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Abstract. Multivariate time series classification is a key task in fields such as 

healthcare, financial analysis, and industrial monitoring. However, existing 

methods still face challenges in modeling complex dependencies across different 

time scales, and their computational efficiency is relatively low. To address these 

issues, we propose an efficient and high-performance model architecture, Hy-

draMamba, which enhances modeling capability by integrating three core mech-

anisms: The Time Feature Recalibration Module (TFRM) adaptively adjusts the 

feature weights of time segments to improve the model's ability to focus on key 

moments; the Multi-Receptive Field Feature Extractor (MRFFE) extracts local 

and global information in parallel using receptive fields of different sizes, en-

hancing feature representation; and the Dynamic State-Space Mixer (DSSM), 

based on state-space modeling, effectively integrates multi-scale temporal fea-

tures. We conducted extensive experiments on the UEA multivariate time series 

classification benchmark datasets, where HydraMamba outperformed main-

stream methods like TodyNet , achieving overall superior performance and rank-

ing first on 8 datasets. The experimental results show that HydraMamba main-

tains high computational efficiency while offering superior classification perfor-

mance, demonstrating strong generalization ability and application potential. 

Keywords: Time Series Classification, Multiscale, Spatial Model. 

1 Introduction 

Multivariate Time Series (MTS) data are ubiquitous across various domains and inher-

ently contain rich dynamic patterns. For this type of MTS data, a key and challenging 

task is Multivariate Time Series Classification (MTSC). Multivariate MTSC aims to 

classify MTS samples into predefined categories based on the temporal patterns and 

inter-variable relationships embedded within the MTS. This is a crucial and challenging 

task, holding broad application value in fields such as human activity recognition [1], 

industrial anomaly detection [2], and environmental state recognition [3]. 
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Although a large number of methods have been applied to MTSC, traditional models 

such as Recurrent Neural Networks (RNNs) and their variants have certain advantages 

in capturing sequence dependencies. However, effectively modeling long-term depend-

encies remains a significant challenge for these methods. Particularly when dealing with 

long sequences, RNNs often face the problem of vanishing or exploding gradients, which limits 

their practical effectiveness [4]. Additionally, their training process depends on time-step unfold-

ing, leading to lower computational efficiency [5]. The Transformer model, with its self-attention 

mechanism, models dependencies across sequences globally, significantly improving feature ex-

traction capabilities [6]. However, its computational complexity grows quadratically with the 

sequence length, and its memory overhead is enormous, making it difficult to apply in resource-

constrained scenarios. In recent years, State Space Models (SSMs) have gained widespread at-

tention due to their superior long-sequence modeling capabilities and linear computational com-

plexity [7-9]. Representative works like S4, DSS, and Mamba have demonstrated excellent per-

formance in several sequence modeling tasks [10]. 

Despite the progress in MTSC, existing methods still face critical challenges in practical ap-

plications, mainly in the following two aspects: 

First, current approaches exhibit insufficient capability in capturing multi-scale information, 

which is essential for comprehensively understanding time series data. Existing SSM-based 

methods typically process temporal features at a single scale, lacking effective mechanisms to 

capture information across different temporal resolutions. However, time series data are inher-

ently multi-scale, where both short-term patterns and long-term trends carry crucial signals [11]. 

Single-scale processing is akin to viewing through a narrow tunnel—it struggles to integrate 

complementary information across temporal granularities, thereby limiting the model's represen-

tational power and reducing classification accuracy and robustness.  

Second, most existing models lack a dynamic importance adjustment mechanism for different 

time segments, making them ineffective in addressing the challenge of temporal heterogeneity. 

Multivariate time series data exhibit significant temporal heterogeneity—different segments con-

tribute unequally to the classification task.Current SSM-based models, do not incorporate adap-

tive mechanisms to dynamically adjust the importance of time segments, making it difficult to 

focus on informative parts of the sequence. Consequently, their performance degrades in the 

presence of redundant information or sparse key features. 

