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Abstract. For remote sensing image processing, high quality images are partic-

ularly essential because of their more detailed texture information and clearer 

edges. Image super-resolution (SR) could reconstruct the high-resolution (HR) 

image from its low-resolution (LR) counterpart, overcoming the limitations of 

devices and environmental conditions. The shortcoming of most SR methods is 

that they could only be applied to fixed-scale SR task, which requires more train-

ing and deployment cost. Therefore, arbitrary-scale SR approaches are proposed 

to restore HR images of different scales with a single model. However, most ap-

proaches only use simple MLPs or the local attention mechanism in the decoding 

phase, which limits the representative power of the model. In this work, we pro-

pose an arbitrary-scale super-resolution method for remote sensing images with 

Multi-branch Feature Enhancement and Scale-specific Dictionary Attention 

(MFESDA). We use a Multi-branch Feature Enhancement (MFE) module which 

combines global information and scale-aware attention to capture more informa-

tive features. Moreover, we design a Scale-specific Multi-level Dictionary Atten-

tion Modulation (SMDAM) module in the decoding process which makes use of 

scale-specific priors to improve the performance. The experimental results have 

shown that the proposed model performs better than other arbitrary-scale SR ap-

proaches and our visual quality is higher than other approaches. 

Keywords: Remote sensing, super resolution, implicit neural representation, 

attention mechanism. 

1 Introduction 

Single Image Super-resolution (SISR) is a classical computer vision task with the goal 

of restoring the high-resolution (HR) image from the low-resolution (LR) counterpart. 

In the practical applications of remote sensing image processing, high quality images 

are advantageous to many tasks such as object detection, semantic segmentation and 

image classification. However, due to the limitations of devices and the effects of en-

vironmental conditions, it is difficult to obtain high quality images at times. Therefore, 
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image SR has highly attracted attention on account of its great performance of restoring 

images with clearer texture and structure. 

In recent years, many deep learning-based methods [2,4,5,7,10-12,14,15,18,30,34-

36] have been proposed to tackle the image SR problem. However, most SR methods 

could only be applied to images with a fixed scale factor, which means it is required to 

train and save models for each different scale factor, costing more time for training and 

occupying more space to save parameters of each scale factor. In order to address this 

problem, there have been some arbitrary-scale image SR methods [1,3,8,13] based on 

the implicit neural representation (INR). These methods expect to train a single model 

for all SR tasks with different scales and usually use the autoencoder architecture con-

sisting of an alternative encoder used for feature extraction and an implicit decoder used 

for upsampling. However, in the decoding process, these methods usually use simple 

MLPs or the local attention mechanism without well-designed modules for capturing 

rich features, which limits the performance of the model. 

In this work, we propose an arbitrary-scale SR method for remote sensing images 

with Multi-branch Feature Enhancement and Scale-specific Dictionary Attention 

(MFESDA) to tackle this problem. We propose a Multi-branch Feature Enhancement 

(MFE) module where we combine both global statistics and scale-aware attention 

mechanism to enhance features extracted by the encoder. Furthermore, considering the 

arbitrary-scale SR model is responsible for different scale factors, we design a Scale-

specific Multi-level Dictionary Attention Modulation (SMDAM) module in which we 

use scale-specific priors to generate the modulation for the implicit decoder. We have 

conducted experiments to demonstrate that the proposed model has better performance 

on objective metrics and the visual quality of images reconstructed by the proposed 

model is higher than other approaches. 

In Summary, the contributions of this work are as follows: 

─ We propose a Multi-branch Feature Enhancement (MFE) module to combine global 

statistics and scale-aware features. 

─ We design a Scale-specific Multi-level Dictionary Attention Modulation (SMDAM) 

module to exploit scale-specific information in the decoding phase. 

─ We have conducted experiments to show the performance of the proposed model is 

superior to other arbitrary-scale SR approaches and our visual quality is higher than 

other approaches. 

2 Related Work 

2.1 Single Image Super-resolution 

With the rapid development of deep learning techniques, there have been many signif-

icant SR methods based on deep learning. SRCNN [5] firstly used a Convolutional 

Neural Network (CNN) to map the LR image to the corresponding HR image. DRCN 

[10] proposed a recursive network with recursive-supervision to utilize large context 

without increasing parameters. ESPCN [18] proposed a sub-pixel convolution opera-
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tion for efficient upsampling. LapSRN [11] used the laplacian pyramid structure to pro-

gressively reconstruct sub-band residuals of HR images in a coarse-to-fine fashion. 

