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Abstract. Brain tumor segmentation is challenged by irregular morphology, 

scarce annotations, and class imbalance in medical imaging. This study proposes 

SAM-DRA-UNet, an enhanced U-Net framework integrating knowledge distil-

lation and transfer learning. We first develop the DRA-UNet architecture by aug-

menting U-Net’s convolutional blocks with a novel depthwise-pointwise rein-

forced module and multiple residual simple attention modules, which infer 3D 

attention maps without parameter expansion while preserving baseline network 

weights. Furthermore, we employ the SAM model as the teacher network and the 

DRA-UNet as the student network, transferring knowledge through distillation. 

Experiments demonstrate that the model achieves mIoU scores of 0.8276 on the 

TCGA-LGG dataset and 0.8479 on the BraTS21 dataset, significantly outper-

forming the baseline U-Net and existing state-of-the-art methods. The model also 

exhibits stable performance across diverse datasets and knowledge distillation 

temperature settings, validating its generalization capability and providing a re-

liable solution for brain tumor image segmentation. 

Keywords: Brain tumor segmentation, SAM-DRA-UNet, Knowledge distilla-

tion, Transfer learning. 

1 Introduction 

1.1 A Subsection Sample 

Brain tumors are neoplasms that develop within the cranial cavity, which may arise 

either from metastatic invasion of extracranial organs or tissues into the intracranial 

space or directly originate from brain tissue, nerves, meninges, cerebral appendages, or 

blood vessels. Brain tumor segmentation is a pivotal task in medical image processing, 

aiming to accurately delineate and identify tumor lesion regions from medical imaging 

data. This process typically relies on multimodal magnetic resonance imaging (MRI) 

sequences, such as T1-weighted (T1), contrast-enhanced T1-weighted (T1-Gd), T2-



weighted (T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR), which pro-

vide complementary clinical information for tumor analysis [1]. 

Despite continuous advancements in brain tumor imaging technologies, segmenta-

tion tasks remain challenged by morphological ambiguity, annotation bias from scarce 

labeled data, and class imbalance. Tumor infiltration into surrounding healthy tissues 

creates blurred boundaries between pathological and normal regions. Gliomas, origi-

nating from widely distributed glial cells, may develop anywhere in the brain with sub-

stantial morphological variations across disease stages and individual patients. Manual 

annotations suffer from operator-dependent subjectivity and high inter-observer varia-

bility, compounded by the limited availability of annotated datasets due to the exorbi-

tant costs of medical image labeling. Furthermore, the imbalanced voxel distribution 

across tumor subregions demands architectures capable of precisely resolving intricate 

imaging boundaries. 

To address these challenges, we propose SAM-DRA-UNet, an enhanced brain tumor 

segmentation model integrating knowledge distillation and transfer learning. The 

model combines the powerful generalization capability of the foundational SAM [2] 

model with the efficient feature extraction advantages of a lightweight improved U-Net 

[3] to achieve precise tumor boundary delineation. Specifically, we first develop an 

enhanced U-Net called DRA-UNet (Depthwise-Residual-Attention UNet), which in-

corporates a depthwise-pointwise reinforced module (DPRM) and multiple residual 

simple attention modules (Res-SimAM). In the encoder, DPRM employs cascaded 

depthwise and pointwise convolutions to reduce computational complexity while pre-

serving shallow-layer details via residual connections. Res-SimAM, deployed in both 

encoder and decoder stages, dynamically calibrates multi-scale features through energy 

function-derived spatial-channel attention weights without introducing additional pa-

rameters. Furthermore, we establish a cross-model knowledge transfer framework. This 

framework leverages the large-scale pre-trained SAM model as the teacher network and 

implements a hybrid soft-hard label distillation strategy integrating Kullback-Leibler 

divergence and cross-entropy, effectively transferring semantic boundary perception 

capabilities to the lightweight DRA-UNet student network. Trained on publicly avail-

able TCGA-LGG [4] and BraTS21 [5] datasets, the model demonstrates exceptional 

performance under limited annotation conditions, validating its robustness in handling 

complex tumor morphology and low-contrast boundaries for real-world medical imag-

ing applications. 

Overall, our main contributions are summarized as follows: 

─ We facilitate efficient knowledge transfer from the large-scale pre-trained general 

segmentation model SAM to the lightweight DRA-UNet, achieving a significant re-

duction in computational demands while maintaining high-precision tumor bound-

ary segmentation. 