To address these challenges, we propose a novel MTSC framework named HydraMamba, 

which introduces three key architectural innovations designed to enhance multi-scale modeling, 

dynamic temporal awareness, and effective feature integration . Specifically, the Multi-Receptive 

Field Feature Extractor (MRFFE) leverages a multi-branch convolutional structure to jointly cap-

ture local and global temporal features, thereby improving the model’s capacity for multi-scale 

representation . The Time Feature Recalibration Module (TFRM) combines temporal pooling 

with channel attention mechanisms to dynamically emphasize the representation of critical time 

steps . Finally, the Dynamic State-Space Mixer (DSSM) integrates state-space modeling with 

deep feature fusion strategies, using a dynamic weighting mechanism to efficiently aggregate 

short-term and long-term information . 

The innovative nature of the HydraMamba framework is further highlighted by the following 

three points: 
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─ By synergistically combining its three core modules, HydraMamba effectively over-

comes the limitations of existing methods in multi-scale modeling, temporal dy-

namic perception, and feature fusion, thereby significantly enhancing the model's 

classification performance and generalization ability in high-dimensional, long-se-

quence tasks. 

─ MRFFE: It innovatively achieves multi-scale feature extraction, dynamic temporal 

feature adjustment, and effective long-range dependency modeling by integrating 

multi-scale convolution, the TFRM, and the Hydra Attention mechanism, thus sig-

nificantly improving the performance of multivariate time series classification. 

─ Extensive experiments have been conducted, demonstrating the effectiveness of the 

HydraMamba model and its core modules, MRFFE and DSSM. HydraMamba has 

achieved leading classification accuracy and average ranking across multiple da-

tasets. Ablation experiments clearly showcase the contribution of the MRFFE and 

DSSM modules to the model's performance, and sensitivity analysis [12] reveals the 

potential impact of model depth on performance.  

2 Related Work 

In the field of MTSC, numerous studies have proposed various methods to tackle the 

challenges of sequence modeling. This section reviews and discusses representative 

methods and compares them with our proposed innovations. 

2.1 RNN-based Models 

Traditional RNNs and their variants such as LSTM and GRU have been widely adopted 

in MTSC tasks due to their ability to model temporal dependencies in sequential data 

[13, 14]. These methods unfold the recurrent structure across time to capture depend-

encies between time steps. However, their sequential nature leads to limited modeling 

capability for long sequences, often suffering from vanishing or exploding gradients. 

This limitation becomes prominent in high-dimensional time series where efficiency 

and long-range dependency modeling are critical. While models like LSTM-FCN [14] 

achieve competitive performance by combining CNN and LSTM layers, they still strug-

gle to capture long-range dependencies among multiple variables. 

2.2 Transformer-based Models 

Transformer architectures [6] leverage self-attention mechanisms to globally model de-

pendencies, and have shown great success in both NLP and time series applications 

[15, 18], as evidenced by models like TST [19] and Tapnet [20]. For example, TST 

utilizes attention and positional encoding to model temporal patterns, while Tapnet in-

troduces attention mechanisms for temporal pattern learning. In contrast, CNN-based 

models like XDM-CNN [21] offer alternative approaches for multivariate time series 

classification. Nevertheless, the quadratic time and memory complexity of Transformer 

architectures limits their scalability to long sequences, which is particularly problematic 



in real-world MTSC scenarios. Recent efforts also explore self-supervised Transformer 

models, such as MLSTM [14] and TST, which learn general-purpose sequence repre-

sentations. Although they enhance generalization and data efficiency, their transformer 

backbone still suffers from scalability issues in ultra-long sequences. 

2.3 State Space Models and Mamba 

To address the inefficiencies of Transformers in long sequence modeling, structured 

SSMs [7] and recurrent-based designs [22] have been proposed. Among these, Mamba 

[10] stands out as a recent breakthrough, offering efficient long-range modeling through 

selective SSMs. Mamba eliminates the need for explicit attention or MLP blocks by 

employing input-dependent dynamic state updates, leading to hardware-efficient recur-

rent computation with linear scalability. With its high throughput and strong perfor-

mance across language, audio, and genomics, Mamba demonstrates its potential as a 

robust alternative to Transformers for time series tasks. 

