-

nition, evidence retrieval, and claim verification. The architectural overview is illus-

trated in Figure 1. 

2.1 Task Definition 

Fact verification requires determining the authenticity of a claim (c) by analyzing evi-

dence extracted from document collection D={d1, d2, ⋯, dp} and predefined gold evi-

dence set Gold={g1, g2, ⋯, gm}. The process involves two stages: 1) Extracting rele-

vant evidence sentences E={e1, e2, ⋯, eq} from documents, and 2) Assigning a truth-

fulness label y∈{S(support), R(refute), N(not enough information)} based on E. 

 

2.2 Evidence Selection 

Sentence Encoder. For each claim, to integrate information from different passages, 

we decompose each document into sentences and compile them into a sentence set 

S = {s1, s2, ⋯, sn}. We utilize the BERT encoder to generate semantic representations 

for each sentence in both the claim and the sentence set.  

For a given claim 𝑐 and its associated sentence set S, as well as the gold evidence set 

𝐺𝑜𝑙𝑑, we generate sentence embeddings by encoding each sentence independently us-

ing BERT. Specifically, each sentence 𝑠𝑖  𝜖 𝑆 and 𝑔𝑖  𝜖 𝐺𝑜𝑙𝑑 is prepended with [𝐶𝐿𝑆] 
and appended with [𝑆𝐸𝑃], using BERT positional embeddings for contextual represen-

tations. 



 hs
i  = BERT([CLS] si [SEP]) (1) 

where 𝑖 ranges from 1 to the number of sentences in 𝑆.  

 hg
j
 = BERT([CLS] gj [SEP]) (2) 

To obtain the overall representation of the gold evidence sentence, we apply a pooling 

operation to the output of the token embedding by BERT, resulting in the sentence 

embedding of 𝐺𝑜𝑙𝑑: 

 hg
pooled

 = 
1

m
∑ hj

m
j=1  (3) 

where 𝑗 ranges from 1 to the number of sentences in 𝐺𝑜𝑙𝑑.  

Graph Construction. Due to the large amount of textual information, each sentence 

becomes a graph node, with gold evidence sentences labeled 1 (non-selectable super-

node) and others labeled 0. To learn the information from gold evidence, we treat the 

gold evidence set as a single node vg in the graph. We set its label as 1, but it will not 

be selected as evidence during the evidence output stage. For node i: we have 𝑣𝑖 =
(𝑥𝑖 , 𝑦𝑖), where xi serves as the embedding representation of the node and 𝑦𝑖  is its cor-

responding label. An edge is established between every pair of nodes. The set of edges 

in the graph is denoted as 𝐸 = {(𝑣𝑖 , 𝑣𝑗)|𝑣𝑖  𝜖 𝑉, 𝑣𝑗  𝜖 𝑉, 𝑖 ≠ 𝑗}.  

Information Propagation. In order to extract information from diverse types of 

nodes, we employ GAT to capture distinct node relations. For each node 𝑣𝑖, we calcu-

late the attention weight 𝛼𝑖𝑗 between it and its neighbor node 𝑣𝑗 using the following 

formula: 

 αij = 
exp(LeakyReLU(aT [W hi|| W hj ])

∑ exp(LeakyReLU(aT [W hi ∥ W hk ])kϵN(i)
 (4) 

where W ϵ ℝ𝐹′×𝐹 denotes a linear transformation matrix that projects the original 

node features ℎ𝑖 of the node into a new feature space 𝐹′. || represents the concatenation 

operation.  a ϵ ℝ2𝐹′
 is a learnable vector. 𝒩(𝑖) represents the set of neighboring nodes 

of 𝑣𝑖. 

Following the computation of attention weights 𝛼𝑖𝑗, the representation of node 𝑣𝑖 is 

updated through an aggregation of its neighboring nodes' features: 

 ℎ𝑖
′  =  𝜎(∑ 𝛼𝑖𝑗𝑊 ℎ𝑗𝑗𝜖𝒩(𝑖) ) (5) 

where ℎ𝑖
′ denotes the refined feature representation of node 𝑣𝑖. 𝜎 is an activation func-

tion. 

The multi-head attention mechanism is adopted. Specifically, for each attention 

head 𝑘, independent attention weights and corresponding node representation updates 

are computed. Afterwards, these outputs are combined via concatenation: 

 hi
'  = ||k = 1

K σ (∑ αij
(k)

W(k) hjjϵN(i) ) (6) 

where 𝐾 represents the number of multi-head attentions. 
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This concatenated representation will be fed into the next GAT layer. Upon reaching 

the final layer of the model, we can acquire the ultimate representation of node 𝑖, which 

is denoted as ℎ𝑖
𝐿. 