─ We propose two novel modules: Depthwise-Pointwise Reinforced Module and Re-

sidual Simple Attention Module. These modules enhance the cross-scale modeling 

capability of U-Net through lightweight convolutions and adaptive feature calibra-

tion, without introducing additional parameters. 
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─ We develop a collaborative soft-hard label distillation framework integrating Kull-

back-Leibler divergence and cross-entropy is developed, which enables efficient 

cross-domain boundary-aware knowledge transfer tailored for medical imaging’s 

complex morphological structures and low-contrast boundaries. 

─ Extensive experiments demonstrate the effectiveness and generalization ability of 

the proposed SAM-UNet and show new state-of-the-art results on two challenging 

datasets, i.e., TCGA-LGG and BraTS21. 

2 Related Work 

Early brain tumor segmentation relied on manual delineation of MRI scans by experts, 

which suffered from inter-operator variability. While automated methods later 

emerged, most algorithms were validated on heterogeneous private datasets with vary-

ing modalities, tumor types, and disease stages, hindering objective performance com-

parisons. 

In recent years, the BraTS challenge initiated by MICCAI has significantly advanced 

brain tumor segmentation technologies.  Early techniques, such as threshold-based seg-

mentation, region-growing, edge detection, and level-set methods—which required 

substantial prior knowledge—have gradually transitioned to optimization-based ap-

proaches like graph cuts and Markov random fields, though their generalization capa-

bilities remained limited.  With advancements in pattern recognition, methods such as 

Support Vector Machines (SVM) [6], Random Forests (RF) [7], and K-means cluster-

ing were employed for brain tumor segmentation.  U-Net and its variants (e.g., 3D U-

Net [8], Attention U-Net [9]) emerged as mainstream models, effectively capturing 

multi-scale features to improve segmentation accuracy.  Additionally, nnU-Net [10] 

demonstrated outstanding performance in international competitions like BraTS 

through automated hyperparameter optimization.  More recently, Transformer archi-

tectures [11] and self-supervised learning have been introduced into the field, further 

enhancing model generalization.  While these methods improved segmentation out-

comes by leveraging features such as texture, shape, and grayscale histograms, their 

reliance on handcrafted feature engineering limited adaptability to heterogeneous pa-

tient imaging data. 

Current approaches exhibit trade-offs between model efficiency and segmentation 

precision. R. Zhou et al. [12] proposed a cascaded CNN-Mamba model but overlooked 

validation on small tumor subregions and cross-dataset generalization. L. Liu et al. [13] 

developed a lightweight U-Net with 3D depthwise separable convolutions and dilated 

dense residual blocks, yet its expanded receptive field compromises local details and 

sensitivity to microscopic tumors. X. Wu et al. [14] enhanced feature propagation via 

dense U-Net-DenseNet connections and hybrid loss functions to address class imbal-

ance, though dense connectivity increases computational costs with suboptimal bound-

ary precision. W.A. Yang et al. [15] reduced computational overhead using Fermi nor-

malization and fDDFT-based global modules but sacrificed local detail retention 

through downsampling. Z. Zhu et al. [16] introduced SDV-TUNet with sparse dynamic 



encoders for multi-level feature fusion, yet its dynamic sparse attention increases com-

plexity with unverified low-contrast performance. X. Siyi et al. [17] improved U-Net 

via grouped convolutions and attention mechanisms, constrained by fixed grouping 

strategies. P. Li et al. [18] fused multi-modal MRI features through multi-scale residu-

als and channel attention but failed to adapt to inter-modal heterogeneity or model dy-

namic dependencies. 

To address the challenges of poor generalization, insufficient detail capture, and high 

computational complexity in brain tumor segmentation, this study innovatively inte-

grates the powerful generalization capability of SAM with the lightweight DRA-UNet 

through a teacher-student training framework. The method combines a depthwise-

pointwise reinforced module and multiple residual simple attention modules with the 

UNet architecture, then transfers SAM’s global segmentation knowledge via 

knowledge distillation while leveraging SAM’s prompt encoder to enhance the identi-

fication of micro-tumors and low-contrast regions. This framework achieves a balance 

between segmentation accuracy and computational efficiency. By retaining SAM’s 

cross-domain adaptability and inheriting DRA-UNet’s parameter-efficient design, it 

ensures accurate tumor boundary delineation in resource-constrained clinical environ-

ments. 