However, most SSM-based models still focus on single-scale feature extraction, 

lacking the capacity to model hierarchical or multiscale temporal structures. This limits 

their applicability in complex MTSC tasks where both local and global patterns are 

critical. Building on these foundations, we introduce HydraMamba for MTSC, featur-

ing three key innovations for enhanced multi-scale modeling, dynamic temporal aware-

ness, and effective feature integration. Unlike traditional methods, HydraMamba's 

MRFFE uses multi-branch convolutions for joint local and global temporal feature cap-

ture, improving multi-scale representation. Differing from static temporal feature pro-

cessing, TFRM dynamically emphasizes critical time steps via temporal pooling and 

channel attention. Instead of traditional sequence model architectures, DSSM integrates 

state-space modeling with deep feature fusion and dynamic weighting for efficient short 

and long-term information aggregation. HydraMamba offers a more effective, compre-

hensive framework for complex MTSC data challenges. 

3 Method 

We propose HydraMamba, a novel time series classification model designed to cap-

ture long-range dependencies and multi-resolution patterns. The core of the model 

consists of three key components: MRFFE, TFRM, and DSSM. These modules work 

synergistically to enhance temporal modeling, adaptive feature weighting, and multi-

scale information extraction. Each module is described in detail below. 

3.1 Multi-Receptive Field Feature Extractor 

The MRFFE is introduced to enhance the model's capacity to capture multi-scale tem-

poral patterns by integrating multi-scale convolutional perception and attention mech-

anisms. MRFFE begins by aligning input feature dimensionality with a 1 × 1 convo-

lution. Subsequently, it employs parallel or cascaded convolution layers, Conv𝑘𝑖
, each 
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with a distinct kernel size 𝑘𝑖 from a predefined set, to extract multi-scale temporal pat-

terns as 

𝑋𝑖 = Conv𝑘𝑖
(𝑋𝑖−1),  𝑖 = 1, … , 𝐿 

 

Fig. 1. llustration of the proposed HydraMamba, its three key components: 1) Multi-Receptive 

Field Feature Extractor, 2) Temporal Feature Recalibration Module, and 3) Dynamic State 

Space Mixer. Traditional models typically employ a single-scale approach, and when prcessing 

time series data, struggle to focus on key time segments and suppress redundant information. In 

contrast, we adopt a multi-scale approach and effectively handle time heterogeneity. Through 

these modules, we achieve a more comprehensive understanding of the data, enhance the mod-

el's robustness in complex and noisy environments, and achieve higher computational eff-

ciency. 

Following initial convolutions, the TFRM dynamically adjusts temporal feature re-

sponses. Finally, MRFFE aggregates all intermediate layer outputs {𝑋_1, 𝑋_2, … , 𝑋_𝐿} 

into a multi-scale feature set, creating a hierarchical representation that captures both 

shallow local details and deeper semantic structures for downstream tasks. 

To further enhance the model's perception capabilities, particularly in capturing 

long-range dependencies, MRFFE incorporates Hydra Attention. This mechanism re-

places traditional convolution operations in subsequent layers, adaptively focusing on 

crucial time steps. Hydra Attention achieves this by learning position-sensitive weights 

and is applied after a demensional transformation and before restoring the dimensional 

order, as expressed by 

𝑋𝑖 = HydraAttn(𝑋𝑖
⊤)⊤ 

This attention mechanism enables the network to effectively model long-range depend-

encies while preserving temporal structure, proving particularly beneficial for complex 

temporal patterns. 



