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Abstract. Traditional convolutional neural networks (CNNs) architecture has 

limitations such as over-parameterization and a large computational demand. 

One effective approach to address these issues is to replace convolutional kernels 

with their low-rank tensor approximations. Among the various methods availa-

ble, Canonical Polyadic (CP) tensor decomposition stands out as particularly 

promising. However, employing CP decomposition for CNNs compression pre-

sents two major challenges. First, numerical optimization algorithms used to fit 

convolutional tensors can cause rank-one tensors to cancel each other out, leading 

to instability and complicating the fine-tuning of the resulting model. Second, 

determining the appropriate rank for CP decomposition is inherently complex. 

To overcome these challenges, we propose RanpCode, a novel compression 

method based on CP decomposition. This method incorporates specially de-

signed numerical fitting techniques to ensure complete CP decomposition and 

address instability issues. Furthermore, it employs a rank pruning scheme to au-

tomatically determine the optimal rank for each layer, with the rank globally op-

timized and adjusted according to the desired compression rate. Our evaluations 

on popular CNNs architectures for image classification demonstrate that 

RanpCode achieves higher compression rates while maintaining superior accu-

racy.  

Keywords: model compression, convolutional neural networks, CP decomposi-

tion, instability, rank selection. 
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1 Introduction 

Recent years people have witnessed the widespread application of convolutional neural 

networks (CNNs) in various fields, including image detection [12], semantic segmen-

tation [11] and object recognition [26], achieving significant progress and break-

throughs. However, deep convolutional networks are currently facing a serious issue of 

parameter redundancy. To address the parameter redundancy problem in deep convo-

lutional networks, researchers have proposed various methods to compress and accel-

erate large intelligent models, such as pruning [7], quantization [6] and knowledge dis-

tillation [31]. In addition to these, low-rank decomposition methods based on tensor 

decomposition [9, 15], which explore the low-rank structure of tensors in convolutional 

layers, use combinations of low-rank tensors to approximate the original tensors, and 

have demonstrated excellent performance, garnering increasing attention. Examples in-

clude Tensor Ring methods [24] and Tucker Decomposition methods [15], which have 

achieved better results in recent years. Despite being one of the earliest tensor decom-

position methods applied to model compression, Canonical Polyadic (CP) decomposi-

tion [17], with its straightforward and efficient decomposition form, has not achieved 

satisfactory results in recent years compared to other tensor decomposition techniques. 

The primary issues contributing to this are CP decomposition instability and rank se-

lection. 

CP Decomposition Instability: The inefficiency of CP decomposition in compress-

ing CNNs is partly due to CP instability, which often impairs fine-tuning after decom-

position [27]. This issue has been addressed in various studies [22, 27], leading to some 

effective solutions. For instance, the Tensor Power Method (TPM) proposed in 2017 

[1] shows effectiveness by individually fitting rank-one tensors, which helps mitigate 

the severe rank-one tensor cancellation that is a fundamental cause of CP instability. 

However, this method requires that the original tensor have orthogonal decomposabil-

ity; otherwise, it cannot effectively decompose the tensor when the rank is small. 

Rank Selection: Rank selection remains a significant challenge in tensor decompo-

sition-based compression methods, as it is crucial for balancing the model compression 

ratio and accuracy loss. Research has shown that many tensor analogues of efficiently 

computable problems in numerical linear algebra are NP-hard [23], including the de-

termination of the rank of a third-order tensor. While some tensor decomposition meth-

ods, such as Tucker-based approaches [29], have developed effective automatic rank 

selection techniques BC-ADL with promising experimental results, CP decomposition 

lacks sufficiently effective automatic rank selection schemes. Methods like the Varia-

tional Bayesian Matrix Factorization analysis [2] and the heuristic binary search 

method [22], either incur high computational costs or fail to provide the globally opti-

mal rank combination, leading to suboptimal outcomes. 

To effectively tackle these challenges, we propose RanpCode, conducting rank-

based pruning after complete CP decomposition, a robust compression technique with 

automatic rank selection, which is adjusted according to the target compression rate. 

Specifically, we begin by conducting a complete CP decomposition, ensuring that the 

number of parameters remains unchanged before and after the decomposition in TPM. 
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This approach yields a relatively large initial rank and avoids the orthogonality con-

straints often assumed in TPM. Following the complete decomposition, we evaluate the 

significance of each rank-one tensor and selectively prune the least impactful ones. This 

rank-based pruning scheme systematically reduces the rank of each layer while mini-

mizing the loss of important information. To sum up, the contributions of this paper are 

summarized as follows: 

• Based on the TPM, we propose the complete CP decomposition method, establishing 

a relatively large initial rank and creating the foundation for subsequent pruning. 