EDSR [15] improved the structure of residual blocks and generalized the single-scale 

model to multi-scale architecture. RDN [35] used the dense architecture to exploit hi-

erarchical features. DBPN [7] combined the error feedback mechanism with the itera-

tive upsampling and downsampling process. To alleviate the smooth problem caused 

by MSE loss, SRGAN [12] used a Generative Adversarial Network (GAN) [6] for im-

age SR to generate more realistic images with higher perceptual quality. After that, 

ESRGAN [30] enhanced the performance of SRGAN with the Relativistic average 

GAN (RaGAN) [9] and improved the network structure and the perceptual loss. In order 

to model dependencies of features across channels or regions, some methods introduced 

attention mechanism to the network design. RCAN [34] used the channel attention 

mechanism to model channel-wise dependencies. SAN [4] used second-order feature 

statistics to learn more discriminative representations. PAN [36] proposed an efficient 

pixel attention mechanism to decrease the amount of parameters. Considering the great 

performance of Transformer [28] in vision tasks, some SR methods based on Trans-

former have been proposed recently. SwinIR [14] introduced Swin Transformer [16] to 

image SR and used the local attention mechanism and the cross-window interaction to 

improve the performance. HAT [2] combined channel attention with the window-based 

self-attention mechanism and proposed an overlapping cross-attention module to im-

prove the window-based self-attention. However, these SR models require to be trained 

individually and we need to save parameters for each scale factor, leading to more train-

ing time and more deployment cost. Moreover, these methods are only used for integer 

scale factors and are not generalized to non-integer scale factors. 

2.2 Arbitrary-scale Super-resolution 

The arbitrary-scale image super-resolution task is put forward with the aim of recon-

structing HR images of arbitrary scale factors with a single model. Inspired by implicit 

neural representation (INR), LIIF [3] learnt a continuous representation for images and 

used the coordinate information and local latent codes around the coordinate to predict 

the pixel value. LTE [13] proposed a dominant-frequency estimator to facilitate the 

learning of fine details. CiaoSR [1] proposed an attention-in-attention network where 

the attention mechanism was applied in order to adaptively predict the ensemble 

weights and aggregate local features. LMF [8] proposed a computational optimal para-

digm which decoupled the HR High-Dimensional (HD) decoding process into decoding 

in LR HD latent space and HR Low-Dimensional (LD) rendering space. However, these 

methods tend to use simple MLPs or the local attention mechanism for the implicit 

decoder, which limits the improvement of the performance. In this work, we will use 

the Multi-branch Feature Enhancement (MFE) module and Scale-specific Multi-level 

Dictionary Attention Modulation (SMDAM) module to capture more informative fea-

tures. 



 

Fig. 1. The overall framework of the proposed MFESDA. 

3 Proposed Method 

In this section, we will provide a detailed description of the proposed model. As shown 

in Fig. 1, the proposed model is composed of an encoder and a decoder. The main 

branch uses an encoder to extract latent features which are then input to two branches. 

The one branch is connected to the Multi-branch Feature Enhancement (MFE) module 

to capture rich features, while the other branch uses a latent MLP to generate the initial 

modulation content of the render MLP. Then for each HR coordinate, the sampled mod-

ulation is input to the Scale-specific Multi-level Dictionary Attention Modulation 

(SMDA) module to generate the final modulation of the render MLP, while the sampled 

features are input to the render MLP to predict the pixel value. We will then introduce 

the motivation of the proposed method and then explain the structure design. 

3.1 Preliminary and Motivation 

Given an input image 𝐼𝐿𝑅 ∈ ℝ𝐻×𝑊×3 and arbitrary scale factors 𝑟ℎ and 𝑟𝑤, the aim of 

arbitrary-scale SR task is to reconstruct the HR image 𝐼𝐻𝑅 ∈ ℝ𝑟ℎ𝐻×𝑟𝑤𝑊×3. In most ar-

bitrary-scale SR methods, the LR image is firstly input to the encoder network to obtain 

latent features which are then unfolded to aggregate local features. Then a decoding 

function is used to predict the pixel value of a 2D coordinate 𝑎 ∈ 𝒜 in the continuous 

image domain with the latent code 𝑧 nearest to the coordinate, which is defined as fol-

lowed: 

 𝑠(𝑎, 𝐼𝐿𝑅) = 𝑓θ(𝑧, 𝑎), (1) 

where 𝑓𝜃(𝑧,⋅) represents an implicit image function that maps HR coordinates to pixel 

values. In practice, we usually use the relative coordinate 𝑎∗ and cell decoding tech-

nique [3] to predict the pixel value, which is defined as followed: 

 𝑠(𝑎, 𝐼𝐿𝑅) = 𝑓θ(𝑧, [𝑎∗, 𝑐]), (2) 
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Fig. 2. The structures of the Multi-branch Feature Enhancement (MFE) module. 

where 𝑐 = (2/𝑟ℎ, 2/𝑟𝑤). Recently, LMF [8] proposed to decouple the decoding process 

into latent decoding shared by adjacent coordinates and independent rendering for each 