3.2 Temporal Feature Recalibration Module 

To further enhance the modeling of crucial temporal features, we introduce the TFRM, 

inspired by the SE module, designed to capture time steps exhibiting key dynamic pat-

terns while suppressing redundant temporal information. TFRM commences by pro-

cessing the input feature tensor 𝑋 ∈ 𝑅𝐵×𝐶×𝑇 through adaptive temporal pooling along 

the time dimension, resulting in a global channel context 𝑋avg ∈ 𝑅𝐵×𝐶×𝟙. These com-

pressed features are then channeled into a two-layer fully connected bottleneck struc-

ture, incorporating a ReLU activation in between, to generate dynamic recalibration 

weights 𝑊 ∈ 𝑅𝐵×𝐶×𝟙 as per the formula 

𝑊 = 𝜎 (𝑊2 (ReLU (𝑊1(𝑋avg)))) 

where 𝑊1 ∈ 𝑅𝐶×𝐶/𝑟 , 𝑊2 ∈ 𝑅𝐶/𝑟×𝐶 , 𝜎  represents the Sigmoid function, and 𝑟  is the 

compression ratio. Ultimately, feature recalibration is accomplished by applying these 

generated weights 𝑊 to the original input features 𝑋 through channel-wise multiplica-

tion, expressed as 𝑋̃ = 𝑋 ⊗ 𝑊. This effectively modulates feature responses by ampli-

fying channels with strong activations at key time points and diminishing segments less 

informative to the model. Through this mechanism of temporal pooling and channel 

recalibration, TFRM dynamically refines feature responses to concentrate on pivotal 

temporal patterns. 

3.3 Multi-Receptive Field Feature Extractor 

The DSSM is designed to enhance the model's ability to model long-range dependen-

cies and complex temporal dynamics, and to achieve comprehensive multi-scale tem-

poral feature modeling in a computationally efficient manner. The core building block 

of DSSM is the DynamiX Layer. This layer first expands the channel dimension of the 

input features from 𝑑 → 2𝑑 through a linear transformation to enhance representation 

capacity. Subsequently, it utilizes 1D convolution to extract local patterns and intro-

duces activation functions (such as SiLU) and BatchNorm for normalization, as shown 

in the following formula: 

 𝑋𝑐𝑜𝑛𝑣 = BN (SiLU(Conv1D(𝑋))) 

 (1) 

where 𝑋 is the input feature and 𝑋𝑐𝑜𝑛𝑣  is the convolved feature. Critically, the Dy-

namiX Layer introduces a SSM to effectively model temporal dependencies and en-

hances information retention through a residual multiplication fusion mechanism: 

 𝑋𝑟𝑒𝑠 = 𝑋 ⊙ SSM(𝑋𝑐𝑜𝑛𝑣) (2) 

Here, 𝑋𝑟𝑒𝑠 represents the residually fused feature, and $\odot$ denotes element-wise 

multiplication. Following each DynamiX Layer, a Depthwise Feature Mixer (DFM) is 

introduced to enhance feature fusion. DFM employs a combination of fully connected 

layers and depthwise separable convolution (DWConv) to perform local enhancement 
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and nonlinear modeling, incorporating GELU activation functions, Dropout regulariza-

tion, and outputting mixed features through the final fully connected layer. To ensure 

gradient stability and information coherence, DSSM incorporates residual connections 

in both DynamiX and DFM sub-modules: 

𝑋̃ = 𝑋 + ℱ(𝑋) (3) 

where ℱ(⋅) represents the processing function of the DynamiX or DFM module, and 𝑋̃ 

is the module output. Furthermore, the model adopts normalization techniques such as 

LayerNorm or RMSNorm to mitigate covariate shift during training and accelerate con-

vergence. Finally, to further enhance the training stability of deep networks, DSSM 

introduces the LayerScale mechanism. A learnable scaling factor 𝛾 is added before the 

output of each sub-module, with the formula: 

ℱsae(𝑋) = 𝛾 ⋅ ℱ(𝑋) (4) 

LayerScale plays a crucial role in regulating gradient updates and feature responses in 

deep structures. 

4 Experiments 

The UEA (University of East Anglia) multivariate time series classification archive 

serves as a valuable resource for evaluating the performance of various multivariate 

time series classifiers. This comprehensive archive contains a total of 30 distinct da-

tasets that have been specifically curated for the task of MTSC and has gained consid-

erable recognition within the research community for its utility.These datasets are sys-

tematically organized into six primary categories, each characterized by specific attrib-

utes. Therefore, this structured presentation of information allows researchers and prac-

titioners to easily compare and select appropriate datasets for their classification tasks, 

facilitating a more effective assessment of the classifiers' capabilities in handling mul-

tivariate time series data. For this study, we used 30 datasets to evaluate the perfor-

mance of our method, as showed Table 1. 