 Veracity Prediction and Evidence Output. The prediction formula is as follows: 

 ŷi = σ(Wouthi
L) (7) 

where 𝑊𝑜𝑢𝑡 serves as the weight matrix of the classification layer, while 𝑦̂𝑖 is the pre-

dicted value of node 𝑣𝑖.  

The loss function is:  

 ℒ =  −(𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖) − (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖)) (8) 

where 𝑦𝑖 represents the actual label, while 𝑦̂𝑖 denotes the probabilistic prediction for 

node 𝑣𝑖. 

The graph nodes are ranked by their probability of being labeled as 1, and the top q 

sentences are selected as the final output evidence. 

 

2.3 Claim Verification 

Word-level Evidence Graph Construction. To obtain a more granular understanding 

of the evidence, we focus on capturing fine-grained relationships at the word level. This 

approach enhances the effectiveness of claim verification. We first tokenize the evi-

dence and treat each word as a node in the graph. A word-level graph is constructed 

where each word serves as a node. The node set of the graph is denoted as V={w1, 
w2, ⋯, wm}. The connections between words are carefully defined. For adjacent words 

in the same sentence, syntactically and semantically an edge is created between them: 

𝐸𝑖𝑛𝑡𝑟𝑎 = {(𝑤𝑖 , 𝑤𝑖+1) | 𝑤𝑖 , 𝑤𝑖+1 𝜖 𝑠𝑗}. Additionally, if the same word appears in differ-

ent sentences, to emphasize semantic coherence and cross-sentence relationships, an 

edge is also constructed: 𝐸𝑖𝑛𝑡𝑒𝑟 = {(𝑤𝑖 , 𝑤𝑘) | 𝑤𝑖  𝜖 𝑠𝑗 , 𝑤𝑘  𝜖 𝑠𝑙 , 𝑤𝑖  =  𝑤𝑘 , 𝑗 ≠ 𝑙} . This 

graph structure effectively captures both the internal relationships between words 

within sentences and the semantic links across sentences, providing a solid foundation 

for subsequent information integration. 

Information Propagation. We adopt the RGCN [1] framework for node represen-

tation refinement. The iterative update rule for node embeddings is formalized as: 

 hi
(l+1)

 = σ (∑ ∑  
1

ci,r
 Wr

(l)
 hj

(l)
+W0

(l)
 hi

(l)
jϵNr(i)rϵR ) (9) 

where ℎ𝑖
(𝑙)

 denotes the embedding of node 𝑖 at layer 𝑙. 𝑅 represents the set of edge types 

in the heterogeneous graph. 𝑊𝑟
(𝑙)

 is the trainable weight matrix specific to edge type 𝑟, 

𝑊0
(𝑙)

 is the self-loop weight matrix capturing node-specific features. 𝑐𝑖,𝑟 is a normali-

zation constant to balance contributions from different neighbors. 

Evidence Readout. After the representations of word nodes are updated, we con-

catenate the word nodes within the same piece of evidence to generate a new represen-

tation for that evidence. Suppose an evidence sentence 𝑒𝑖  contains word nodes 



𝑤1, 𝑤2, ⋯ , 𝑤𝑚. Then the representation ℎ𝑒𝑖
 of this evidence can be obtained by concat-

enating the representations of each node: 

 hei
 =  Concat(hw1

(L)
, hw2

(L)
, ⋯ , hwm

(L)
) (10) 

where ℎ𝑤𝑗

(𝐿)
 denotes the refined node embedding generated by the 𝐿-th layer of the 

RGCN. 

Attention Mechanism. Different pieces of evidence contribute differently to the 

claim. Therefore, we introduce an attention mechanism to weight various pieces of ev-

idence. We calculate the attention weight 𝛼𝑖 between evidence 𝑒𝑖 and claimc. The for-

mula is as follows: 

 αi  =  
e𝑥𝑝(S𝑖𝑚(hei

,hc)

∑ e𝑥𝑝(S𝑖𝑚(hej
,hc)j

 (11) 

where 𝑆𝑖𝑚 is a similarity function that captures the semantic relatedness between evi-

dence and the claim. This allows the model to prioritize informative evidence while 

downplaying irrelevant or contradictory information. ℎ𝑐 represents the representation 

of the claim:  

 hc = BERT([CLS] c [SEP]) (21.1) 

Veracity Prediction. The final veracity prediction is derived by integrating the at-

tention-weighted evidence representations with the claim embedding. The prediction 

layer is formalized as: 

 ŷ = softmax(W [ ∑ αii hei
, hc]) (32) 

where 𝑊 denotes the classification weight matrix, and 𝑦̂ presents the predicted proba-

bility distribution over the veracity labels.  