HR coordinate, which is defined as followed: 

 
[𝑚, 𝑧𝑖𝑛] = 𝑓𝜃𝑙

(𝑧, 𝑐),

𝑠(𝑎, 𝐼𝐿𝑅) = 𝑓𝜃𝑟
(𝑧𝑖𝑛 , [𝑎∗, 𝑐], 𝑚),

 (3) 

where 𝑓𝜃𝑙
 denotes the latent MLP with parameters 𝜃𝑙, 𝑓𝜃𝑟

 denotes the render MLP with 

parameters 𝜃𝑟, 𝑚 denotes the modulation of the render MLP, and 𝑧𝑖𝑛 denotes the latent 

code that is input to the render MLP. In this work, we adopt the similar paradigm as 

LMF [8] where we use two branches in the decoding process. In order to further im-

prove the performance of the network, we propose to use a Multi-branch Feature En-

hancement (MFE) Module to replace the simple MLP which is used to extract features 

before predicting the pixel value. Besides, considering the representations of input im-

ages with different scale factors are also various [29], we design a Scale-specific Multi-

level Dictionary Attention Modulation (SMDAM) module to exploit the scale-specific 

information. 

3.2 Multi-branch Feature Enhancement Module 

In this section, we will introduce the design of the Multi-branch Feature Enhancement 

(MFE) module. We will firstly introduce the overall structure of MFE module, then we 

will explain detailed structures of the Scale-aware Pixel Attention (SPA) Module and 

the Global Feature Fusion (GFF) module. 

According to previous works [13,24], a simple MLP is biased towards learning low-

frequency components. Therefore, we design a MFE module which serves as a com-

plement to the decoder. The attention mechanism has been proved to be beneficial to 

many computer vision tasks [19] because of the capacity to adaptively assign weights 

to features based on the global statistics. In this work, we combine different attention 

mechanisms to utilize global information with the proposed MFE module. As shown in 

Fig. 2, the Multi-branch Feature Enhancement (MFE) module is composed of two 

branches. The first branch uses a simple MLP to extract low frequency features, and 

the other branch combines global information and scale-aware features to learn more 

informative features. We use the convolution operation before and after the modules, 

and the outputs of branches are aggregated with the summation operation. The process 

of MFE module is denoted as: 

 



 

Fig. 3. The structures of the proposed modules. (a) The Scale-aware Pixel Attention (SPA). (b) 

The Scale-aware Convolutional Block (SCB). 

 

𝐹𝑏1
= 𝑀𝐿𝑃(𝑧),

𝐹𝑏2
= 𝐶𝑜𝑛𝑣 (𝑆𝑃𝐴𝑛 (𝐺𝐹𝐹𝑛 (… 𝑆𝑃𝐴1 (𝐺𝐹𝐹1(𝐶𝑜𝑛𝑣(𝑧))) … ))) ,

𝐹𝑀𝐹𝐸 = 𝐹𝑏1
+ 𝐹𝑏2

,

 (4) 

where 𝑧 is the unfolded latent features after the encoder, 𝐹𝑏𝑖
 represents the output of the 

𝑖-th branch, 𝐹𝑀𝐹𝐸  represents the output of MFE module and 𝑛 = 2 represents the num-

ber of SPA or GFF modules. 

Scale-aware Pixel Attention Module. According to the previous work [29], the 

learned representations of images with different scales are also diverse and the scale 

information could be used to learn discriminative features to improve the performance. 

Inspired by this, we propose a Scale-aware Pixel Attention (SPA) Module to incorpo-

rate scale information into the model. There have been some works [20,21,29] which 

use the external variable to interact with the network. In this work, we also use the scale 

factor as a variable to adaptively modulate the network. As shown in Fig. 3, we perform 

the modulation within each Scale-aware Convolutional Block (SCB) where we use the 

scale factor to generate the scale modulation and the shift modulation for the output of 

the convolution operation, and the process of SCB is denoted as followed: 

 

𝐹𝑆𝐶𝐵𝑖
= 𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣(𝐹𝐺𝐹𝐹𝑖−1

))) ,

[𝑀𝑖1
, 𝑀𝑖2

] = 𝐿𝑖𝑛𝑒𝑎𝑟(𝑠),

𝐹𝑆𝐶𝐵𝑖
= 𝐹𝑆𝐶𝐵𝑖

⊙ 𝑀𝑖1
+ 𝑀𝑖2

,

𝐹𝑆𝐶𝐵𝑖
= 𝐹𝑆𝐶𝐵𝑖

+ 𝐹𝐺𝐹𝐹𝑖−1
,

 (5) 

where 𝐹𝐺𝐹𝐹𝑖−1
∈ ℝ𝐶×𝐻×𝑊 represents the input features of SCB, 𝑠 represents the scale 

factor, 𝑀𝑖1
, 𝑀𝑖2

∈ ℝ𝐶×1×1 represents the modulations generated by a linear layer, ⊙ 

represents the element-wise multiplication. 