4.1 Experiment settings 

The PC used for the trials in this study has the following components: two NVIDIA 

GeForce GTX 3090 GPUs. All neural networks are built using Python 3.8/3.9, pytroch 

11.3 as the backend. Evaluation Metrics Given that the comparison experiments are 

performed across a diverse range of datasets from different domains, a variety of eval-

uation metrics are selected to demonstrate the classifiers' performance. The classifica-

tion accuracy on the test sets serves as the most straightforward indicator of model 

effectiveness. Therefore, we consider average accuracy, average rank, providing a com-

prehensive assessment of a model’s classification performance across various datasets. 



4.2 Evaluation Metrics 

Given that the comparison experiments are performed across a diverse range of datasets 

from different domains, a variety of evaluation metrics are selected to demonstrate the 

classifiers' performance. The classification accuracy on the test sets serves as the most 

straightforward indicator of model effectiveness. Therefore, we consider average accu-

racy, average rank, providing a comprehensive assessment of a model’s classification 

performance across various datasets. 

 

Table 1. Classification Accuracy Comparison on UEA Datasets. 

 Methods 

Dataset 
EDI DTWD 

WEA+

MU 
MLSTM Tapnet TST 

XDM-

CNN 

To-

dyNet 
OURS 

ArticularyWordRecognition 0.970 0.987 0.990 0.973 0.987 0.983 0.993 0.987 0.990 

AtrialFibrillation 0.267 0.220 0.333 0.267 0.333 0.200 0.600 0.467 0.667 

BasicMotions 0.676 0.975 1.000 0.950 1.000 0.975 1.000 1.000 1.000 

CharacterTrajectories 0.964 0.989 0.990 0.985 0.997 0.000 0.972 N/A 0.930 

Cricket 0.944 1.000 1.000 0.917 0.958 0.958 N/A 1.000 0.986 

DuckDuckGeese 0.275 0.600 0.575 0.675 0.575 0.480 0.675 0.580 0.300 

ERing 0.133 0.929 0.133 0.133 0.133 0.933 0.967 N/A 0.133 

EigenWorms 0.549 0.618 0.890 0.504 0.489 N/A 0.756 0.840 0.542 

Epilepsy 0.666 0.964 1.000 0.761 0.971 0.920 1.000 0.971 0.986 

EthanolConcentration 0.293 0.323 0.430 0.373 0.323 0.337 0.399 0.350 0.416 

FaceDetection 0.519 0.529 0.545 0.545 0.556 0.681 0.681 0.627 0.573 

FingerMovements 0.550 0.530 0.490 0.580 0.530 0.776 0.590 0.570 0.590 

HandMovementDirection 0.278 0.231 0.365 0.365 0.378 0.608 0.608 0.649 0.473 

Handwriting 0.200 0.286 0.605 0.286 0.357 0.305 0.498 0.436 0.399 

Heartbeat 0.619 0.717 0.727 0.663 0.751 0.712 0.717 0.756 0.922 

InsectWingbeat 0.128 N/A N/A 0.167 0.208 0.684 N/A N/A 0.100 

JapaneseVowels 0.924 0.949 0.973 0.976 0.965 0.994 N/A N/A 0.927 

LSST 0.456 0.551 0.590 0.373 0.568 0.381 0.547 0.615 0.663 

Libras 0.833 0.870 0.878 0.856 0.850 0.844 0.800 0.850 0.917 

MotorImagery 0.510 0.500 0.500 0.510 0.590 N/A 0.600 0.640 0.550 

NATOPS 0.850 0.883 0.870 0.889 0.939 0.900 0.883 0.972 0.978 

PEMS-SF 0.973 0.711 N/A 0.699 0.751 0.919 0.863 0.780 0.809 

PenDigits 0.705 0.977 0.948 0.978 0.980 0.974 0.987 N/A 0.104 

PhonemeSpectra 0.104 0.151 0.190 0.110 0.175 0.088 0.231 0.309 0.421 

RacketSports 0.868 0.803 0.934 0.803 0.868 0.829 0.822 0.803 0.908 

SelfRegulationSCP1 0.771 0.775 0.710 0.874 0.652 0.925 0.922 0.898 0.867 

SelfRegulationSCP2 0.483 0.539 0.460 0.472 0.550 0.589 0.494 0.550 0.628 

SpokenArabicDigits 0.967 0.963 0.982 0.990 0.983 0.993 N/A N/A 0.312 

StandWalkJump 0.200 0.200 0.333 0.067 0.400 0.267 0.600 0.467 0.400 