Since the Claim Verification task involves three types of tags, the loss function is 

defined using categorical cross-entropy: 

 ℒ =  
1

𝑁
∑ ℒ𝑖

𝑁
𝑖=1 =

1

𝑁
∑ ℒ𝑖

𝑁
𝑖=1 (− ∑ 𝑦𝑖,𝑘 𝑙𝑜𝑔(𝑦̂𝑖,𝑘)2

𝑘=0 ) (43) 

where 𝑁 represents the number of samples. ℒ𝑖 is the loss for the 𝑖-th sample 𝑖. 𝑦𝑖,𝑘 is 

the ground truth one-hot label vector for sample 𝑖, and 𝑦̂𝑖,𝑘 is the predicted probability 

for sample 𝑖 belonging to class 𝑘. 

3 Experiments 

3.1 Dataset 

Following Hu et al. [2], we evaluate our proposed model on CHEF dataset. The CHEF 

dataset is divided into 8,002 training samples, 999 development samples, and 999 test 

samples. A brief summary and corresponding detailed visualizations can be seen in 

Table 1. 
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 Table 1. Dataset split sizes and statistics for CHEF.  

Split SUP REF NEI Total 

Train 22877 4399 776 8002 

Dev 3333 333 333 999 

Test 333 333 333 999 

Avg #Words in the Claim 28 

Avg #Words in the Google Snippets 68 

Avg #Words in the Gold Evidences 126 

Avg #Words in the Source Documents 3691 

3.2 Setup 

For the evidence selection component, we employ the F1 score to assess performance. 

In the claim verification phase, we follow the methodology proposed by Augenstein et 

al. [15] and use both Micro F1 and Macro F1 metrics hereafter referred to as Micro C-

F1 and Macro C-F1, respectively to evaluate classification accuracy. These metrics are 

defined as follows: 

 𝑀𝑖𝑐𝑟𝑜 𝐶 − 𝐹1 =  
2 ∑ 𝑃𝑖

𝐶
𝑖=1 𝑅𝑖

∑ 𝑃𝑖
𝐶
𝑖=1 +∑ 𝑅𝑖

𝐶
𝑖=1

 (54) 

 𝑀𝑎𝑐𝑟𝑜 𝐶 − 𝐹1 =  
2

𝐶
∑

𝑃𝑖𝑅𝑖

𝑃𝑖𝑅𝑖

𝐶
𝑖=1  (65) 

where 𝐶 denotes the number of classification categories, and 𝑃𝑖, 𝑅𝑖 represent the pre-

cision and recall for class 𝑖. 
For the sentence encoder, we leverage the BERT-Base-Chinese pre-trained model 

[16] with a hidden dimension (d = 768). The GAT model is composed of 4 layers. The 

RGCN model is also configured with 4 layers. The AdamW optimizer [17] is employed 

with a learning rate of 4e-5, batch size of 32, and training for 40 epochs.. 

 

3.3 Baseline 

Building on previous works [3, 18], we employ two types of baseline systems: Pipeline 

and Joint systems.  

Pipeline Architectures sequentially perform evidence retrieval and claim verifica-

tion: 

Evidence Selection: 

– Google Snippets: Leverage search engine previews from Google [5, 18]. 

– Surface Ranker: Employ TF-IDF to rank lexically similar sentences [5, 6, 19]. 

– Semantic Ranker: Utilize BERT pre-trained on Chinese corpora [16, 20] to com-

pute cosine similarity between claim and document embeddings. 

– Hybrid Ranker: Combine TF-IDF and BERT features via RankSVM for optimized 

ranking [21]. 



Table 2. Results of FGGNN and baseline models on CHEF. 

System/Evidence 

Test Set Dev Set 

Micro 

C-F1 

Macro 

C-F1 

Micro 

C-F1 

Macro 

C-F1 

Pipeline 

No Evidence 54.46 52.49 54.76 52.97 

Google Snippets 62.07 60.61 62.31 60.87 

Surface Ranker 63.17 61.47 63.53 61.78 

Semantic Ranker 63.47 61.94 63.73 62.42 

Hybrid Ranker 63.29 61.80 63.12 61.53 

Joint 

Reinforce 
Google Snippets 63.76 61.74 63.54 61.48 

Source Documents 64.37 62.46 64.68 62.63 

Multi-task 
Google Snippets 62.78 61.98 62.49 62.37 

Source Documents 65.02 63.12 65.41 63.38 

Latent 
Google Snippets 64.45 62.52 64.74 62.80 

Source Documents 66.77 64.65 66.96 64.92 

Pipeline 
Reread Source Documents 70.87 68.78 71.31 69.25 

FGGNN Source Documents 72.74 70.57 73.15 71.11 

Pipeline Gold evidence 78.99 77.62 79.84 78.47 

 

– ReRead: Apply plausibility, completeness, and sufficiency criteria to select evi-

dence from real-world documents [22].  