Then we use SCB to construct SPA module. The pixel attention [36] is a simple 

attention mechanism which could improve the representation capacity. Here we inte-

grate SCB into cascaded pixel attention blocks with residual connections. To be spe-

cific, the output of SCB is input to a convolution layer followed by the Sigmoid func-

tion, then we combine the scale-aware features with the input features to generate pixel-

wise attention weights which are used to enhance large-scale features, and the process 

is denoted as followed: 
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Fig. 4. The structure of the Global Feature Fusion (GFF) module. 

 

𝐹𝐴𝑖
= σ (𝐶𝑜𝑛𝑣(𝐹𝑆𝐶𝐵𝑖

)) ⊙ 𝐹𝐺𝐹𝐹𝑖−1
+ 𝐹𝐺𝐹𝐹𝑖−1

,

𝐹𝐴𝑖
= σ (𝐶𝑜𝑛𝑣(𝐹𝐴𝑖

)) ,

𝐹𝑆𝑃𝐴𝑖
= 𝐶𝑜𝑛𝑣(𝐹𝐺𝐹𝐹𝑖−1

),

𝐹𝑆𝑃𝐴𝑖

∗ = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝑆𝑃𝐴𝑖
⊙ 𝐹𝐴𝑖

+ 𝐹𝑆𝑃𝐴𝑖
) + 𝐹𝐺𝐹𝐹𝑖−1

∗ ,

 (6) 

where 𝜎 represents the Sigmoid function, 𝐹𝐺𝐹𝐹𝑖−1
∈ ℝ𝐶×𝐻×𝑊  represents the grouped 

features of 𝐹𝐺𝐹𝐹𝑖−1

∗ ∈ ℝ𝐶∗×𝐻×𝑊 where 𝐶 = 𝐶∗/𝑁𝑔𝑟𝑜𝑢𝑝. 

Global Feature Fusion Module. In order to exploit the global statistics, we combine 

multi-scale channel-wise information and spatial-wise information and perform inter-

actions between different branches. The channel attention mechanism [22,25] usually 

uses the global average pooling to generate channel-wise statistics which are input to 

fully connected layers or convolutional layers to model channel-wise dependencies, 

then the features are scaled by the attention weights. This mechanism could also be 

combined with spatial attention for better performance [23,26]. Therefore, we combine 

this two mechanisms to capture global information. As shown in Fig. 4, we design a 

Spatial Attention Enhancement (SAE) module and a Channel Attention Enhancement 

(CAE). In the SAE module, we apply average pooling and 1-dimensional convolution 

along the width and height directions to extract the cross-spatial information of the two 

directions which is used to aggregate input features, then the output is combined with 

the 1 × 𝐻 × 𝑊 spatial-wise statistics extracted along the channel dimension, which is 

denoted as followed: 

 

𝐹𝑆𝐴𝐸𝐻𝑖
= σ (𝐶𝑜𝑛𝑣1𝑑 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝐻(𝑧𝑆𝐴𝐸𝑖

))) ,

𝐹𝑆𝐴𝐸𝑊𝑖
= σ (𝐶𝑜𝑛𝑣1𝑑 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙𝑊(𝑧𝑆𝐴𝐸𝑖

))) ,

𝐹𝑆𝐴𝐸𝑖𝑎
= 𝑧𝑆𝐴𝐸𝑖

⊙ 𝐹𝑆𝐴𝐸𝐻𝑖
⊙ 𝐹𝑆𝐴𝐸𝑊𝑖

+ 𝑧𝑆𝐴𝐸𝑖
,

𝐹𝑆𝐴𝐸𝑖𝑏
= σ (𝐶𝑜𝑛𝑣(𝑧𝑆𝐴𝐸𝑖

)) ,

𝐹𝑆𝐴𝐸𝑖
= 𝐹𝑆𝐴𝐸𝑖𝑎

⊙ 𝐹𝑆𝐴𝐸𝑖𝑏
+ 𝐹𝑆𝐴𝐸𝑖𝑎

,

 (7) 

where 𝑧𝑆𝐴𝐸𝑖
∈ ℝ𝐶×𝐻×𝑊 represents the input features of the SAE module. In the CAE 

module, we apply global average pooling followed by the 1 × 1 convolution operation 



 

Fig. 5. The structure of the Scale-specific Multi-level Dictionary Attention Modulation 

(SMDAM) Module. 

and the Sigmoid function to obtain channel attention weights which are used to combine 

input features, and the process is denoted as followed: 