3 Method 

3.1 Overview 

The overview of our model is shown in Fig. 1. It consists of a teacher-student architec-

ture designed for efficient and accurate mask generation.  The teacher model is based 

on SAM, which includes an image encoder to process the input image, a prompt en-

coder to incorporate user-defined prompts, and a mask decoder that outputs segmenta-

tion masks through a multi-stage refinement process. 

The student model, DRA-UNet, receives the same image and prompt inputs.  It lev-

erages a depthwise-pointwise reinforced module (DPRM) to capture richer contextual 

features and residual simple attention modules (Res-SimAM) to enhance focus on sali-

ent regions.  Through knowledge distillation, the student model learns from the 

teacher’s predictions by aligning both soft labels and hard labels. 

During training, the model computes the distillation loss by combining Kullback-

Leible divergence for soft labels and cross-entropy for hard labels.  The total loss, 

formed as a weighted sum, guides the optimization of the student model via backprop-

agation.  Ultimately, the trained DRA-UNet can independently generate accurate seg-

mentation masks given an input image and prompt. 

3.2 Teacher Model 

Segment Anything Model (SAM) is a universal, zero-shot segmentation framework re-

quiring no task-specific training. It processes diverse image types (e.g., medical scans) 

via end-to-end architecture, leveraging large-scale pre-training and promptable design 

to localize microscopic tumors and low-contrast regions with high precision. 
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Fig. 1. Overview of our method. (a) SAM is used as the teacher model, with its image encoder 

encoding images, prompt encoder handling input prompts, and mask decoder generating masks 

via multi-step operations. DRA-UNet serves as the student model. The large acceptance area of 

DPRM allows the model to extract denser feature information, while Res-SimAM allows the 

model to focus on key features. The two models perform knowledge distillation, where the stu-

dent model learns from the teacher model using soft and hard labels, and updates its parameters 

through backpropagation for training. (b)The loss of SAM's soft label and DRA-UNet's soft and 

hard label is calculated by Kullback-Leible (KL) dispersion and cross entropy (CE), and the 

weighted sum is used to obtain the distillation total loss, which is used to update the student 

model parameters. 



Image Encoder. The image encoder processes input images using a MAE-pre-trained 

ViT [19] as the backbone network. It accepts unlabeled input images, processes each 

image once, and extracts deep features to generate high-dimensional image embed-

dings, mapping the input image into a feature space. For an input image of size 

(𝐶, 𝐻, 𝑊), it is first divided into non-overlapping patches of size (𝐶, 1024,1024). 

These patches are then linearly transformed into tokens of size (256,64,64): 

 𝑧0 = [𝑥1𝐸; 𝑥2𝐸; ⋯ ; 𝑥𝑁𝐸] + 𝐸𝑝𝑜𝑠 (1) 

Where, 𝑥𝑖 represents the 𝑖-th image patch, 𝐸 is the linear transformation matrix con-

verting patches to tokens, and 𝐸𝑝𝑜𝑠 denotes positional encoding. These embeddings are 

fed into the decoder, where they fuse with prompt information to guide the segmenta-

tion task. 

Prompt Encoder. The prompt encoder encodes user-provided inputs (e.g., points, 

bounding boxes) into task-specific embedding vectors. Prompt tokens convert input 

prompts into processable vector representations, while mask tokens specialize in pre-

dicting segmentation masks, and Intersection-over-Union (IoU) tokens evaluate predic-

tion accuracy. These tokens are transmitted to the decoder layers to guide the model’s 

attention toward target regions. For point inputs, a fixed embedding vector 𝑃𝑝𝑜𝑖𝑛𝑡 is 

assigned. For bounding box inputs, the coordinate vector is directly incorporated into 

Transformer computations as follows: 

 𝑃𝑏𝑜𝑥 = [𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 ,  𝑦𝑚𝑎𝑥] (2) 

The generated prompt features are transmitted to the decoder layers to guide the 

model’s attention to specific regions. 

