

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Research on Edge-Device Collaborative Task Offloading

for Dependent Tasks

Bo Peng, Xinxin Chen, Qiang Li(), Li Yan and Xinyu Zhang

School of Information and Control Engineering, Southwest University of Science and

Technology. 17, 69121 Mian Yang 621010, China
liqiangsir@swust.edu.cn

Abstract. Edge-device collaborative computing can provide efficient computing

services for emerging intelligent applications by coordinating the resources of

terminal devices and edge servers. Given the characteristics of such applications,

which are usually composed of multiple dependent subtasks, how to achieve ef-

ficient task collaborative processing becomes a key challenge. This paper models

dependent tasks as DAG, and its multi-node collaborative scheduling problem

has been proven to be an NP-hard problem. To solve this problem, this paper

designs a two-stage optimization framework: first, the predicted cost priority is

introduced in the task sorting stage, the subtask computational cost is estimated

to dynamically adjust the order, and combined with the deep reinforcement learn-

ing method, the optimal unloading location is matched for each task based on the

proximal policy optimization (PPO) algorithm. Simulation results show that the

designed method can effectively reduce the cost of task completion.

Keywords: Edge-device collaboration  Dependency Task  Task Priority 

Proximal Policy Optimization (PPO)

1 Introduction

Edge collaborative computing can fully utilize the resources within the system to col-

laboratively complete tasks and has good performance [1]. At the same time, a number

of emerging intelligent service demands have emerged at the edge of the network, such

as smart medical care [2] and virtual reality [3]. These service tasks are composed of a

series of dependent tasks and rules, and are both latency-sensitive and computationally

intensive. Edge-device collaborative use of edge server resources to assist terminal de-

vices can efficiently complete these dependent tasks and reduce system resource con-

sumption [4].

Unlike independent tasks, dependent tasks can effectively shorten the task comple-

tion time by executing multiple tasks in parallel. Their dependencies can be modeled

as a directed acyclic graph (DAG). DAG can effectively describe the task dependencies,

which is conducive to arranging the execution order and location of the task offloading

process and realizing accurate resource management. The offloading process of DAG

tasks is very complex [5], which has been proved to be a NP-hard problem. Finding a

better offloading solution for edge-device collaborative systems is our main research

problem.

To address this problem, articles [6,7] introduced task priorities to determine the

optimal execution order of DAG tasks, and a variety of methods were applied to solve

the optimal strategy [8,9]. Peng [10] studied the situation where multiple devices inter-

fere with each other and used game theory to coordinate the tasks of multiple users.

Wang et al [11] reviewed the advantages and key technologies of deep reinforcement

learning for collaborative computing, which shows that the application of deep rein-

forcement learning methods to task offloading is effective. However, terminal device

resources are usually limited, and energy consumption indicators also need to be con-

sidered. Therefore, considering the task completion time, energy consumption and in-

terference between devices, the optimization of offloading decisions needs further re-

search. This paper proposes a new priority calculation method that takes into account

both latency and energy consumption to obtain a more reasonable task offloading order.

It also uses a deep reinforcement learning algorithm to optimize offloading decisions

and reduce the system task completion time and energy consumption. The main contri-

butions and innovations of this work are as follows:

1. Different from independent task offloading, this paper studies the collaborative

working framework between terminal devices and edge servers, and the offloading

scheme can be dynamically adjusted according to task dependencies and cost con-

sumption.

2. Introducing cost priority to sort DAG tasks ensures dependencies and predicts the

execution of subsequent tasks at different nodes, which can help allocate tasks. Deep

reinforcement learning methods are combined to explore the best offloading solution

to achieve a lower system cost.

3. Simulation experiments were conducted on a Python-based simulator to verify the

effectiveness of the proposed algorithm in reducing the cost of completing system

tasks.