• Interpreting rank selection as model pruning, we propose rank-based pruning scheme 

with automatic rank selection. 

• We design and execute validation experiments on classic ResNet architectures using 

the CIFAR and ImageNet datasets and the experimental results demonstrate that our 

method delivers competitive performance. 

2 Related Work 

2.1 Low-rank Decompositions 

The research on low-rank structures for neural network compression has been exten-

sively explored. Typically, more compact convolutional neural networks (CNNs) can 

be obtained by applying low-rank matrix or tensor decomposition techniques to the 

original, larger models. In matrix factorization-based methods [4, 5, 14], all weight ten-

sors, including the 4D tensors in convolutional layers, are flattened into 2D matrices 

and then decomposed into smaller matrices. In contrast, tensor decomposition-based 

methods directly factorize high-order tensor objectives into a series of tensor and matrix 

cores. These approaches include various decomposition techniques [10, 21, 22, 25, 27-

30], such as CP, Tucker, and Tensor Train (TT), among others. Regardless of the spe-

cific decomposition method employed, a key challenge lies in the effective determina-

tion of rank. Currently, most existing methods rely on manual trials and experimenta-

tion to determine the rank for each layer, a process that requires significant engineering 

effort and still leaves considerable room for improvement in the final results. 

2.2 Automatic Rank Selection 

Recent studies have increasingly focused on the efficient determination of tensor ranks. 

In [10], the authors propose a variational Bayesian matrix factorization approach for 

determining the ranks of tensor-decomposed deep neural networks (DNNs) in a multi-

stage fashion. However, the inherent nature of the Bayesian approach necessitates the 

introduction of additional auxiliary hyperparameters during the search process, which 

can complicate the procedure. In [18], a genetic algorithm-based search strategy is in-

troduced to progressively identify tensor ranks for tensor decomposition (TR) based 



DNNs models. Drawing inspiration from neural architecture search, this method itera-

tively explores the model space through a set of predefined rules. Nevertheless, the 

overall search process remains highly time-consuming. In [29], the authors propose an  

 

 

Fig. 1. The method for handling a convolutional layer and the overall workflow of RanpCode. 

In the overall workflow, an initial rank is obtained through minimal computational overhead. 

All convolutional layers are decomposed, and the resulting rank-one tensors are aggregated for 

evaluation and pruning. The tensors with the least importance are pruned, followed by a train-

ing recovery phase. This process is iteratively repeated until the model size is reduced to the 

target compression rate. 

iterative training-based rank selection method that determines tensor ranks for each 

layer in a sequential manner. However, this approach overlooks the interdependencies 

of ranks across different layers, which may lead to suboptimal global rank configura-

tions. In [25], the authors introduce a global rank search method, where the automatic 

search for appropriate tensor ranks is framed as an automatic search for an optimal low-

rank structure. Despite improvements to the search space, the method's overall com-

plexity remains high. 

3 Methodology 

In this section, we will provide a brief overview of the general form of CP decomposi-

tion, as well as its application to convolutional layers. We will then explain the com-

plete CP decomposition based on the TPM. Additionally, we will detail the rank-based 

pruning scheme used for rank selection. The method for handling a convolutional layer 

and the overall workflow of our approach are illustrated in Fig. 1. 

3.1 CP Decomposition 

In CP decomposition, the original tensor is decomposed into a linear combination of 

rank-one tensors, the number of which is the tensor rank R. We focus on the three-way 

tensor and consider that a tensor λ with size T × S × D is decomposed and denoted as: 
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 𝜆 = ∑ 𝑎𝑟
𝑅
𝑟=1 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟 (1) 

where ⊗ is the outer product of the tensors and {𝑎𝑟}, {𝑏𝑟}, {𝑐𝑟} are vectors with sizes 

T, S and D respectively.  