Claim Verification: 

– BERT-Based Model: Use BERT embeddings fed into a multi-layer perceptron [19, 

23]. 

Joint systems consider evidence extraction as a latent factor and optimize the evi-

dence extraction procedure in conjunction with the loss of claim verification. 

– Reinforce System: It uses REINFORCE [24] to optimize the evidence retriever. 

– Multi-task System: Simultaneously predict evidence subsets and claim veracity, 

minimizing the combined loss [6]. 

– Latent System: Employ the Hard Kumaraswamy distribution to sample evidence 

selectors [3, 25]. 

Baseline Controls: 

– No Evidence: Represents performance without external evidence. 

– Gold Evidence: Establishes an upper bound using oracle-selected evidence. 

We compare our proposed FGGNN with various baselines. Table 2 reports the av-

erage performance across 5 training/testing runs on the CHEF dataset's development 

and test splits [3]. Table 3 evaluates the quality of retrieved evidence. Key findings 

include:  

(1) Extracting supporting sentences from full-text documents yields higher C-F1 

scores compared to using Google snippets alone, as source documents contain richer 

contextual information. 
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(2) Joint optimization frameworks generally outperform pipeline architectures as it 

concurrently optimizes evidence selection and claim verification in fact verification. 

However, the FGGNN model surpasses even these advanced Joint models. On the Dev 

set, FGGNN reaches an E-F1 of 96.6% and a Micro C-F1 of 73.15%. Compared to the 

Latent Joint model, FGGNN has 6.1% and 6.19% higher scores in these two metrics. 

This shows FGGNN is better at evidence selection and can improve claim verification 

accuracy via more effective evidence integration. 

(3) FGGNN achieves a Micro C-F1 score of 73.15% and a Macro C-F1 score of 

71.11% on Dev set outperforming all other models. Compared with ReRead [22], 

FGGNN demonstrates stronger generalization ability in handling complex evidence 

and exhibits a more balanced performance across various label classification tasks. 

Table 3. Quality of Retrieved Evidence Analysis. 

Methods Test E-F1 Dev E-F1 

Surface 85.3 84.6 

Semantic 88.1 88.4 

Hybrid 87.7 87.5 

Reinforce 89.6 89.3 

Multi-task 90.4 90.3 

Latent 90.8 90.5 

ReRead 95.3 95.1 

FGGNN 96.5 96.6 

 

3.4 Ablation Analysis 

To validate the contributions of individual components, we perform the following ex-

periments: 1) w/o Gold: During evidence selection, replace gold-standard evidence 

with document-level summaries to assess the impact of precise evidence. 2) w/o wg: 

Remove the word-level evidence graph, using only sentence-level representations to 

evaluate structural granularity. 3) w/o am: Replace the attention mechanism with con-

volution during claim verification to isolate the effect of adaptive weighting.  

The ablation study findings are presented in Table 4. By examining these results, we 

can notice that the model without the supervision of gold evidence experiences a 1.84% 

reduction in Micro C-F1. This drop indicates that gold evidence plays a vital role in the 

evidence selection process. After removing the word-level evidence graph, the perfor-

mance of the model also declined accordingly. This result suggests that fine-grained 

modeling of evidence is beneficial. It can better capture semantic relationships across 

sentences. This in turn enhances the overall performance of the model. Instead of using 

the attention mechanism, we implementing convolution also results in a performance 

drop of 0.89% and 0.68%. The attention mechanism can prioritize relevant information. 

This helps with a better understanding of claims and associated evidence.  



Table 4. The analysis of ablation on FGGNN. The arrow ↓ represents the de-

crease 

Methods Micro C-F1 Macro C-F1 

FGGNN 73.15 71.11 

w/o Gold ↓1.84 ↓1.71 

w/o wg ↓1.63 ↓1.92 

w/o am ↓0.89 ↓0.68 

4. Conclusion 

In this study, we proposed the Fine-Grained Graph Neural Network (FGGNN) for fact 

verification. The evidence selection module, based on a sentence-level graph, uses 

GNNs and attention mechanism to precisely locate key evidence. The claim verification 

module captures fine-grained relationships and weights crucial evidence through word-

level evidence graphs and RGCNs. Empirical evaluations on standard benchmark da-

tasets demonstrate that FGGNN significantly outperforms all baseline models, confirm-

ing its effectiveness and superiority in CDFV. 
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