2 System Model

The edge-device collaborative system consists of multiple devices 𝐿 = {𝐿1, 𝐿2, … , 𝐿𝑛}

and edge servers 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}, and wireless transmission is used for communica-

tion between devices. The dependent tasks generated by the devices are described as

𝐷𝐴𝐺 = (𝑉𝑖 , 𝐸𝑖), where 𝑉𝑖 = {𝑇𝑖,1, 𝑇𝑖,2, … … , 𝑇𝑖,𝑛} represents the subtask collection of

the device. Tasks are offloaded through binary and can be executed locally or on the

server. If related subtasks are calculated on the same node, communication consump-

tion is not considered. Our goal is to find an optimal offloading solution that minimizes

the weighted sum of the time and energy consumption required to complete the com-

puting task.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2.1 Communication and Computational Model

𝑑𝑖,𝑗 represents the unloading decision of 𝑇𝑖,𝑗, the value of 0 represents local execution,

and 𝑘 represents execution on server 𝑘 .For device 𝑖 offload decision 𝑑𝑖 =

{𝑑𝑖,1, 𝑑𝑖,2, … , 𝑑𝑖,𝑗}, the wireless transmission rate between the device and the server is

expressed as:

 𝑟𝑖,𝑘 = 𝐵 log2(1 +
𝑞𝑖𝑔𝑖,𝑘

𝑤+∑ 𝑝𝑗𝑔𝑗,𝑠𝑗𝜖𝐿:𝑑𝑖=𝑑𝑗

) (1)

Where 𝐵, 𝑞𝑖, 𝑤 represent bandwidth, transmission power and noise power respectively.
∑ 𝑝𝑗𝑔𝑗,𝑠𝑗𝜖𝐿:𝑑𝑖=𝑑𝑗

 quantifies wireless interference from devices linked to the same

server, at which time the transmission rate is lower than the theoretical value when the

device occupies a channel alone.

The time and energy consumption cost of task 𝑇𝑖,𝑗 execution on local devices and

servers are discussed respectively. The local computing time and energy consumption

are expressed as:

 𝑡𝑖,𝑗
𝑙 =

𝑏𝑖,𝑗

𝑓𝑙
 (2)

 𝑒𝑖,𝑗
𝑙 = 𝛿𝑖

𝑙𝑏𝑖,𝑗 (3)

Where 𝑏𝑖,𝑗 represents the number of CPU cycles required, 𝑓𝑙 is the computing power of

the device, and 𝛿𝑖
𝑙 is the CPU energy consumption coefficient.

The execution time and energy consumption of the task on the edge server are:

 𝑡𝑖,𝑗
𝑘 =

𝑚𝑖,𝑗

𝑟𝑖,𝑘
+ 𝑡𝑖,𝑗

𝑘,𝑞𝑢𝑒𝑢𝑒
+

𝑏𝑖,𝑗

𝑓𝑘
 (4)

 𝑒𝑖,𝑗
𝑘 =

𝑞𝑖𝑚𝑖,𝑗

𝑟𝑖,𝑘
+ 𝜎𝑡𝑖,𝑗

𝑘,𝑞𝑢𝑒𝑢𝑒
+ 𝛿𝑖

𝑘𝑏𝑖,𝑗 (5)

Where m represents the task size, and the task completion time consists of three parts:

transmission time, queuing time, and computing time. The computing energy consump-

tion also comes from these three parts, and 𝜎 in the energy consumption expression

represents the waiting energy consumption coefficient.

2.2 Problem Formulation

Due to the dependency of DAG tasks, the start and end time of a task is related to the

predecessor task (need to wait for the result). In order to accurately calculate the com-

pletion time of the task, Start Time (ST) and Finish Time (FT) are defined to represent

the start and end time of the task. The calculation method is as follows:

 𝑆𝑇𝑖,𝑗
𝑘 = max {𝑎𝑣𝑎𝑖𝑙{0 ∪ [𝑘]}, max

𝑗′∈𝑝𝑟𝑒𝑑(𝑗)
(𝐹𝑇(𝑖, 𝑗′) + 𝑐𝑗′,𝑗)} (6)

 𝑐𝑗′,𝑗 = {

0, 𝑑𝑖,𝑗′ = 𝑑𝑖,𝑗

𝑑𝑎𝑡𝑎
𝑗′,𝑗

𝑟𝑖,𝑘
, 𝑜𝑡ℎ𝑒𝑟

 (7)