Then, we start to focus on the tensor of the convolutional layers. Convolutional lay-

ers in CNNs typically map an input tensor 𝒳 into an output tensor 𝒴, resulting in a 

change in dimension from 𝑆 × 𝑊 × 𝐻 to 𝑇 × 𝑊′ × 𝐻′. This transformation is realized 

by utilizing a four-dimensional tensor 𝒦, with size T × S × D × D: 

 𝒴𝓉,𝓌′,𝒽′ = ∑ ∑ ∑ 𝒦𝓉,𝓈,𝒿,𝒾𝒳𝓈,𝓌𝒿 ,𝒽𝒾
𝐷
𝑖=1

𝐷
𝑗=1

𝑆
𝑠=1  (2) 

The subsequent objective is to approximate the tensor 𝒦 with rank-R CP decomposi-

tion, as depicted in (3). The spatial dimensions of tensor 𝒦 are preserved in decompo-

sition process due to their relatively modest size, such as 3 × 3 or 5 × 5: 

 𝐾𝑡,𝑠,𝑗,𝑖 = ∑ 𝑈𝑟,𝑠
(1)𝒰𝓇,𝒿,𝒾

(2)𝑈𝑡,𝑟
(3)𝑅

𝑟=1  (3) 

where 𝑈𝑟,𝑠
(1)

, 𝒰𝓇,𝒿,𝒾
(2)

 and 𝑈𝑡,𝑟
(3)

 are the three tensors with sizes 𝑅 × 𝑆 , 𝑅 × 𝐷 × 𝐷 , and 

𝑇 × 𝑅, respectively.  

The above equations indicates that the output tensor 𝒴 is obtained by applying a 

sequence of three separate convolutional operations to the input tensor 𝒳 with smaller 

kernels (𝑈𝑟,𝑠
(1)

, 𝒰𝓇,𝒿,𝒾
(2)

, 𝑈𝑡,𝑟
(3)

). Therefore, the process represented by (2) can be decom-

posed as follows: 

 𝒵𝓇,𝓌,𝒽 = ∑ 𝑈𝑟,𝑠
(1)𝒳𝓈,𝓌,𝒽

𝑆
𝑠=1  (4) 

 𝒵𝓇,𝓌′,𝒽′
′ = ∑ ∑ 𝒰𝓇,𝒿,𝒾

(2)𝒵𝓇,𝓌𝒿 ,𝒽𝒾
𝐷
𝑖=1

𝐷
𝑗=1  (5) 

 𝒴𝓉,𝓌′,𝒽′ = ∑ 𝑈𝑡,𝑟
(3)𝒵

𝓇,𝓌′,𝒽′
′𝑅

𝑟=1  (6) 

where 𝒵𝓇,𝓌,𝒽  and 𝒵𝓇,𝓌′,𝒽′  are intermediate tensors with sizes 𝑅 × 𝑊 × 𝐻  and 𝑅 ×

𝑊′ × 𝐻′, respectively. 

3.2 Complete CP Decomposition 

In general, tensor decomposition is an optimization problem, i.e., minimizing the dif-

ference between the decomposed tensor and the target tensor. Therefore, the fundamen-

tal framework of TPM is to add rank-one tensors iteratively for fitting the original ten-

sor, and the difference consequently decreases progressively. The process is denoted 

as:  

 min ∥ 𝜆 − 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟 ∥2 (7) 

 𝜆 = 𝜆 − 𝑎𝑟 ⊗ 𝑏𝑟 ⊗ 𝑐𝑟 (8) 

where 𝑟 ∈ (0, 𝑅]. 𝑅 is the rank of tensor 𝜆, set in advance. 



However, this approach assumes that the original tensor has orthogonal decompos-

ability; otherwise, when the rank is low, the tensor cannot be effectively decomposed. 

In complete CP decomposition, the goal is not to directly achieve model compression 

through decomposition, but rather to set a relatively large initial rank for the decompo-

sition, which lays the foundation for subsequent rank-based pruning. This approach 

helps avoid issues related to orthogonal decomposability, thereby addressing the insta-

bility of CP decomposition. To avoid introducing unnecessary hyperparameters for tun-

ing, we propose that the initial rank be set in a way that ensures the number of param-

eters before and after decomposition remains the same. This not only helps preserve the 

performance of the model after decomposition but also facilitates the adjustment of the 

compression rate hyperparameters. Therefore, the number of rank-one tensors with rank 

R can be computed as: 

 𝑅 = ⌈
𝑇∗𝑆∗𝐷

𝑇+𝑆+𝐷
⌉ (9) 

3.3 Rank-based Pruning Scheme for Rank Selection 

Inspired by some work of pruning scheme [20], we propose rank-based pruning 

scheme, an automatic rank selection method for CP decomposition: After performing 

complete CP decomposition with higher rank, one can iteratively prune the rank-one 

tensors until the desired compression rate is achieved. This process can be interspersed 

with retraining to restore the model, reducing the difficulty of final fine-tuning and 

thereby determining the rank of each layer simultaneously. Due to its maximal retention 

of the original model's crucial parameters along with timely retraining to recover the 

lost parameters, this approach yields a globally optimized result, representing a smooth 

transition from the original model.  