Mask Decoder. The Mask Decoder employs a Transformer architecture with dual de-

coding layers to process encoder-derived information and produce the final segmenta-

tion mask. Cross-attention mechanisms mediate bidirectional interactions between se-

mantic tokens and image features, where self-attention refines contextual fusion 

through inter-token relationships, while token-to-image attention dynamically aligns 

spatial features to prioritize target regions. This hierarchical attention framework ena-

bles adaptive focus on diagnostically relevant areas through feature-token correlation 

mapping. 

A multilayer perceptron performs linear transformations for feature conversion and 

format adaptation.  The token-to-image attention directs the decoder to focus on diag-

nostically critical regions through cross-attention-like computations, where prompt fea-

tures dynamically steer image embeddings toward target areas. 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (3) 

 𝑂 = 𝐴𝑉 (4) 
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𝑄 is derived from prompt features, while 𝐾 and V originate from image embeddings. 

This mechanism enables the model to focus exclusively on prompted regions, improv-

ing segmentation accuracy. Deconvolution enhances mask resolution, and tokens are 

processed as queries via attention with image embeddings. The mask token is extracted, 

passed through MLP, and multiplied with embeddings to generate the final mask. An 

additional IoU token within the token sequence is processed through MLP to predict 

confidence scores. Formulas for deconvolution and MLP: 

 𝑂(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛) ∙ 𝐾(𝑚, 𝑛)𝑁−1
0

𝑀−1
0  (5) 

 𝑦 = 𝜎(𝑊2 ∙ ReLU(𝑊1𝑥 + 𝑏1) + 𝑏2) (6) 

In the deconvolution operation, 𝐼(𝑖, 𝑗) represents the input features, 𝐾(𝑚, 𝑛) denotes 

the convolution kernel, and 𝑂(𝑖, 𝑗) corresponds to the output high-resolution features. 

For MLP processing, 𝑊1 and 𝑊2 are weight matrices, 𝑏1 and 𝑏2 are bias terms, and 𝜎(∙
) is the activation function. The final binarized mask for target region segmentation is 

generated as: 

 𝑀̂ = 𝜎(𝑊𝑀𝑥 + 𝑏𝑀) (7) 

Where 𝑊 is the weight matrix, 𝑥 denotes the decoder output features, and 𝜎(∙) refers 

to the Sigmoid function that maps results to the range [0,1]. 

3.3 Student Model 

The student model adopts DRA-UNet, an enhanced U-Net, with five hierarchical 

stages: a backbone encoder followed by upsampling decoders.  Identical-dimensional 

convolutional tensors per layer and 2×2 max-pooling are utilized. The encoder inte-

grates custom depthwise-pointwise reinforced module (DPRM) and residual simple at-

tention modules (Res-SimAM), while the decoder employs Res-SimAM-enhanced 

dense skip connections to prioritize critical texture features. 

Depthwise-Pointwise Reinforced Module. The depthwise-pointwise reinforced mod-

ule (DPRM) builds upon the principles of depthwise separable convolution, a technique 

widely adopted in efficient neural network designs including Xception [20] and Mo-

bileNet [21]. Within the encoding pathway, conventional convolution operations are 

substituted with our enhanced DPRM implementation. 

The module first processes input features through a depthwise convolutional layer 

employing an expanded 7×7 kernel size with 64 output channels, maintaining spatial 

dimensions through symmetric padding of 3 pixels. Notably, this operation is per-

formed without bias terms to reduce parameter redundancy. A residual connection then 

combines the processed features with the original input, promoting information flow. 

Subsequent processing involves batch normalization and ReLU activation, followed by 

a parameter-efficient pointwise convolution that similarly omits bias terms. 

Mathematically, the module's operations can be expressed as: 



 𝑓1 = 𝑥 + 𝐷(𝜎{𝐵(𝑥)}) (8) 

 𝑓2 = 𝑃(𝜎{𝐵(𝑓1)}) (9) 

Where, 𝑓1 represents the intermediate feature map, 𝜎{∙} denotes the ReLU nonlinearity, 

𝐵(∙) signifies batch normalization, $x$ corresponds to the input tensor, 𝐷(∙) indicates 

depthwise convolution, and 𝑃(∙) refers to pointwise convolution. This design enables 

the model to thoroughly extract image features at the initial stage of the encoding phase, 

thereby providing rich hierarchical information for subsequent residual simple attention 

modules. Compared to conventional 3×3 convolutions, the proposed method exhibits a 

larger receptive field, which enhances dense feature capture while better balancing 

global context awareness—a critical advantage for processing brain tumor imaging 

data. Additionally, the residual pathway facilitates gradient propagation from shallow 

to deep layers, effectively mitigating overfitting risks by preserving low-level texture 

details during feature abstraction. 

