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Abstract. In recent years, deep learning has been widely applied to single-target 

detection tasks in dental images, achieving promising results. Existing methods 

aiming to achieve multi-label detection rely heavily on fully annotated data. 

However, due to the difficulty in obtaining such fully annotated data, the detec-

tion accuracy remains low, failing to meet the requirements of clinical diagnosis. 

To address this limitation, we propose DiMNet, a end-to-end multi-label object 

detection model based on an improved DiffusionDet, which incorporates multi-

stage training, weight transfer, and cross-stage guidance to enable the model to 

be trained on partially annotated data, thereby improving detection accuracy. Ad-

ditionally, we enhance the feature extraction backbone by integrating the Mamba 

model, leveraging its linear-time sequence modeling approach to maintain high 

accuracy while significantly improving inference speed. The model is capable of 

identifying dental pathologies in panoramic X-ray images while simultaneously 

providing the quadrant and tooth number of the affected tooth, maintaining high 

accuracy and fast inference speed, thereby meeting the requirements of fully au-

tomated diagnosis. During the experiments, we utilized DENTEX2023, which 

features a multi-level structure, enabling a comprehensive evaluation of the ef-

fectiveness of the proposed improvements in DiMNet. Experimental results 

demonstrate that DiMNet achieves AR scores of 71.7% for quadrant detection, 

66.8% for enumeration, and 69.1% for dental pathology detection on the test da-

taset, accurately detecting all three targets in dental images simultaneously. 

Keywords: Multi-Label Detection, Diffusion, MambaVision. 

1 Introduction 

In recent years, increasing economic development and improved living standards have 

heightened awareness of oral health [1]. However, in practice, limited public 

knowledge of dental care poses challenges for maintaining oral health. As the most 

prevalent dental disease, caries often exhibits subtle early-stage symptoms that are dif-

ficult for non-specialists to identify. Additionally, variability in clinicians' experience 

and subjective diagnostic methods increase risks of misdiagnosis or missed diagnosis, 
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potentially leading to wasted medical resources, delayed treatment, and disease pro-

gression. Furthermore, manual diagnosis is time-consuming [2] and inefficient when 

processing large volumes of dental images, with susceptibility to environmental inter-

ference. These issues underscore the critical need for automated detection and com-

puter-aided diagnosis systems to improve early caries identification and optimize clin-

ical workflows. 

Panoramic X-rays, characterized by standardized imaging angles and low noise lev-

els, significantly reduce tooth localization complexity and provide essential support for 

fully automated diagnostic systems [3]. Recent advances in deep learning have yielded 

models for specific tasks such as quadrant [4], enumeration [5] and diagnosis [6] in 

panoramic X-rays. While these studies achieve task-specific success, they lack end-to-

end multi-label detection capabilities, unable to simultaneously localize teeth, assign 

numbers, and diagnose pathologies. Existing methods employ multiple steps to achieve 

multi-label detection. For instance, YOLOrtho [7] utilizes separate models to detect 

different types of targets and then merges the results through post-processing. Other 

methods [8] adopt end-to-end models but rely heavily on fully annotated data for train-

ing. However, such comprehensive annotations demand substantial medical expertise 

and time, making them scarce [9]. Notably, annotation complexity increases hierarchi-

cally (quadrant-enumeration-diagnosis), where higher-level labels depend on lower-

level ones. Consequently, conventional object detection algorithms struggle to adapt to 

multi-stage training requirements and multi-level data characteristics [10]. 

To address the limitations of existing methods and achieve fully automated diagnosis 

based on panoramic X-rays, we propose DiMNet, an end-to-end multi-label model 

based on an improved DiffusionDet. This model can simultaneously provide the quad-

rant and numbering of teeth while performing diagnosis. Existing datasets are typically 

multi-level and often only partially annotated. To fully utilize these data, we adopt a 

multi-stage training approach based on weight transfer. The training progresses from 

low-level to high-level tasks, such as first training on data annotated only with quadrant 

information and then fine-tuning the pre-trained model on data annotated with enumer-

ation and diagnosis labels, thereby improving the model's detection accuracy. Addi-

tionally, considering the architectural characteristics of DiffusionDet, we introduce a 

cross-stage guidance strategy, where the prediction boxes from the previous stage 

model are concatenated with the noise boxes in the current stage to assist in the noise 

box restoration process. Furthermore, to meet the real-time requirements of clinical di-

agnosis, we enhance the feature extraction backbone by integrating the Mamba model, 

leveraging its linear-time sequence modeling approach to maintain high accuracy while 

significantly improving inference speed.Ultimately, the DiMNet model achieves fully 

automated diagnosis, with both accuracy and speed meeting clinical requirements. The 

main contributions are: 