In section 3.2, we have set a relatively large rank and obtained satisfactory results: 

these rank-one tensors should exhibit gradually decreasing values of the 𝐿2 -norm, 

which is beneficial for assessing the significance of each rank-one tensor. The follow-

ing will provide a detailed explanation of how to measure the impact of all rank-one 

tensors and how to perform pruning and retraining accordingly.  

Norms Combined with Fisher Information. Although we have obtained rank-one 

tensors with decreasing norms, the two-norm cannot directly serve as a global criterion 

for comparing the importance of all rank-one tensors since these tensors originate from 

different layers of the model. Inspired by [13], the Fisher information, which represents 

the amount of information a parameter w carries about the dataset D, can serve as an 

indicator of parameter importance. The empirical Fisher information is estimated as: 

 

𝐼𝑤 = 𝐸 [(
𝜕

𝜕𝑤
log 𝑝(𝐷|𝑤))]

≈
1

|𝐷|
∑ (

𝜕

𝜕𝑤
𝒴(𝑥𝑖; 𝑤))

2
|𝐷|
𝑖=1

 (10) 
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where 𝑑𝑖 ∈ 𝐷 and 𝒴(𝑥𝑖; 𝑤) represents the model's output with 𝑥𝑖 denoting the model's 

input. Hence, the Fisher information is combined with the norm of the rank-one tensors 

as follows: 

 𝐼𝑎𝑟,𝑏𝑟,𝑐𝑟
= ∑  𝑤𝑟∈{𝑎𝑟 ,𝑏𝑟,𝑐𝑟} ∥ 𝑤𝑟 ∘

𝜕

𝜕𝑤𝑟
𝒴(𝐷; 𝑤𝑟) ∥2 (11) 

The aforementioned estimation of Fisher information relies solely on first-order deriv-

atives and has been demonstrated to effectively gauge the significance of parameters. 

Therefore, in CP decomposition, we can use (11) to evaluate the impact of all rank-one 

tensors and then selectively pruning a subset of them with smaller influence globally. 

In the context of deep learning models, each convolutional layer is decomposed into 

three convolutional layers, each having a dimension equal to the rank R. Pruning in-

volves simultaneously removing slices corresponding to a specific index along this di-

mension. 

 𝒵𝓇,𝓌,𝒽 = ∑ 𝑈𝑟,𝑠
(1)𝒳𝓈,𝓌,𝒽

𝑆
𝑠=1 ,    𝑟 ∉ 𝑃 (12) 

 𝒵
𝓇,𝓌′,𝒽′
′ = ∑ ∑ 𝒰𝓇,𝒿,𝒾

(2)𝒵𝓇,𝓌𝒿,𝒽𝒾
𝐷
𝑖=1

𝐷
𝑗=1 ,    𝑟 ∉ 𝑃 (13) 

 𝒴𝓉,𝓌′,𝒽′ = ∑ 𝑈𝑡,𝑟
(3)𝒵

𝓇,𝓌′,𝒽′
′

𝑟∉𝑃  (14) 

where the P denotes the set of indices employed for the truncation of a rank-one tensor.  

Multi-Stage Non-Uniform Pruning. Although pruning is performed by selecting 

the least impactful set of rank-one tensors globally, their combined impact remains sig-

nificant when the number of rank-one tensors is large. If only a single pruning step is 

performed to achieve the target compression rate, the resulting model performance loss 

is considerable, requiring substantial time for fine-tuning with potentially suboptimal 

recovery. To address this, we propose a multistage nonuniform pruning strategy that 

allows the original model to be smoothly and stably pruned to the target model: the 

total rank of the model can be equated to the number of model parameters, so the target 

pruning amount can be calculated based on the desired compression rate. This target 

pruning amount is then distributed non-uniformly across multiple global pruning steps 

based on impact size. The amount of pruning decreases progressively, with minimal 

retraining performed after each pruning step to reduce loss; finally, fine-tuning is car-

ried out until the model achieves optimal performance. To sum up, the overall proce-

dure of the proposed RanpCode is summarized in Algorithm 1. 