Residual Simple Attention Module. The residual simple attention module (Res-

SimAM) integrates the SimAM attention mechanism—a neuroscience-inspired, param-

eter-free 3D attention method (Qin et al. [22]). Initially proven in speaker verification, 

SimAM adaptively weights spatial-channel features to suppress noise and highlight dis-

criminative patterns, making it particularly effective for medical imaging where subtle 

tissue variations dictate diagnostic accuracy. 

The Res-SimAM uses two stacked 3×3 convolutional blocks (stride=1, padding=1), 

each with BN and ReLU. The second block uniquely appends a parameter-free SimAM 

attention mechanism. Pre- and post-attention features are element-wise summed as the 

output, enhancing semantic feature fusion for segmentation tasks. The Moudule is de-

fined as: 

 𝑔1 = 𝜎(𝐵{𝐶𝑜𝑛𝑣(𝑥)}) (10) 

 𝑔2 = 𝑆{𝜎(𝐵{𝐶𝑜𝑛𝑣(𝑓1)})} (11) 

 𝑔3 = 𝑔1 + 𝑔2 (12) 

Where, 𝑔3 denotes the output of the Res-SimAM, 𝜎(∙) denotes the ReLU nonlinearity, 

𝐵{∙}  signifies batch normalization, 𝐶𝑜𝑛𝑣(∙)  corresponds to the 3×3 convolutional 

layer, and 𝑆{∙} signifies the SimAM attention mechanism. During encoding, standard 

convolution blocks in downsampling stages are replaced with residual simple attention 

modules. This substitution enables adaptive filtering and prioritization of complex fea-

tures, directing the model's focus toward discriminative patterns while mitigating local 

optima entrapment. In the decoder, upsampling blocks retain the original UNet archi-

tecture with dense skip connections, ensuring consistency with the UNet framework's 

reconstruction process. 

Residual Connection Mechanism. The residual connection mechanism introduces 

skip connections within convolutional networks by directly adding the input features to 
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the output of deeper layers, forming a shortcut path. This design alleviates the gradient 

vanishing problem in deep architectures while preserving shallow-layer feature infor-

mation, thereby enhancing the model's representational capacity. Let 𝑥 denote the input 

features and 𝐹(𝑥) represent the features extracted through two convolutional layers. 

The output of the residual connection can be expressed as: 

 𝑦 = 𝑥 + 𝜁(𝑥) (13) 

Where, 𝜁(𝑥) represents nonlinear features extracted by convolutional layers, while 𝑥 is 

the original input transmitted via skip connections. This design allows simultaneous 

capture of deep semantic patterns and retention of low-level details, enriching feature 

diversity.  The residual addition operation, parameter-free and computationally effi-

cient, directly propagates shallow features to deeper layers, optimizing pixel-level clas-

sification in segmentation tasks. 

3.4 Knowledge Distillation and Transfer Learning 

Following the knowledge distillation framework, we utilize the pre-trained, highly ro-

bust large model SAM as the teacher model, and a trainable lightweight small model 

DRA-UNet as the student model, performing transfer learning through distilled feature 

extraction.The student model combines soft labels and hard labels during distillation to 

mitigate error propagation. Training proceeds via backpropagation: gradients computed 

from the loss functions update student model parameters. The Kullback-Leible diver-

gence loss, cross-entropy loss, and total distillation loss are formulated as: 

 𝑞𝑖(𝑧𝑖; 𝜌) =
exp(𝑧𝑖/𝜌)

∑ exp(𝑧𝑗/𝜌)𝑛
𝑗=0

 (14) 

 KL(𝑞(𝑧𝑇; 𝜌)||𝑞(𝑧𝑆; 𝜌)) = ∑ 𝑞(𝑧𝑖
𝑇; 𝜌) log(

𝑞(𝑧𝑖
𝑇;𝜌)

𝑞(𝑧𝑖
𝑆;𝜌)

)𝑛
𝑖=1  (15) 

 CE(𝑧ℎ𝑎𝑟𝑑 , 𝑧𝑆) = − ∑ (𝑥) log(𝑧𝑆(𝑥))𝑧ℎ𝑎𝑟𝑑

𝑥  (16) 