Where 𝑝𝑟𝑒𝑑(𝑗) represents the set of direct predecessor tasks of task j, 𝑐𝑗′,𝑗 is the com-

munication time between subtasks, and 𝑎𝑣𝑎𝑖𝑙{0 ∪ [𝑘]} represents the earliest time

when the task can be executed locally or on the server. The end time of task 𝑇𝑖,𝑗 is

expressed as:

 𝐹𝑇𝑖,𝑗
𝑘 = 𝑆𝑇𝑖,𝑗 + 𝑅𝑇 (8)

𝑅𝑇 represents the actual execution time. Since the offloading method uses binary of-

floading, 𝛼𝑘 + 𝛽𝑘 = 1 is defined. When the device executes the task locally, 𝛼𝑘 = 1,

and when the edge server executes it, 𝛽𝑘 = 1. Therefore, the task execution time 𝑅𝑇

and energy consumption are expressed as:

 𝑅𝑇 = 𝛼𝑘𝑡𝑖,𝑗
𝑙 + 𝛽𝑘𝑡𝑖,𝑗

𝑘 (9)

 𝑅𝐸 = 𝛼𝑘𝑒𝑖,𝑗
𝑙 + 𝛽𝑘𝑒𝑖,𝑗

𝑘 (10)

Our goal is to minimize the system task completion cost, and the cost is defined as

the weighted sum of time and energy consumption. The optimization problem is ex-

pressed as:

 𝑚𝑖𝑛 𝐶𝑂𝑆𝑇 = 𝜔𝑡 ∑ 𝑅𝑇𝑖
𝑁
𝑖=1 + 𝜔𝑒 ∑ 𝑅𝐸𝑖

𝑁
𝑖=1 (11)

Where 𝜔𝑡 and 𝜔𝑒 represent the weight ratios of time and energy consumption of dif-

ferent unloading decisions.

2.3 Task Priority

When sorting tasks, we first need to ensure dependencies and further explore a more

reasonable task execution order to help optimize the offloading strategy. In this paper,

we introduce a priority with forward-looking characteristics, which not only considers

the cost of the current execution task, but also considers the importance of the depend-

ent predecessor and successor tasks. We call it the predicted cost priority, which is

expressed as:

 𝑃𝑟𝑖(𝑇𝑖,𝑗 , 𝑚) = {
𝐶𝑂𝑆𝑇(𝑗, 𝑚), 𝑗 = 𝑗𝑒𝑥𝑖𝑡

𝐶𝑂𝑆𝑇(𝑗, 𝑚) + max
𝑗′∈𝑠𝑢𝑐𝑐(𝑗)

[min
𝑛∈𝑆

(𝑃𝑟𝑖(𝑇𝑖,𝑗′ , 𝑛) + 𝐶𝑂𝑆𝑇(𝑗′, 𝑛))] (12)

For exit tasks, the priority value is the completion cost of task 𝑇𝑖,𝑗. For non-exit tasks,

not only the current task cost is calculated but also the minimum cost value that can be

obtained by the subsequent task 𝑇𝑖,𝑗′ . 𝑃𝑟𝑖(𝑇𝑖,𝑗 , 𝑚) is the sum of the execution cost of

task 𝑇𝑖,𝑗 and the longest critical path cost of the successor task. It is calculated through

reverse dynamic programming to ensure that the priority value of each task depends on

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

the optimal solution of its successor task. The maximum value operation reflects the

maximum path cost, which is in line with the critical path principle in task scheduling.

3 Algorithm Formula

3.1 Modeling the Offloading Process as MDP

The edge-device collaborative task offloading process is expressed as MDP, and the

optimal offloading strategy is obtained through the continuous interaction between the

agent and the environment. MDP is usually represented in the form of a five-tuple, 𝑀 =
< 𝑆, 𝐴, 𝑅, 𝑃, 𝛾 >. The state, action, and reward value of each time slot t are 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑃

represents the state transition probability, and 𝛾 ∈ [0,1] is the discount factor. The spe-

cific definitions of state, action, and reward are as follows.