 

Table 1. A component-wise analysis conducted to demonstrate two key aspects: (1) the supe-

rior stability of complete CP decomposition compared to ALS method, and (2) the effective-

ness of Fisher information-based pruning in improving the compression performance with Res-

Net-32 on the CIFAR-100 dataset. 

 

4 Experiments 

In this section, we validate the effectiveness of RanpCode on image classification tasks 

across multiple relevant datasets including CIFAR and ImageNet. First, we conduct 

comprehensive ablation studies on the key components of RanpCode, encompassing 

the complete CP decomposition, Fisher information-based evaluation metrics, and the 

multi-stage non-uniform pruning strategy. Subsequently, we perform detailed compar-

isons with recent state-of-the-art low-rank decomposition compression methods. Fi-

nally, we present an in-depth analysis and discussion of RanpCode based on visualized 

results. 

Implementation Details 

We compressed all convolutional layers remaining fully-connected layers intact. The 

TensorLy [16] library provides an implementation of TPM method. We have set the 

parameters appropriately, including the rank R and an iteration count of 10 for each 

fitting. During the non-uniform pruning process, a total of 8 pruning steps are per-

formed, with preset ratios for each pruning. We use the standard SGD optimizer with 

Nesterov momentum set to 0.9 for model retraining. The learning rates are initialized 
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to 0.05 and 0.01 for CIFAR and ImageNet, respectively. After pruning to the target 

compression ratio, the learning rates are scaled down by 0.1 for training, and then fur-

ther scaled down by 0.1 for fine-tuning. In addition, batch size are set as 128, 256 and 

128 for CIFAR-10, CIFAR-100 and ImageNet, respectively.  

Ablation Studies 

1) Complete CP decomposition and Fisher information: Here we present a system-

atic ablation study to quantitatively assess the individual contributions of the key com-

ponents in our RanpCode framework: (1) the complete CP decomposition module for 

advanced tensor factorization and (2) the theoretically motivated Fisher information-

based evaluation metric. All experiments were conducted using ResNet32 on CIFAR-

100 under identical training conditions (80 epochs) with consistent fine-tuning proto-

cols. 

Table 2. A comparison of the effects of varying pruning rounds and decrementing pruning 

amounts on performance, using the same simple training strategy and same compression, was 

conducted on ResNet32 with the CIFAR-100 dataset. 

 

To precisely evaluate each component's impact, we performed controlled experi-

ments through method substitution: (i) replacing our CP decomposition with conven-

tional Alternating Least Squares (ALS) and (ii) substituting our Fisher Information-

based pruning with standard random pruning. Crucially, the ALS-Fisher combination 

exhibited fundamental instability - the nearly degenerate Fisher Information values pro-

duced by ALS for rank-1 tensors frequently led to catastrophic layer pruning. This 

pathological behavior induced severe architectural degradation, making this configura-

tion incapable of yielding stable or interpretable results. 

Our experimental results demonstrate that both proposed components synergistically 

contribute to performance improvements. The complete CP decomposition provides 

more stable tensor factorization compared to ALS, while the Fisher information metric 

enables principled pruning decisions that maintain network integrity. These findings in 

Table 1 underscore the importance of our carefully designed components in achieving 

robust model compression. 

2) multi-stage non-uniform pruning: Through systematic ablation studies, we con-

ducted a comprehensive comparison between the proposed multi-stage non-uniform 

pruning strategy and the baseline approach employing uniform pruning. All experi-

ments were performed on the ResNet32 architecture using the CIFAR-100 dataset un-

der identical training conditions (60 epochs), while maintaining consistent fine-tuning 

protocols. Our extensive comparisons across various pruning stage configurations con-

clusively demonstrate the superiority of the multi-stage non-uniform pruning approach. 



Experimental results indicate that progressively increasing the number of pruning iter-

ations while gradually reducing the pruning amount contributes significantly to perfor-

mance enhancement. 

Considering that further increasing the number of pruning stages would exponen-

tially escalate the difficulty and workload associated with optimizing the hyperparam-

eter allocation of pruning amounts across stages, we ultimately fixed the number of 

pruning stages at eight. This configuration was subsequently adopted as the standard 

hyperparameter setting for all follow-up experiments. The experimental findings in Ta-

ble 2 provide conclusive validation of the effectiveness of the multi-stage non-uniform 

pruning strategy. 

Table 3. Comparison with different tensor decomposition-based approaches for ResNet on 

CIFAR. Typically, two different compression ratios are tested for comparison, and the same ex-

perimental procedure is followed in subsequent studies. 