 𝐿𝐾𝐷 = 𝛼KL(𝑞(𝑧𝑇; 𝜌)||𝑞(𝑧𝑆; 𝜌)) + (1 − 𝛼)CE(𝑧ℎ𝑎𝑟𝑑 , 𝑧𝑆) (17) 

Where 𝑧𝑆 is the logits-fusion output of the student model, 𝑧ℎ𝑎𝑟𝑑  is the hard-label (true 

label), 𝑧𝑇 is the logits-fusion output of the teacher model, 𝜌 is the temperature coeffi-

cient, and 𝛼 is the balance coefficient. 

After each distillation iteration, the distillation loss and student loss are weighted 

and summed, then fed back to the DRA-UNet student model for automatic MRI brain 

tumor segmentation. Through knowledge transfer, the learned knowledge from source 

tasks in public datasets can be migrated to target tasks in real-world application scenar-

ios, improving model performance in practical environments. By calculating the total 

distillation loss and continuously back-propagating it between the teacher and student 

models, the student model is expected to enhance its generalization capability from 

SAM's rich knowledge, achieving robust performance across diverse real-world sce-

narios. 



4 Experiments 

4.1 Datasets and Evaluation Metrics 

─ TCGA-LGG dataset: It is dedicated to low-grade glioma (LGG) segmentation, 

comprising multimodal MRI volumes (T1, T1-Gd, T2, T2-FLAIR) with annotations 

for tumor subregions. These annotations differentiate enhancing tumor (ET), whole 

tumor (WT), and tumor core (TC) using color-coded labels (black: background, light 

gray: non-enhancing tumor, light gold: edema, blue: ET). The training set includes 

387 MRI slices from 65 patients. Raw data and lesion masks are stored in .tif 

and .mask.tif formats, respectively, and visualized via 3D Slicer software. 

─ BraTS21 dataset: It contains 8,160 multimodal MRI scans (T1, T1-Gd, T2, T2-

FLAIR) from 2,040 patients, annotated with four categories: background (black), 

enhancing tumor (blue), edema (light gold), and necrotic tumor core (green). The 

dataset is partitioned into 1,251 training cases with public labels, 219 validation 

cases, and 570 test cases. Both images and masks are stored in .nii format and ana-

lyzed using ITK-SNAP. 

─ Evaluation Metrics: The mIoU measures the average overlap between predicted and 

ground-truth regions, providing a robust assessment of segmentation accuracy across 

all tumor classes. The F1-score balances precision and recall, emphasizing the mod-

el's ability to correctly identify tumor pixels while minimizing false positives and 

negatives, which is critical for clinical applications. Finally, OA quantifies the global 

pixel-wise classification accuracy but may be biased if the background dominates 

the image. Together, these metrics comprehensively assess the model's segmentation 

quality from regional, target-sensitive, and holistic perspectives. 

4.2 Implementation Details 

Experiments were conducted on an RTX 3090 GPU with knowledge distillation tem-

perature 𝜏 = 3. The model was trained using SGD optimizer combined with a Re-

duceLROnPlateau scheduler for dynamic learning rate adjustment, and optimized via 

Dice loss to maximize segmentation overlap. Input images were preprocessed to 

256×256 resolution, standardized (channel-wise mean=0, std=1), and median-filtered. 

Data augmentation included random horizontal or vertical flips and brightness varia-

tions to improve robustness. 

4.3 Experimental Results and Analysis 

A comparative analysis was conducted between the brain tumor segmentation results 

generated by the system and the manual segmentation results (denoted as GT) provided 

by physicians. Two patient cases were selected as examples in Fig. 2. Both datasets 

achieved an overall diagnostic accuracy of 100% in distinguishing positive or negative 

cases, with the model attaining an mIoU of 0.8276 on TCGA-LGG and a higher mIoU 

of 0.8479 on BraTS21. 
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Fig. 2. The segmentation result of our model. Images without red regions indicate negative di-

agnostic outcomes, while those with red regions represent positive diagnoses. The red regions 

correspond to lesion areas manually annotated by physicians, and the green regions represent 

lesion areas segmented by the proposed model. 