• To enhance image feature extraction capabilities, we adopt the MambaVision [12] 

model as the backbone, leveraging the respective strengths of Convolutional Neural 

Network (CNN), Mamba, and Self-attention [13] for feature extraction, thereby im-

proving both detection accuracy and model inference speed. 
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• To achieve multi-label detection, we redesign the detection head to simultaneously 

output bounding box information and classify the detected boxes into quadrant, enu-

meration, and diagnosis, providing a foundational framework for fully automated 

diagnostic systems. 

• To accommodate the multi-level annotation characteristics of the dataset, we pro-

pose a multi-stage training strategy, incorporating weight transfer and cross-stage 

guidance to fully utilize data at different levels, thereby enhancing the overall detec-

tion accuracy of the model. 

2 Related Works 

2.1 Tooth Detection and Diagnosis 

In recent years, the widespread application of deep learning in computer vision tasks 

has brought revolutionary advancements to the field of medical image analysis, partic-

ularly in the domain of oral medicine. Numerous research efforts have successfully 

achieved automated detection and analysis on panoramic X-ray images. 

To address the challenges of dental diagnosis, Chen et al. [14] explored the devel-

opment of a CNN-based auxiliary system tailored for periapical radiographs. Their re-

search utilized a dataset of 2900 digital periapical radiographs and implemented diverse 

training strategies to optimize model performance. The system demonstrated promising 

results, with precision and recall metrics across various disease categories consistently 

falling within the 0.5 to 0.6 range. These findings underscore the potential of CNN-

driven approaches as effective tools for enhancing diagnostic accuracy in periapical 

radiograph analysis. Additionally, U-Net was specifically designed for bitewing radio-

graphs [15]. This model demonstrated robust performance, achieving a precision of 

63.29%, recall of 65.02%, and an F1-score of 64.14%, underscoring its utility as a sup-

portive tool for clinicians in identifying dental caries. 

Although many of the aforementioned deep learning models have been developed 

for analyzing panoramic X-ray images and have achieved certain results in specific 

tasks such as quadrant, enumeration and diagnosis detection, they have not achieved 

end-to-end multi-label detection. Consequently, they are unable to accurately diagnose 

dental pathologies while simultaneously performing tooth localization and numbering. 

2.2 Diffusion and Mamba 

With the continuous advancement of deep learning algorithms, innovative models have 

been developed, each demonstrating remarkable capabilities in specialized domains. 

For instance, the Diffusion [16] algorithm, grounded in probabilistic frameworks, has 

achieved groundbreaking results in generative tasks by iteratively refining data distri-

butions to produce high-quality outputs. Similarly, the Mamba [17] algorithm, leverag-

ing state-space models, has shown exceptional efficiency in sequential data processing, 

significantly reducing computational overhead while maintaining high accuracy. 



Currently, numerous algorithms combining Diffusion and Mamba have been applied 

in the field of computer vision. Zhou [18] et al. proposed the MaDiNet model for SAR 

target detection, defining the coordinates and dimensions of bounding boxes as a gen-

erative task. They also designed a MambaSAR model to capture intricate spatial struc-

tural information of targets and enhance the model's capability to differentiate between 

targets and complex backgrounds. The experimental results on extensive SAR target 

detection datasets achieve state-of-the-art (SOTA) performance, proving the effective-

ness of the proposed network. Additionally, Ju [19] et al. introduced the VM-DDPM 

model based on Diffusion and Mamba for medical image synthesis. Their experimental 

evaluation on three datasets of different scales, i.e., ACDC, BraTS2018, and 

ChestXRay, as well as qualitative evaluation by radiologists, demonstrates that VM-

DDPM achieves state-of-the-art performance. The outstanding results of the aforemen-

tioned studies in their respective fields validate the feasibility of Diffusion and Mamba 

models in computer vision tasks, providing a foundation for their application in medical 

image detection in this paper. 