 
𝐹𝐶𝐴𝐸𝑖

= σ (𝐶𝑜𝑛𝑣 (𝐺𝐴𝑃(𝑧𝐶𝐴𝐸𝑖
))) ,

𝐹𝐶𝐴𝐸𝑖
= 𝐹𝐶𝐴𝐸𝑖

⊙ 𝑧𝐶𝐴𝐸𝑖
+ 𝑧𝐶𝐴𝐸𝑖

,
 (8) 

where 𝑧𝐶𝐴𝐸𝑖
∈ ℝ𝐶×𝐻×𝑊 represents the input features of the CAE module. In the first 

two branches, we use the SAE and CAE module to obtain 𝐹𝑆𝐴𝐸𝑖1
 and 𝐹𝐶𝐴𝐸𝑖1

, while in 

the other two branches, we use the SAE and CAE module after the convolution opera-

tion to capture larger-scale features 𝐹𝑆𝐴𝐸𝑖2
 and 𝐹𝐶𝐴𝐸𝑖2

. Then we perform interactions 

between multi-scale features, which is denoted as followed: 

 

𝐹𝑆𝐴𝐸𝑖1
= 𝐹𝑆𝐴𝐸𝑖1

⊙ σ (𝐶𝑜𝑛𝑣 (𝐺𝐴𝑃 (𝐹𝐶𝐴𝐸𝑖2
))) + 𝐹𝑆𝐴𝐸𝑖1

,

𝐹𝐶𝐴𝐸𝑖1
= 𝐹𝐶𝐴𝐸𝑖1

⊙ σ (𝐶𝑜𝑛𝑣 (𝐹𝑆𝐴𝐸𝑖2
)) + 𝐹𝐶𝐴𝐸𝑖1

,

𝐹𝑆𝐴𝐸𝑖2
= 𝐹𝑆𝐴𝐸𝑖2

⊙ σ (𝐶𝑜𝑛𝑣 (𝐺𝐴𝑃 (𝐹𝐶𝐴𝐸𝑖1
))) + 𝐹𝑆𝐴𝐸𝑖2

,

𝐹𝐶𝐴𝐸𝑖2
= 𝐹𝐶𝐴𝐸𝑖2

⊙ σ (𝐶𝑜𝑛𝑣 (𝐹𝑆𝐴𝐸𝑖1
)) + 𝐹𝐶𝐴𝐸𝑖2

,

 (9) 

We concatenate the outputs of these branches followed by the convolution operation, 

and the obtained global information is then incorporated into the input features, which 

is denoted as followed: 

 
𝐹𝐺𝐹𝐹𝑖

= 𝐶𝑜𝑛𝑣 [𝐹𝑆𝐴𝐸𝑖1
; 𝐹𝐶𝐴𝐸𝑖1

; 𝐹𝑆𝐴𝐸𝑖2
; 𝐹𝐶𝐴𝐸𝑖2

] ⊙ 𝐹𝐺𝐹𝐹𝑖−1
,

𝐹𝐺𝐹𝐹𝑖
= 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝐹𝐺𝐹𝐹𝑖

) + 𝐹𝐺𝐹𝐹𝑖−1

∗ ,
 (10) 

where [⋅;⋅] represents the concatenating operation, 𝐹𝐺𝐹𝐹𝑖−1
∈ ℝ𝐶×𝐻×𝑊 is the grouped 

features of 𝐹𝐺𝐹𝐹𝑖−1

∗ ∈ ℝ𝐶∗×𝐻×𝑊. 
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3.3 Scale-specific Multi-level Dictionary Attention Modulation Module 

The token dictionary [32] could be used to integrate external priors with cross-attention 

mechanism. In this work, we use the token dictionary-based cross-attention to generate 

scale-specific modulation for the decoder MLP. To be specific, we propose a Scale-

specific Multi-level Dictionary Attention Modulation (SMDAM) Module where we 

learn a modulation dictionary for each scale factor in {1.1,1.2, … ,4.0} to utilize scale-

specific priors. As shown in Fig. 5, the modulation 𝑀𝑙 of each layer 𝑙 generated by the 

latent MLP is input to the linear layer after the Layer Normalization operation to gen-

erate query 𝑄𝑙 , and then we use the scale factor as the index 𝐼𝑛𝑑𝑒𝑥𝑙 to fetch the corre-

sponding dictionary 𝐷[𝐼𝑛𝑑𝑒𝑥𝑙] and apply the linear projection to generate key 𝐾𝑙  and 

value 𝑉𝑙. Next, we calculate the attention map with 𝑄𝑙  and 𝐾𝑙 , and use the attention map 

to aggregate value 𝑉𝑙, which is then followed by a linear layer with weights 𝑊𝑀,𝑙 . The 

process of the dictionary attention is denoted as followed: 

 