Under standardized experimental protocols, we conducted benchmark evaluations of 

multiple brain tumor segmentation models. As detailed in Table 1, on the TCGA-LGG 

dataset, our model achieves an mIoU of 0.8276, an F1-score of 0.9158, and an OA of 

0.9393, surpassing the baseline U-Net by 0.2164, 0.2411, and 0.2402 in these metrics 

respectively. On the BraTS21 dataset, SAM-DRA-UNet attains an mIoU of 0.8479, an 

F1-score of 0.9201, and an OA of 0.9407, outperforming the baseline U-Net by 0.2606, 

0.2685, and 0.2565 across the same metrics. These results conclusively demonstrate 

that our model significantly outperforms both the baseline U-Net and other contempo-

rary state-of-the-art methods in mIoU, F1-score, and OA. 

Fig. 3 and Fig. 4 illustrate segmentation performance across methods on representa-

tive cases. The baseline U-Net generates indistinct tumor localization with inadequate 

internal detail resolution. MANet enhances boundary clarity but fails to characterize 

internal structures. LinkNet and YOLOv5s-ASPP surpass these in tumor boundary de-

lineation and subregion partitioning, capturing partial details in enhancing tumor (ET) 

and edema (ED) areas. Models integrating attention mechanisms or enhanced architec-

tures, including MWG-UNet++, HCA-former, and PyQDCNN, leverage global fea-

tures to achieve precise non-enhancing core Net and necrosis NCR segmentation. How-

ever, minor discrepancies persist in certain textural details. Our model exhibits superior 

congruence with ground truth in holistic contour matching, internal subregion partition-

ing, and textural preservation, particularly excelling in cases with complex morphol-

ogy, heterogeneous textures, and ambiguous boundaries. 

Table 1. Different brain tumor segmentation models were compared on the TCGA-LGG dataset 

and the BraTS21 dataset. 

Dataset Method 
Evaluation Metrics 

mIoU F1-score OA 

TCGA-LGG U-Net [3] 0.6112 0.6747 0.6991 



MANet [23] 0.8094 0.8543 0.8947 

LinkNet [24] 0.7343 0.8212 0.8584 

YOLOv5s-ASPP [25] 0.7264 0.8351 0.8681 

MWG-UNet++ [26] 0.8122 0.9023 0.9217 

HCA-former [27] 0.7976 0.8621 0.9072 

PyQDCNN [28] 0.8046 0.8858 0.9235 

SAM-DRA-UNet (Ours) 0.8276 0.9158 0.9393 

BraTS21 

U-Net [3] 0.5873 0.6516 0.6842 

MANet [23] 0.7821 0.8575 0.8819 

LinkNet [24] 0.7198 0.8034 0.8115 

YOLOv5s-ASPP [25] 0.7582 0.8427 0.8424 

MWG-UNet++ [26] 0.8205 0.9089 0.9162 

HCA-former [27] 0.8175 0.9086 0.9043 

PyQDCNN [28] 0.8039 0.8721 0.8956 

SAM-DRA-UNet (Ours) 0.8479 0.9201 0.9407 

 

Fig. 3. Segmentation results of different methods on the TCGA_CS_4941 case. 
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Fig. 4. Segmentation results of different methods on the BraTS21_00002 case. 

4.4 Ablation Experiment 

To evaluate the effectiveness of our module design, we conducted ablation experiments 

to analyze in depth the effects of different strategies on model performance. These ex-

periments were carried out in a strict and uniform experimental setting to ensure the 

fairness and comparability of the results. 

Table 2. Results of student model ablation experiment. The last model is student model. 

Model 
TCGA-LGG dataset BraTS21 dataset 

mIoU F1-score OA mIoU F1-score OA 

U-Net [3] 0.6112 0.6747 0.6991 0.5873 0.6516 0.6842 

U-Net + Res-SimAM 0.6634 0.7772 0.7983 0.6421 0.7638 0.7835 

U-Net + DPRM 0.6489 0.7426 0.7857 0.6378 0.7583 0.7712 

DRA-UNet 0.7224 0.8332 0.8498 0.7035 0.8217 0.8324 

Table 3. Ablation experiment results of different knowledge distillation strategies. 