3 Methodology 

3.1 DiMNet Architecture 

The overall network architecture of our proposed DiMNet is illustrated in Fig. 1, which 

primarily consists of four components: Encoder, Decoder, Detection Head, and Noise 

Bounding Box Generation. The Encoder processes the input image, extracting multi-

scale visual features from the raw image to generate a set of feature maps rich in se-

mantic information. These feature maps provide essential contextual and local detail 

information for Decoder. 

 

Fig. 1. DiMNet overall network architecture 

During the Noise Bounding Box Generation phase, the model gradually adds Gauss-

ian noise to the ground truth bounding boxes during training, forming a set of noisy 

initial bounding boxes. During inference, the initial noise bounding boxes are directly 

sampled from a random distribution. The Decoder takes both the encoder outputs and 

the noise bounding boxes as inputs, performing iterative denoising on the noisy bound-

ing boxes. 
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The Detection Head receives the bounding box and feature information output by 

the decoder and performs final classification and regression predictions for each candi-

date bounding box. During training, the category heads not included in the dataset for-

mat are frozen. During inference, since each bounding box in this task has three labels, 

each candidate box outputs four sets of information: the detection bounding box, quad-

rant, enumeration and diagnosis, achieving end-to-end detection. 

Mamba Encoder. The Encoder takes the raw image as input and extracts high-level 

feature information for the Decoder. DiMNet employs the MambaVision model as the 

backbone of the Encoder, leveraging a collaborative architecture of CNN, Mamba, and 

Transformer to enhance both the accuracy and efficiency of feature extraction. As 

shown in Fig. 2, MambaVision consists of four stages. The first two stages are com-

posed of stacked convolutional modules and downsampling modules, enabling rapid 

feature extraction from high-resolution images. The latter two stages utilize Mamba-

Block and Self-Attention to further extract semantic information from the feature maps. 

DiMNet retains the Feature Pyramid Network (FPN) [20] architecture to fuse multi-

scale feature maps extracted by the backbone network, enriching the semantic infor-

mation passed to the Decoder. 

 

Fig. 2. Encoder detailed architecture 

Specifically, given an input image of size 𝐻 × 𝑊 × 3, it first passes through a stem 

structure similar to the Inception Network [21], which consists of two consecutive 

3 × 3  convolutional blocks with a stride of 2, outputting a feature map of size 
𝑊

4
×

𝐻

4
× 3. The downsampling modules in Stages 1-2 are composed of two 3 × 3 con-

volutional blocks with a stride of 2, followed by batch normalization. The operation of 

the ConvBlock is as follows: 

 𝑧 = 𝐵𝑁 (Conv3×3 (𝐺𝐸𝐿𝑈 (𝐵𝑁(Conv3×3(𝑧))))) + 𝑧 (1) 

where GELU represents the Gaussian Error Linear Unit activation function, and BN 

denotes batch normalization. 

Stages 3-4 are composed of stacked structures of MambaBlock+MLP and Self-At-

tention+MLP. The MambaBlock structure, as shown in Fig. 3, is more suitable for vi-

sion tasks compared to the original Mamba. First, the original causal convolution is 
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limited to unidirectional feature extraction, making it unsuitable for vision tasks, so it 

is replaced with regular convolution. Second, an additional path without SSM (State 

Space Model) is introduced, consisting of Conv1d and SiLU activation, to compensate 

for the information loss caused by SSM sequence compression. The outputs of the two 

paths are concatenated and fed into a linear layer, ensuring that the final feature map 

contains both sequence and spatial information, thereby efficiently leveraging the fea-

ture extraction capabilities of both paths. Given an input 𝑋𝑖𝑛, the output 𝑋𝑜𝑢𝑡 of the 

MambaBlock can be expressed as follows:  

𝑋1 = Scan (𝜎 (Conv (Linear (𝐶,
𝐶

2
) (𝑋𝑖𝑛)))) 

 𝑋2 = 𝜎 (Conv (Linear (𝐶,
𝐶

2
) (𝑋𝑖𝑛))) (2) 