𝑄𝑙 = 𝐿𝑁(𝑀𝑙)𝑊𝑄,𝑙 ,

𝐾𝑙 = 𝐷[𝐼𝑛𝑑𝑒𝑥𝑙]𝑊𝐾,𝑙 ,

𝑉𝑙 = 𝐷[𝐼𝑛𝑑𝑒𝑥𝑙]𝑊𝑉,𝑙 ,

𝑀𝑙 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
1

√𝑑
𝑄𝑙𝐾𝑙

𝑇) 𝑉𝑙 + 𝑀𝑙 ,

𝑀𝑙 = 𝑀𝑙𝑊𝑀,𝑙 + 𝑀𝑙 ,

 (11) 

where 𝑀𝑙 ∈ ℝ𝐻𝑊×𝐶𝑚𝑜𝑑  is the modulation of the 𝑖-th layer, 𝐿𝑁  represents the Layer 

Normalization operation, 𝑊𝑄,𝑙 , 𝑊𝐾,𝑙 , 𝑊𝑉,𝑙 ∈ ℝ𝐶𝑚𝑜𝑑×𝐶𝑚𝑜𝑑  represent the weights of the 

query, key and value of the 𝑖-th layer, 𝑄𝑙 ∈ ℝ𝐻𝑊×𝐶𝑚𝑜𝑑  represents the query of the 𝑖-th 

layer, 𝐷 ∈ ℝ𝑁𝐷×𝑁𝑀×𝐶𝑚𝑜𝑑  is a multi-level dictionary with number of levels 𝑁𝐷  and 

number of modulation codes 𝑁𝑀  which is accesses by the index 𝐼𝑛𝑑𝑒𝑥𝑙  of the 𝑖-th 

layer, 𝐷[𝐼𝑛𝑑𝑒𝑥𝑙] ∈ ℝ𝑁𝑀×𝐶𝑚𝑜𝑑  represents the gathered dictionary values, 𝐾𝑙 , 𝑉𝑙 ∈
ℝ𝑁𝑀×𝐶𝑚𝑜𝑑  represent the key and value of the 𝑖-th layer, 𝑑 = 𝐶𝑚𝑜𝑑 is used to scale the 

dot products, 𝑊𝑀,𝑙 represents the weights of the modulation of the 𝑖-th layer. Then the 

generated modulation 𝑀𝑙 is split into scale modulation 𝑀𝛾,𝑙 and shift modulation 𝑀𝛽,𝑙 

for the render MLP which consists of FiLM layers [8,17], and the hidden features ℎ𝑙  is 

modulated by 𝑀𝛾,𝑙 and 𝑀𝛽,𝑙. The process is denoted as followed: 

 
ℎ𝑙 = 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙,

ℎ𝑙 = 𝐺𝐸𝐿𝑈(ℎ𝑙 ⊙ 𝑀γ,𝑙 + 𝑀β,𝑙 + ℎ𝑙−1),
 (12) 

where ℎ𝑙  denotes the 𝑙-th hidden features, 𝑀𝛾,𝑙 is the scale modulation of the 𝑙-th hid-

den layer, 𝑀𝛽,𝑙  is the shift modulation of the 𝑙 -th hidden layer, 𝑊𝑙  and 𝑏𝑙  are the 

weights and bias of the 𝑙-th hidden layer respectively. The final pixel value of the de-

coder is the local ensembled outputs within the local 2 × 2 region added by the bilinear 

upsampled version of the input sample. Inspired by the adaptive refining strategy of 

ATD [32], we then use the attention map to adaptively update the dictionary. We per-

form Instance Normalization and the Softmax operation on the transposed attention 

map 𝐴𝑙
𝑇, then we conduct matrix multiplication with the output of the attention module 

 



Table 1. Quantitative results (PSNR/SSIM) on UCMerced dataset. Bold indicates the best per-

formance. 

 

𝑀𝑙 to get the updated dictionary codes. We then use a learnable parameter 𝑠 = 𝜎(𝑠∗) 

to weight the original codes and the updated codes, which is denoted as followed: 

 𝐷[𝐼𝑛𝑑𝑒𝑥𝑙] = 𝑠𝐷[𝐼𝑛𝑑𝑒𝑥𝑙] + (1 − 𝑠)𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐼𝑁(𝐴𝑙
𝑇))𝑀𝑙 , (13) 

4 Experiments 

4.1 Experimental Setup 

Datasets and Evaluation Metrics. In this experiment, we adopt UCMerced [31] da-

taset and RSSCN7 [27] dataset for the arbitrary-scale SR task. The UCMerced dataset 

consists of 2100 images of 21 classes in 256 × 256 resolution, and the categories con-

tain agricultural, airplane, baseballdiamond, beach, buildings, chaparral, denseresiden-

tial, forest, freeway, golfcourse, harbor, intersection, mediumresidential, mo-

bilehomepark, overpass, parkinglot, river, runway, sparseresidential, storagetanks and 

tenniscourt. We use 1260 images as training set, 420 images as validation set and 420 

images as testing set. The RSSCN7 dataset consists of 2800 images of 7 classes in 

400 × 400 resolution, and the categories contain grass, field, industry, riverLake, for-

est, resident and parking. We use 1680 images as training set, 560 images as validation 

set and 560 images as testing set. The Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index Measure (SSIM) and Learned Perceptual Image Patch Similarity 

(LPIPS) [33] are chosen as evaluation metrics. 