State: The state of a time slot 𝑡 can be 𝑆 = {𝑊𝑡 , 𝐶𝑡 , 𝑝𝑟𝑒𝑑𝑡 , 𝑠𝑢𝑐𝑐𝑡}, where 𝑊𝑡 is the time

set of the task, 𝐶𝑡 represents the cost of the task, 𝑝𝑟𝑒𝑑𝑡 represents the predecessor task

set of the DAG task, and 𝑠𝑢𝑐𝑐𝑡 represents the successor task set of each DAG task.

Action: The interaction process between the agent and the environment requires con-

tinuous adjustment of actions to obtain the optimal offloading strategy. The action in

this article is defined as the selection of the offloading location, that is, local computing

or offloading to the server computing.

Reward: For each action performed, a corresponding reward is generated to judge

whether the action is moving in the direction of the goal. This paper associates the goal

of minimizing the cost of completing the task with the reward, so the instant reward is

defined as the cost 𝐶𝑂𝑆𝑇 defined by (11).

3.2 Priority Offloading Algorithm Based on PPO

In order to obtain the optimal unloading solution, we used the DRL method based on

PPO for policy optimization. The PPO algorithm is a policy-based reinforcement learn-

ing algorithm with high sample efficiency. We define the offloading decision of the

device at time t as 𝜋(𝑎𝑡|𝑠𝑡), which represents the probability of taking action a_t in

state s_t under the current strategy. The optimal offloading strategy is:

 𝑎𝑡 = 𝑎𝑟𝑔 max
𝑎𝑡

𝜋(𝑎𝑡|𝑠𝑡) (13)

The actor is combined with the critic, and the critic network is used to continuously

adjust the actor to obtain the optimal action. In reference [12], 𝜃 is defined as the actor

network parameter, and the following formula is used to represent the policy loss func-

tion for updating the actor network.

 𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴
^

𝑡 ,clip(𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)] (14)

Where

 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃old
(𝑎𝑡|𝑠𝑡)

 (15)

𝑟𝑡(𝜃) is the ratio of the new policy 𝜋𝜃 to the old policy 𝜋𝜃old
, which indicates the update

amplitude of the policy. clip(𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖) is a clipping function that limits 𝑟𝑡(𝜃)

to the interval [1 − 𝜖, 1 + 𝜖]. 𝐴̂𝑡 is the advantage function.

Define 𝜙 as the Critic network parameter, and we update the loss function using the

following formula:

 𝐿(𝜙) =
1

2
𝔼𝑡[(𝑉𝜙(𝑠𝑡) − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)2] (16)

Where

 𝑉target = ∑ 𝛾𝑖−𝑡𝑟𝑖
𝑇−1

𝑖=𝑡
+ 𝛾𝑇−𝑡𝑉𝜙(𝑠𝑇) (17)

𝛾 is the discount factor, and the immediate reward at time step 𝑖 is denoted as 𝑟𝑖.

The cost priority based PPO algorithm (COPPO) is shown in Algorithm 1. In steps

1-3 of the algorithm, the state and network parameters are initialized first. In steps 4-6,

the tasks are updated according to priority, and parameters such as reward values are

collected through multiple trainings. Finally, the advantage estimate is calculated and

the network parameters are updated.

Algorithm 1 COPPO

1: Initialize state 𝑠0

2: Initialize policy 𝜋𝜃0

3: Initialize parameters 𝜙0 and 𝜃0

4: Calculate the priority factor 𝑃𝑟𝑖(𝑇𝑖,𝑗) for each task

5: Sort tasks and update task list

6: repeat

7: Run policy 𝜋𝜃old
 for T steps, collect the{𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡}

8: Compute the advantage estimates 𝐴̂𝑡 , … , 𝐴̂𝑇

9: Update 𝜃 and 𝜙 with M epochs by the gradient descent method

10: Update 𝜃old with 𝜃

11: until 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 > 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥

4 Simulation Results and Analysis

To verify the effectiveness of the designed algorithm in reducing costs, simulation ex-

periments are conducted and the results are compared with other solutions. The system

environment mainly consists of devices, edge servers, and wireless channels. We gen-

erate DAG tasks for simulation experiments. The main parameter settings of the exper-

iment are shown in Table 1.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Table 1. Simulation parameters

Parameter Value

Device computing capacity 𝑓𝑙 500MHz

Server computing capacity 𝑓𝑘 5GHz

Subtask size 𝑚𝑖,𝑗 1-5MB

Subtask required CPU cycles 𝑏𝑖,𝑗 20-1000 Megacycles

Transmission power 𝑞𝑖 100mW

Noise power 𝑤 -100dBm

Discount factor 𝛾 0.95

Clip Parameter 𝜖 0.2

Learning rate 1e-4

Size of a mini-batch 256

Hidden layer size (512,512)

Cost weight 𝜔𝑡 , 𝜔𝑒 0.5,0.5

4.1 Algorithm Convergence

Fig. 1. Convergence curve Fig. 1 shows how the task completion cost changes with the

number of training rounds. As shown in the figure, we set the experimental conditions

with 5 edge servers, 40 devices, 10 edge servers and 50 devices.

Fig. 1. Convergence curve

As the number of iterations increases in Fig. 1, the cost values under both conditions

show a downward trend and tend to stabilize after a finite number of trainings. The 95%

confidence interval band in the figure shows the fluctuation range of the cost value

during the training process, demonstrating the stability of the algorithm in this paper.

In summary, it can be concluded that the algorithm proposed in this paper is convergent.

4.2 Algorithm Comparison

Our comparison methods are the potential game theory based task scheduling algorithm

(PGOA) [13], the sustainable task offloading based on genetic algorithm (GA) [14]and.

the distributed fine-grained task offloading algorithm (DEFO) [15].

(a)Change device number

(b) Change server number

Fig. 2. Effects of different conditions

Fig. 2(a) shows the impact of the terminal device scale on the cost when 10 edge

servers are fixed. As the number of devices increases from 5 to 50, the system cost of

all algorithms shows an approximately linear growth trend. In the low-load stage (N≤

10), each device can monopolize server resources and the system maintains the mini-

mum cost state; when N>10, resource competition leads to increased processing delay

and energy consumption. In Fig. 2(b), the number of terminal devices in the edge com-

puting network is set to 40, and then the number of edge servers increases from 5 to 50.

As the number of edge servers in the system increases, the system cost tends to de-

crease. This is because the more edge servers there are, the more sufficient computing

resources there are in the system, and tasks can be completed in a timely manner, re-

ducing the corresponding processing time and energy consumption. However, when the

number of edge servers increases to 40, the cost of completing tasks no longer de-

creases, and each device has an edge computing server to assist.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 3. Effects of different cost weights

Fig. 3 shows the impact of different time and energy consumption weights on the

cost of task completion. It can be seen from the figure that COPPO achieves the lowest

cost consumption among all algorithms. And under different weight settings, the costs

of various algorithms are also different. This is because the algorithms have different

focuses, which in turn affects the offloading decision.

Fig. 4. Effect of different task granularity on cost

In order to further study the impact of changes in DAG task attributes on the cost of

task completion, we simulated the impact of increasing the number of subtasks of a task

and dividing the task in a more fine-grained manner on the cost. It is worth noting that

the resources required for the task remain unchanged. The results in Fig. 4 show that

the cost of completing the task is effectively reduced in this way, because the finer-

grained division can further improve the resource utilization efficiency of the edge

server.

Considering the two-stage optimization structure of the algorithm, the time complex-

ity of task sorting is 𝑂(𝑙𝑛(𝑒𝑛 + 𝑣𝑛)), which is mainly related to the size of the DAG

task. The deep reinforcement learning method will explore and find the best action

strategy, and the time complexity is 𝑂(2𝑛), so the total algorithm time complexity is

𝑂(2𝑛).