 𝑋𝑜𝑢𝑡 = Linear (
𝐶

2
, 𝐶) (Concat(𝑋1, 𝑋2)), 

here, 𝐿𝑖𝑛𝑒𝑎𝑟(𝐶𝑖𝑛 , 𝐶𝑜𝑢𝑡)(∙) denotes a linear layer with input dimension 𝐶𝑖𝑛 and output 

dimension 𝐶𝑜𝑢𝑡, 𝑆𝑐𝑎𝑛 represents the state space model, 𝜎 refers to the activation func-

tion Sigmoid Linear Unit(SiLU), and 𝐶𝑜𝑛𝑣 and 𝐶𝑜𝑛𝑐𝑎𝑡 represent the 1D convolution 

and concatenation operations, respectively. 

 

Fig. 3. MambaBlock detailed structure 

Additionally, we adopt a generic multi-head self-attention mechanism in accordance 

with: 

 Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝘛

√𝑑ℎ
) 𝑉 (3) 

where 𝑄, 𝐾, and 𝑉 are the query, key, and value matrices, respectively, and 𝑑ℎ is the 

dimensionality of the attention heads. The 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function is applied to the scaled 

dot-product of 𝑄 and 𝐾 , followed by a weighted sum with to compute the attention 

output. 
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Multi-Label Decoder. During the training phase of DiMNet, Gaussian noise is added 

to the original annotated bounding boxes. This process is formulated as: 

 𝑞(𝑧𝑡|𝑧0) = 𝒩(𝑧𝑡|√𝛼𝑡̅̅ ̅𝑧0, (1 − 𝛼𝑡̅̅ ̅)𝐼) (4) 

where 𝑧0 denotes the input bounding box (defined by center coordinates x,y, width w, 

and height h), 𝑧𝑡 represents the generated noisy bounding box, and at̅ is the noise vari-

ance schedule. 

The Decoder processes the noisy initial bounding boxes by extracting Region of In-

terest (RoI) features from the feature maps generated by the Encoder. This step typically 

employs RoI pooling or similar techniques to focus on regions most likely to contain 

targets, thereby avoiding redundant computation over the entire image. Subsequently, 

a neural network 𝑓𝜃(𝑧𝑡 , 𝑡, 𝑥) predicts 𝑧0 (denoised bounding box) and the correspond-

ing class label c based on the image x. During training, model optimization and param-

eter updates are achieved by minimizing the L2 loss between the predicted 𝑓 and the 

ground truth bounding box: 

 ℒ𝑡𝑟𝑎𝑖𝑛 =
1

2
||𝑓𝜃(𝑧𝑡 , 𝑡, 𝑥) − 𝑧0||2 (5) 

Additionally, to achieve multi-label detection, we incorporate four detection heads 

after the Decoder, respectively predicting bounding box, quadrant, enumeration, and 

diagnosis. 

3.2 Training Strategy 

To fully leverage the multi-level characteristics of the dataset, the model is trained using 

a three-stage progressive strategy, where detection heads for unannotated categories are 

frozen in each stage. The stage-specific prediction function 𝑓𝜃(∙) is defined as: 

 𝑓𝜃(𝑧𝑡 , 𝑡, 𝑥, ℎ𝑞 , ℎ𝑒 , ℎ𝑑) = {

(𝑦𝑞
𝑖 , 𝑏𝑖), ℎ𝑞 = 1, ℎ𝑒 = 0, ℎ𝑑 = 0 (𝑎)

(𝑦𝑞
𝑖 , 𝑦𝑒

𝑖 , 𝑏𝑖), ℎ𝑞 = 1, ℎ𝑒 = 1, ℎ𝑑 = 0 (𝑏)

(𝑦𝑞
𝑖 , 𝑦𝑒

𝑖 , 𝑦𝑑
𝑖 , 𝑏𝑖), ℎ𝑞 = 1, ℎ𝑒 = 1, ℎ𝑑 = 1 (𝑐)

 (6) 

here, ℎ𝑞 ℎ𝑒 ℎ𝑑 are binary flags indicating whether quadrant, enumeration or diagnosis 

labels are available. 

It is noteworthy that these three stages are not trained independently but rather em-

ploy a weight transfer approach, where the model trained in the previous stage is used 

as the foundation for continued training on the next level of data. The advantage of 

weight transfer lies in its ability to fully leverage the characteristics of partially anno-

tated data. 