Implementation Details. In this work, the MLP used for the SMDAM module is a 7-

layer MLP with 128 dimension, the number of levels of the scale-specific dictionary 

𝑁𝐷 = 30, and the size of each level 𝑁𝑀 = 64. The EDSR [15] network without the 

upsampling module is selected as the alternative encoder for all the arbitrary-scale SR 

methods. The LR patches of size 48 × 48  are bicubic downsampled from the HR 

patches with scale factors uniformly sampled from a set of {1.1,1.2, … ,4.0}, and LR 

patches are randomly flipped for data augmentation. The batch size is 16 and the model 

Scale 

Method 
×1.5 ×2 ×2.5 ×3 ×3.5 ×4 

EDSR-baseline [15] - 36.01/0.9411 - 31.68/0.8692 - 29.25/0.7968 

LIIF [3] 39.66/0.9712 35.84/0.9395 33.23/0.9003 31.49/0.8637 30.21/0.8286 29.08/0.7890 

LTE [13] 39.92/0.9721 35.99/0.9407 33.43/0.9046 31.65/0.8680 30.34/0.8326 29.20/0.7935 

CiaoSR [1] 39.88/0.9718 35.98/0.9400 33.40/0.9031 31.46/0.8622 30.32/0.8299 29.21/0.7922 

LMF [8] 39.60/0.9709 35.77/0.9386 33.18/0.8996 31.44/0.8632 30.16/0.8264 29.05/0.7867 

MFESDA (ours) 40.00/0.9723 36.09/0.9415 33.51/0.9048 31.75/0.8680 30.47/0.8357 29.33/0.7976 
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Table 2.  Quantitative results (PSNR/SSIM) on RSSCN7 dataset. Bold indicates the best per-

formance. 

 

is trained for 1000 epochs with Adam optimizer. The learning rate is initialized to 1e-4 

and decays by factor 0.5 every 200 epochs. 

4.2 Evaluation 

Quantitative Results. The results of the quantitative performance on the UCMerced 

dataset are shown in Table 1. We use the fixed-scale method EDSR [15] and arbitrary-

scale methods LIIF [3], LTE [13], CiaoSR [1] and LMF [8] as comparison methods, 

among which LMF uses the LM-LIIF structure. We evaluate the performance on both 

integer scale factors × 2,× 3,× 4 and non-integer scale factors × 1.5,× 2.5,× 3.5. As 

shown in Table 1, the proposed method has higher PSNR and SSIM than other methods 

except scale factor × 3 in both integer scale factors and non-integer scale factors. Be-

sides, we also evaluate the quantitative performance on the RSSCN7 dataset in Table 

2. It could be seen that the proposed method has the highest performance on PSNR and 

SSIM. 

Qualitative Results. The results of the qualitative comparison on the UCMerced da-

taset are shown in Fig. 6. We display the visual results of the UCMerced dataset with 

scale factor × 3. It could be observed that the proposed model could reconstruct images 

with clearer edges and more detailed texture information. For example, in the first row 

of Fig. 6, our model could reconstruct a sharper edge of the road. In the second row, 

the proposed method could generate a clearer edge for the contour of the building. In 

the third row, the right side of the building reconstructed by the proposed method is 

clearer. In the fourth row, the car and lane lines generated by the proposed model are 

more visible than those of other methods. The results of the qualitative comparison on 

the RSSCN7 dataset are shown in Fig. 7. As shown in the first row of the figure, the 

bottom edge of the land restored by the proposed method is clearer. In the second row, 

the proposed method could generate clearer contour of the land. In the third row, the 

field generated by the proposed method has clearer edges. In the fourth row, the pave-

ment marking and cars in the parking lot generated by the proposed model are also 

more visible. 