Model 
TCGA-LGG dataset BraTS21 dataset 

mIoU F1-score OA mIoU F1-score OA 

DRA-UNet 0.7224 0.8332 0.8498 0.7035 0.8217 0.8324 

T 0.7386 0.8384 0.8621 0.7298 0.8352 0.8453 

T→S 

(remove soft targets) 
0.7149 0.8012 0.8243 0.6967 0.7989 0.8186 

T→S 

(remove hard targets) 
0.7721 0.8743 0.8824 0.7586 0.8632 0.8665 

T→S 

(different 𝜏) 
0.8235 0.9026 0.9364 0.8342 0.9087 0.9123 

T→S (Ours) 0.8276 0.9158 0.9393 0.8479 0.9201 0.9247 

Table 2 demonstrates that integrating DPRM and Res-SimAM significantly en-

hances model performance. On TCGA-LGG, DPRM improves mIoU, F1-score, and 

OA by 0.0377, 0.0679, and 0.0866;  Res-SimAM elevates them by 0.0522, 0.1025, and 

0.0992;  their combination achieves gains of 0.1112, 0.1585, and 0.1507. Similarly, on 

BraTS21, DPRM increases these metrics by 0.0505, 0.1067, and 0.0870;  Res-SimAM 

raises them by 0.0548, 0.1122, and 0.0993;  combined integration boosts performance 

to 0.1162, 0.1401, and 0.1482.  DPRM mitigates U-Net’s overfitting via expanded re-

ceptive fields for contextual integration, while Res-SimAM filters irrelevant features 

through attention-driven purification. Using DRA-UNet as a student model can better 

learn the powerful segmentation ability of teacher model on the basis of better effect. 

After validating the contributions of DPRM and Res-SimAM to U-Net, we con-

ducted ablation experiments using the DRA-UNet with student loss (cross entropy) as 

the baseline model to evaluate the impact of different knowledge distillation strategies 



on segmentation performance, with results shown in Table 3. The T→S configuration 

represents the complete standard knowledge distillation model; T→S (remove hard la-

bels) uses only the distillation loss to observe the effect of soft targets; T→S (remove 

soft targets) trains the student model solely with ground truth labels to analyze the con-

tribution of distillation objectives; T denotes using only the teacher model SAM to val-

idate its upper-bound performance; T→S (different 𝜏) adjusts the temperature parame-

ter to a value distinct from the initial setting, investigating its influence on distillation 

efficacy. 

The ablation results demonstrate that our complete distillation model (T→ S) 

achieves superior performance, with mIoU scores of 0.8276 on TCGA-LGG and 0.8479 

on BraTS21, significantly surpassing other configurations. This indicates the full dis-

tillation process effectively enhances segmentation quality, as evidenced by the con-

sistent improvements in all metrics. 

The standalone teacher model T demonstrates intermediate performance, with mIoU 

scores of 0.7386 on TCGA-LGG and 0.7298 on BraTS21. This positions it between the 

baseline DRA-UNet's 0.7224 on TCGA-LGG and 0.7035 on BraTS21, confirming its 

value as feature guidance while highlighting the student model's enhanced learning ca-

pability. Notably, removing distillation components leads to clear degradation: omitting 

soft targets reduces mIoU to 0.7149 on TCGA-LGG and 0.6967 on BraTS21, while 

excluding hard labels yields 0.7721 on TCGA-LGG and 0.7586 on BraTS21 - both 

configurations proving inferior to our full approach. 

The T→S (different 𝜏) variant achieves competitive results, reaching 0.8235 mIoU 

on TCGA-LGG and 0.8342 mIoU on BraTS21. However, the marginal performance 

gap of less than 2\% in mIoU compared to our final model validates the robustness of 

our default temperature setting. These results collectively confirm the model's high ac-

curacy and generalization ability for brain MRI segmentation, reliably delivering pre-

cise results for clinical analysis across both datasets. 

5 Conclusion 

In this paper, we propose SAM-DRA-UNet, a novel brain tumor segmentation frame-

work. By integrating the depthwise-pointwise reinforced module and residual simple 

attention module, we construct DRA-UNet to achieve parameter-efficient feature learn-

ing. Additionally, a hybrid knowledge distillation loss combining Kullback-Leibler di-

vergence and cross-entropy is designed to transfer knowledge from the teacher model 

SAM to the student model DRA-UNet. Extensive experimental results demonstrate that 

our model outperforms previous state-of-the-art methods on both TCGA-LGG and 

BraTS21 datasets, while exhibiting strong generalization capability, thereby providing 

a reliable solution for brain tumor image analysis. 
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