Additionally, the three types of annotations in the dataset are not independent; the 

annotations at the next level depend on those at the previous level. For example, enu-

meration labels are confined within quadrant bounding boxes, while diagnosis labels 

are further classified based on the regions defined by enumeration. Based on this, DiM-

Net adopts a cross-stage guidance strategy during training. Specifically, the input to 

the Decoder is not entirely composed of noisy boxes but rather combines the detection 



boxes inferred by the model trained in the previous stage on the current stage’s data 

with the noisy boxes generated for the current stage. The Decoder then extracts RoI 

features to achieve efficient training. For instance, when training model (b), we first 

use model (a) to perform inference on the current stage’s data to obtain a set of predicted 

boxes. By filtering out predicted boxes with confidence scores greater than 0.5, we ob-

tain valid boxes, which are then concatenated with the noisy boxes generated for stage 

(b). However, during the inference phase, only noisy boxes are used. 

4 Experiment Design and Result Analysis 

4.1 DENTEX2023 Dataset 

We utilize the DENTEX2023[22] dataset for model training and validation. The dataset 

consists of panoramic dental X-rays collected from three institutions under standard-

ized clinical conditions, with variations in equipment and imaging protocols. These 

variations reflect diverse clinical practices, thereby enhancing the model's robustness 

in real-world applications.  

As shown in Fig. 4, DENTEX2023 provides three hierarchically annotated data 

types: (a) Quadrant (693 images) annotated with quadrant numbers based on the FDI 

system (a globally recognized dental notation standard dividing the oral cavity into 

quadrants 1-4); (b) Enumeration (634 images) annotated with quadrant and tooth enu-

meration (e.g., the third molar on the lower left is labeled "48"); (c) Diagnosis (1005 

images, including a training set of 705, a validation set of 50, and a test set of 250) 

annotated with quadrant, tooth number, and four diagnostic categories (caries, deep 

caries, periapical lesions, and impacted teeth). The hierarchical annotations enable 

phased validation of the model's capabilities in quadrant localization, tooth counting, 

and pathological identification during development.  

 

Fig. 4. DENTEX2023 dataset examples 

4.2 Experimental Setup 

The model training was conducted on a deep learning platform built with PyTorch 

framework, utilizing hardware configurations including an Intel Core i9-13900K CPU 
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and dual NVIDIA RTX-4090 GPUs. The training strategy incorporated dynamic learn-

ing rate adjustment: AdamW optimizer was selected with an initial learning rate of 

0.003, combined with a linear warmup mechanism (warmup factor=0.01, warmup iter-

ations=1000) to stabilize gradient updates during the initial phase. Weight decay coef-

ficient was set to 0.0001 for model complexity control. The dataset was partitioned into 

training and validation sets at a 7:3 ratio, with model parameters optimized over 300 

training epochs. The software environment was configured with Ubuntu 24.04 LTS 

operating system, accelerated by CUDA 12.3 and cuDNN 8.9.5 libraries to maximize 

computational efficiency. 

4.3 Comparison Experiment 

To quantitatively validate the superiority of the proposed diffusion-based multi-label 

object detection algorithm DiMNet in this chapter, we compare it with mainstream de-

tection models including YOLOv10 [23], RetinaNet [24], Faster R-CNN [25], DETR 

[26], and DiffusionDet [11]. 

To comprehensively validate the superiority of the proposed DiMNet model in this 

chapter, we conduct a quantitative comparison between DiMNet and six other models 

(DiffusionDet, Faster R-CNN, YOLOv10, DETR, and RetinaNet) across three label 

categories, AR (Average Recall), AP (mean Average Precision at IoU [50:95]), FPS 

(Frames Per Second), and parameter count. The results are summarized in Table 1. Re-

garding AR and AP, DiMNet achieves optimal performance across all three label cate-

gories (quadrant, tooth number, and dental pathology). For quadrant detection, DiMNet 

attains AR=71.7% and AP=42.6%, establishing a robust foundation for subsequent 

tooth numbering. In tooth numbering detection, it achieves AR=66.8% and AP=37.3%, 

enabling precise identification of individual teeth and their numerical designations. 