Scale 

Method 
×1.5 ×2 ×2.5 ×3 ×3.5 ×4 

EDSR-baseline [15] - 33.83/0.9067 - 30.71/0.8152 - 29.14/0.7445 

LIIF [3] 37.08/0.9542 33.74/0.9042 31.89/0.8563 30.65/0.8134 29.78/0.7750 29.09/0.7417 

LTE [13] 37.22/0.9552 33.82/0.9056 31.95/0.8579 30.71/0.8152 29.83/0.7770 29.14/0.7436 

CiaoSR [1] 37.13/0.9545 33.78/0.9048 31.94/0.8574 30.61/0.8116 29.81/0.7761 29.12/0.7429 

LMF [8] 37.06/0.9540 33.73/0.9042 31.87/0.8562 30.63/0.8135 29.77/0.7745 29.08/0.7411 

MFESDA (ours) 37.53/0.9580 33.88/0.9071 31.99/0.8588 30.75/0.8162 29.87/0.7786 29.18/0.7455 



 

Fig. 6. Qualitative results on UCMerced dataset of scale factor × 3. The small red box on the 

image denotes the highlighted region, and the large red box at the bottom denotes the enlarged 

region. The first group of images belong to ``airplane" class, the second group of images belong 

to ``buildings" class, the third group of images belong to ``denseresidential" class, and the 

fourth group of images belong to ``freeway" class. 

Table 3. Results of the ablation study (PSNR/SSIM) of the proposed modules on UCMerced 

dataset. 

Ablation Studies. In this section, we conduct ablation experiments to validate the ef-

fectiveness of the proposed modules. We replace the MFE module with a 2-layer MLP 

with 128 dimension and replace the SMDAM module with a 7-layer render MLP [8] 

with 128 dimension in the first model. In the second model, we add the SMDAM mod-

ule to the network. The last row is the proposed model with both SMDAM and MFE 

modules. As shown in Table 3, the SMDAM module could improve the PSNR and 

SSIM especially in larger scales which indicates that it could assist with the image re-

construction using the scale-specific dictionary attention, and the MFE 

 

SMDAM MFE ×1.5 ×2 ×2.5 ×3 ×3.5 ×4 

  39.93/0.9721 36.02/0.9406 33.41/0.9030 31.65/0.8672 30.37/0.8331 29.24/0.7950 

√  39.95/0.9721 36.03/0.9408 33.47/0.9049 31.71/0.8683 30.42/0.8341 29.28/0.7954 

√ √ 40.00/0.9723 36.09/0.9415 33.51/0.9048 31.75/0.8680 30.47/0.8357 29.33/0.7976 
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Fig. 7. Qualitative results on RSSCN7 dataset of scale factor × 4. The small red box on the im-

age denotes the highlighted region, and the large red box at the bottom denotes the enlarged re-

gion. The first group of images belong to ``Grass" class, the second group of images belong to 

``Field" class, the third group of images belong to ``Field" class, and the fourth group of images 

belong to ``Industry" class. 

Table 4. Results of the comparison of the evaluation metrics, the number of parameters and the 

inference time on the UCMerced dataset. 

 

 

 

 

 

 

 

 

module could further improve the PSNR of the model although the SSIM in × 2.5 and 

× 3 will slightly decrease. 

Model Efficiency and Perceptual Quality. In this section, we analyze the number of 

parameters and the computational efficiency of models, and we also provide the results 

of Learned Perceptual Image Patch Similarity (LPIPS) [33] for a more comprehensive 

Method PSNR↑ SSIM↑ LPIPS↓ Params(M) Time(ms) 

LIIF [3] 35.84 0.9395 0.0957 1.6 33.67 

LTE [13] 35.99 0.9407 0.0969 1.7 32.24 

CiaoSR [1] 35.98 0.9400 0.0978 2.6 132.91 

LMF [8] 35.77 0.9386 0.0977 1.4 13.27 

MFESDA (ours) 36.09 0.9415 0.0942 9 170.23 



comparison. The experiment is conducted on UCMerced dataset with scale factor × 2 

on NVIDIA RTX 3090. As shown in Table 4, the LPIPS of the proposed method is 

lower than other methods which indicates better perceptual quality. However, the dis-

advantage of the proposed method is that it will lead to larger quantity of parameters 

and more inference time, which could restrict the application of the proposed method. 

Limitations. Although the proposed method performs well in in-distribution scales 

× 1 −× 4, the dictionary used in the SMDAM module only includes scale-specific in-

formation for × 1 −× 4 scales but not generalizes to out-of-distribution scales that are 

unseen in the training process, which is required to be improved in the future. 

5 Conclusion 

In this work, we propose an arbitrary-scale super-resolution method for remote sensing 

images with Multi-branch Feature Enhancement and Scale-specific Dictionary Atten-

tion (MFESDA). We use a Multi-branch Feature Enhancement (MFE) module which 

consists of Scale-aware Pixel Attention (SPA) modules and Global Feature Fusion 

(GFF) modules to capture rich features. Besides, we propose a Scale-specific Multi-

level Dictionary Attention Modulation (SMDAM) module to improve the performance 

of decoding process. The experiments have demonstrated that the proposed model has 

better performance and visual quality than other methods. 
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