5 Conclusions

This paper designs a dependent task offloading algorithm to study the task offloading

under the edge-device collaborative architecture to reduce the task completion cost of

the edge-device collaborative system. We define the dependent tasks of the device as

DAG. The predicted cost priority is introduced to generate the task offloading list,

which comprehensively considers the completion time and energy consumption of the

task. Then the PPO algorithm is used for task offloading optimization training to

achieve task offloading at the lowest cost. The simulation experimental results show

that compared with other similar works, the algorithm in this paper maintains a lower

cost, which verifies the effectiveness of the proposed algorithm.

References

1. Chen, H., Qin, W., Wang, L.: Task partitioning and offloading in IoT cloud-edge collabora-

tive computing framework: a survey. J. Cloud Comput. 11(1), 86 (2022)

2. Yang, Z., Liang, B., Ji, W.: An intelligent end–edge–cloud architecture for visual IoT-as-

sisted healthcare systems. IEEE Internet Things J. 8(23), 16779–16786 (2021)

3. Chen, Z., Zhu, H., Song, L., Xu, X., Zhang, Z.: Wireless multiplayer interactive virtual re-

ality game systems with edge computing: modeling and optimization. IEEE Trans. Wireless

Commun. 21(11), 9684–9699 (2022)

4. Jeremiah, S.R., Yang, L.T., Park, J.H.: Digital twin-assisted resource allocation framework

based on edge collaboration for vehicular edge computing. Future Gener. Comp. Sy. 150,

243–254 (2024)

5. Gonçalves, G.E., Endo, P.T., Rodrigues, M., Sadok, D.H., Kelner, J., Curescu, C.: Resource

allocation based on redundancy models for high availability cloud. Comput. 102(1), 43–63

(2020)

6. Liu, S., Yu, Y., Lian, X., Feng, Y., She, C., Yeoh, P.L., Guo, L., Vucetic, B., Li, Y.: De-

pendent task scheduling and offloading for minimizing deadline violation ratio in mobile

edge computing networks. IEEE J Sel Areas Commun. 41(2), 538–554 (2023)

7. Djigal, H., Feng, J., Lu, J.: Task scheduling for heterogeneous computing using a predict

cost matrix. In: Workshop Proc. 48th Int. Conf. Parallel Process, pp. 1–10 (2019)

8. Chai, F., Zhang, Q., Yao, H., Su, Z., Qin, Y., Guo, S.: Joint multi-task offloading and re-

source allocation for mobile edge computing systems in satellite IoT. IEEE Trans. Veh.

Technol. 72(6), 7783–7795 (2023)

9. Wang, Z., Goudarzi, M., Gong, M., Wu, H., Yu, H.: Deep reinforcement learning-based

scheduling for optimizing system load and response time in edge and fog computing envi-

ronments. Future Gener. Comp. Sy. 152, 55–69 (2024)

10. Peng, B., Chen, C., Li, Q., Zhang, T., Liu, Y.: Latency-optimized multi-user task offloading

scheme using dynamic priority and duplication in edge computing. In: Proc. 29th IEEE Int.

Conf. Parallel Distrib. Syst. (ICPADS), pp. 1093–1098 (2023)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

11. Wang, Y., Yang, C., Lan, S., Zhu, L., Zhang, Y.: End–edge–cloud collaborative computing

for deep learning: a comprehensive survey. IEEE Commun. Surv Tut. 26(4), 2647–2683

(2024).

12. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-

tion algorithms. arXiv preprint arXiv:1707.06347 (2017)

13. Yang, L., Zhang, H., Li, X., Chen, M., Leung, V.C.M.: A distributed computation offloading

strategy in small-cell networks integrated with mobile edge computing. TON. 26(6), 2762–

2773 (2018)

14. Shu, C., Zhao, Z., Han, Y., Min, G., Duan, H.: Multi-user offloading for edge computing

networks: a dependency-aware and latency-optimal approach. IEEE Internet Things J. 7(3),

1678–1689 (2019)

15. Chakraborty, S., Mazumdar, K.: Sustainable task offloading decision using genetic algo-

rithm in sensor mobile edge computing. J. King Saud Univ. Comput. 34(4), 1552–1568

(2022)