Compared to single-stage object detection models (YOLOv10 and RetinaNet), DiMNet 

demonstrates significant improvement in detection accuracy while maintaining compa-

rable FPS and parameter efficiency. When evaluated against two-stage models, DiM-

Net surpasses all competitors across all metrics. 

Table 1. Comparison of experimental results of different models 

Model 
Quadrant Enumeration Diagnosis 

Params FPS 
AR AP AR AP AR AP 

YOLOv10 55.3 32.9 49.4 27.4 51.2 25.3 35.5 103 

RetinaNet 63.2 41.4 54.3 35.7 59.2 33.7 24.4 138 

Faster R-CNN 59.9 39.9 48.2 25.6 50.9 24.2 44.5 83 

DETR 68.3 41.2 60.6 34.8 65.7 33.1 41.3 90 

DiffusionDET 62.4 39.1 59.4 31.8 58.9 29.5 32.0 107 

DiMNet 71.3 42.6 66.8 37.3 69.1 35.1 33.5 105 



4.4 Visual Qualitative Analysis 

Fig. 5 displays partial detection results of our model and other models on the 

DENTEX2023 validation set. Due to the patient's misaligned teeth and concentrated 

dental pathologies, this case presents high detection difficulty, which clearly reflects 

the performance differences among models. The ground truth labels indicate caries on 

teeth at quadrant 4 number 1, quadrant 3 number 1, and quadrant 3 number 2, with deep 

caries at quadrant 4 number 2. In DiMNet's results, the model generates four prediction 

boxes with confidence scores all above 50%. These boxes closely align with the ground 

truth boxes, and all category labels are correct. Faster R-CNN produces three prediction 

boxes with accurate locations and labels, but misses one detection. DETR yields results 

close to the ground truth, yet with lower confidence scores. DiffusionDet generates 

three prediction boxes, two of which have correct locations and labels, while the third 

shows incorrect pathology classification. Both YOLOv10 and RetinaNet detect only 

two pathological teeth, with prediction boxes deviating significantly from the ground 

truth and exhibiting lower confidence scores. 

 

Fig. 5. Visual comparison of the results of each model on validation dataset 

4.5 Ablation Experiment 

To investigate the impact of different improvement strategies proposed in this chapter 

on model performance, we conduct ablation experiments on DENTEX2023 using two 

evaluation metrics: AR and AP. The experimental setup remains consistent with the 

comparative experiments, including six ablation groups: (1) baseline model, (2) base-

line + weight transfer, (3) baseline + weight transfer + prediction box assistance, and 

three additional groups (4-6) with baseline + weight transfer + prediction box assistance 

+ different encoders. 
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Table 2 Ablation experiment results 

Groups Model 
Quadrant Enumeration Diagnosis 

AR AP AR AP AR AP 

1 Baseline 55.2 32.7 48.2 25.4 48.5 21.7 

2 1+Weight Transfer 60.7 40.3 52.1 32.4 56.8 30.3 

3 2+Cross-Stage guidance 67.9 41.4 62.7 35.7 67.7 33.7 

4 3+ResNet50 56.3 37.4 57.2 31.4 61.1 31.0 

5 3+ResNet101 61.2 39.3 62.2 34.8 61.2 31.0 

6 3+MambaVision 71.7 42.6 66.8 37.3 69.1 35.1 

As shown in Table 2 Ablation experiment results, the baseline model (a modified 

DiffusionDet with a multi-label detection head) exhibits low performance across quad-

rant, tooth number, and pathology labels. In the second group (baseline + weight trans-

fer), performance improvements are observed, confirming that pre-trained weights 

from earlier stages enhance subsequent detection capabilities. The third group (baseline 

+ weight transfer + cross-stage guidance) further boosts detection accuracy through 

auxiliary bounding box prediction. The last three groups replace the encoder with Res-

Net50, ResNet101, and MambaVision respectively, with MambaVision achieving the 

best performance (improving AP by 1.2%, 1.6%, and 1.4% across labels). 