 

CIFAR Results 

Table 3 presents the evaluation results on the CIFAR dataset, with each method 

assessed for both low and high compression rates. For compressing the ResNet-20 

model, RanpCode achieves up to 0.07% higher top-1 accuracy compared to the original 

model at a higher compression ratio of × 2.7.  

In the high compression rate group, our method also surpasses the highly regarded 

BATUDE method at a compression ratio of × 7.1. For the ResNet-32 model, although 

the relative performance of RanpCode is somewhat constrained by the already high 

baseline (2% higher), our method still outperforms most other compression methods. 

ImageNet Results 

We also evaluate our RanpCode on the ImageNet dataset for the compression of 

ResNet-18 and ResNet-50 models, with a focus on reducing FLOPs and parameters, 

respectively. Table 4 presents a comparison of our method with other tensor decompo-

sition approaches. 
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Table 4. Comparison with tensor decomposition-based approaches for ResNet on ImageNet. 

 

For the ResNet-18 model, RanpCode achieves a 0.55% improvement in top-1 accu-

racy over the baseline model while also reducing FLOPs by 63.78%. Additionally, 

compared to the state-of-the-art automatic low-rank compression method HALOC, 

RanpCode provides a 0.17% higher top-1 accuracy with significantly fewer parameters 

and comparable computational costs. Despite achieving the highest FLOPs reduction 

of 68.25%, RanpCode maintains a 0.23% higher accuracy than the baseline model, 

whereas Stable EPC, the previously leading CP-based compression method, shows a 

0.69% decrease in performance post-compression. These results strongly demonstrate 

RanpCode's effectiveness in reducing FLOPs. 

For compressing the ResNet-50 model, RanpCode exhibits superior performance, 

particularly in parameters reduction. With a 65.75% reduction in parameters, 

RanpCode achieves a top-1 accuracy of 75.41%, which is 0.62% higher than the HT-2 

method, which achieves less parameters reduction. Furthermore, compared to RRTD, 

our approach yields a 1.01% higher accuracy with a higher compression ratio. These 

results provide compelling evidence of RanpCode's proficiency in parameters reduc-

tion. 

Analysis & Discussion 

Fig. 2 presents an analysis of the ResNet-18 training process under two target com-

pression levels. Both the training and test accuracies show a steady increase starting 

from a relatively high initial value (above 50%), demonstrating the effectiveness of the 

complete CP decomposition: First, it provides a strong initial rank, transforming the 

model into a structure that adapts well to rank pruning while maintaining relatively 

good performance. Second, it successfully mitigates the instability typically associated 

with CP decomposition, ensuring stable performance improvement throughout the sub-

sequent training process without significant fluctuations. Moreover, the intermittent 

pruning steps do not cause substantial accuracy fluctuations, indicating that the rank-

based pruning strategy effectively minimizes the impact of each pruning operation, al-

lowing the model to quickly recover and achieve high performance in later stages of 

training. 



 

Fig. 2. The change of Top-1 accuracy in training with two compression 79.33% and 77.64% for 

the rank-one tensors. The eight pruning occur sequentially after epoch [1,2,3,4,5,8,13,23]. 

In fact, the concept of using importance factors for comparison and rank-based prun-

ing on a global scale can also be combined with other tensor decomposition-based com-

pression methods. This is because tensor decomposition-based compression methods 

can generally be understood as rank pruning from a theoretical perspective—perform-

ing a fully equivalent decomposition of the tensor (which may not be practically feasi-

ble) and then pruning it to a preset rank. Some compression methods obtain the rank of 

each layer in the model through complex iterative calculations, global search, or other 

techniques. In such cases, instead of directly using these ranks for decomposition, one 

can combine the idea of RanpCode by employing some significance factor to measure 

all rank tensors, progressively pruning them to the previously obtained ranks. This ap-

proach allows for more stable compression and makes it easier to recover the model's 

performance, thus achieving better overall performance. 

5 Conclusion 

In this paper, we propose RanpCode, a rank-based pruning method performed after the 

completion of CP decomposition. The complete CP decomposition addresses the inher-

ent instability of traditional CP methods, providing an initial rank tensor that enables 

stable training and performance improvement. The rank-based pruning strategy offers 

an efficient automatic rank selection, without introducing any additional parameters or 

time-consuming training processes. It dynamically selects the global rank during model 

training based on a simple significance criterion. Evaluations on different models 

demonstrate that our approach significantly outperforms existing state-of-the-art model 

compression techniques. 
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