 

Fig. 6. Visualization of Ablation Study Results 

As illustrated in Fig. 6., to provide a more intuitive comparison of evaluation metrics 

across ablation study groups, this section presents a radar chart based on the experi-

mental data. In addition to the AR and AP metrics shown in Table 2, the chart includes 

APm (medium objects), APl (large objects), AP50 (IoU threshold of 50%), and AP75 

(IoU threshold of 75%) metrics, enabling a more comprehensive and visual compari-

son. The results demonstrate that the transfer learning and cross-stage guidance strate-

gies significantly enhance the model's performance in quadrant and tooth position de-

tection, confirming that these strategies enable the model to effectively learn from low-
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level annotated data. Improvements are also observed in dental disease detection, as the 

low-level features learned during early training stages provide foundational knowledge 

for subsequent training with complete, high-level annotated data. Furthermore, using 

MambaVision as the backbone network for the encoder leads to notable performance 

gains across all tasks, validating its superior feature extraction capabilities. 

4.6 Training Strategy Validation 

To validate the effectiveness of the multi-stage strategy, this section conducts experi-

ments by selecting the same image from the test set for detection validation and visual-

izing the results. The figures clearly demonstrate that the model effectively focuses on 

the target task of the current stage during each training phase while exhibiting excellent 

detection performance.  

Specifically, the first training phase uses subset (a) of the dataset, where only the 

positions and numbering of the four quadrants are annotated on the images. During 

training, the tooth position and caries detection heads are frozen, and optimization is 

performed using Eq. (8a). Fig. 7 shows the detection results after training, demonstrat-

ing that the model accurately identifies the four quadrants. While quadrant detection is 

relatively simple, it serves as the foundation for subsequent tooth numbering and dis-

ease detection, playing a crucial role in overall performance. 

 

Fig. 7. Quadrant training phase 

The second training phase employs subset (b) of the dataset, which includes tooth 

position annotations—bounding boxes for each tooth along with quadrant and tooth 

numbering. Accordingly, the caries detection head remains frozen, and optimization 

follows Eq. (8b). Notably, the initial model weights for this stage are not randomly 

initialized; instead, weight transfer is applied by loading the pre-trained weights from 

the first stage. Furthermore, the cross-stage guidance strategy first uses the model 

trained in the first stage to detect the current training data. High-confidence predicted 

boxes (confidence > 0.5) are selected and concatenated with the noisy boxes of the 

current stage to guide the denoising process.  

Fig. 8 illustrates the model's performance in tooth numbering, showing accurate 

identification of each tooth along with its quadrant and numbering. The third stage can 

be interpreted as filtering teeth with diseases from all numbered teeth in the second 
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stage and diagnosing the disease type. Thus, the effectiveness of tooth numbering in 

the second stage is critical for the overall diagnostic system. 

 

Fig. 8. Enumeration training phase 

The third training phase uses subset (c) of the dataset, which contains complete an-

notations. Training is optimized via Eq. (8c), incorporating weight transfer and cross-

stage guidance strategies. As shown in Fig. 9, the model in this stage can localize dis-

eased teeth while simultaneously providing quadrant, numbering, and disease type in-

formation, achieving an end-to-end, multi-label detection framework. 

 

Fig. 9. Diagnosis training phase 

The experimental results clearly demonstrate that the model successfully maintains 

focus on the stage-specific target tasks while delivering consistently excellent detection 

performance. These findings confirm that DiMNet's multi-head architecture signifi-

cantly improves system scalability, enabling effective handling of tasks with different 

annotation granularities across training phases. Furthermore, our proposed multi-stage 

training approach not only enhances detection accuracy but also improves the model's 

adaptability to hierarchical tasks, thereby establishing a robust foundation for real-

world clinical applications. 

5 Conclusion 
In this study, we proposed DiMNet, a multi-label object detection model based on an 

improved DiffusionDet, combined with the feature extraction capabilities of Mam-

baVision. The model is designed to simultaneously predict the quadrant, enumeration, 

and diagnosis of each abnormal tooth in panoramic X-ray images. Taking into account 



the structured and progressive characteristics of the dataset, this chapter adopts multi-

stage training strategy, complemented by auxiliary training methods such as weight 

transfer and cross-stage guidance, to fully leverage the advantages of the dataset and 

achieve multi-label detection while improving the model’s accuracy. 

Through comparative experiments and result visualizations on the DENTEX2023 

dataset, we demonstrate that the proposed model exhibits excellent detection perfor-

mance and strong generalization capabilities. Additionally, ablation experiments con-

firm that the proposed improvement strategies play a significant role in enhancing the 

model’s performance. 
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