UWaveGestureLibrary 0.881 0.903 0.916 0.891 0.894 0.903 0.897 0.850 0.863 

Average rank 5.933 4.800 3.867 4.967 4.000 4.167 3.433 3.900 3.400 

Number of top-1 1 1 8 1 2 6 8 4 8 
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4.3 Overall Performance Comparison 

Table 1 showcases a comparative analysis of classification accuracy on the UEA bench-

mark datasets, contrasting our proposed HydraMamba model against seven other state-

of-the-art time series classification methods. The HydraMamba model achieved a re-

markable leading average rank of 3.40 across 30 datasets, tying for first place with the 

XDM-CNN model. This demonstrates its exceptional generalization capability in di-

verse time series tasks. Notably, the HydraMamba model secured Top-1 accuracy on 8 

datasets, sharing the top position with WEASEL+MUSE and XDM-CNN, and outper-

forming a range of robust competitive methods such as TST and DTWD. 

On datasets characterized by more complex temporal dynamics, such as Heartbeat 

(0.922), SelfRegulationSCP1 (0.867), and PhonemeSpectra (0.421), the HydraMamba 

model exhibited a significant advantage over other methods. These performance gains 

are primarily attributed to the uniquely designed MRFFE and the DSSM within the 

model. The MRFFE effectively captures crucial features across multiple temporal 

scales, while the DSSM enhances the model's ability to model long-range dependen-

cies. Furthermore, the TFRM, embedded within the MRFFE, dynamically adjusts the 

weights of time series features, effectively suppressing redundant information and noise 

interference. 

In contrast, models such as MLSTM and EDI demonstrated relatively unstable per-

formance across multiple datasets. This is mainly due to their inherent limitations in 

modeling hierarchical temporal dependencies and judging feature importance, which 

restricts their effectiveness in complex time series tasks. 

 

Table 2. Ablation Study: Performance Impact of Removing DSSM and MRFFE on Representa-

tive Datasets. 

Dataset               Method w/o DSSM w/o MRFFE OURS 

EthanolConcentration 0.316  0.342  0.416  

Heartbeat 0.751  0.839  0.898  

JapaneseVowels 0.868  0.922  0.927  

PEMS-SF 0.792  0.746  0.804  

Phoneme 0.239  0.336  0.421  

SelfRegulationSCP2 0.622  0.533  0.628  

Average 0.598  0.620  0.682  

4.4 Ablation Study 

To further validate the contribution of each module to the overall performance, we con-

ducted ablation studies on six representative datasets by removing the DSSM module 

based on Mamba and the MRFFE module separately. The results in Table 2 clearly 

demonstrate that removing either module leads to a performance degradation. For in-

stance, on the Heartbeat dataset, the accuracy decreases from 0.8976 with the full model 



to 0.8390 without MRFFE, and further to 0.7512 without DSSM, highlighting the sig-

nificance of both modules in modeling crucial dynamic patterns. On the Phoneme da-

taset, removing DSSM results in a drastic performance drop to 0.2392, indicating its 

effectiveness in capturing complex temporal structures within speech data. Even on 

relatively stable datasets such as PEMS-SF, the complete model still outperforms both 

variants, demonstrating its superior generalization capability. On average, our full Hy-

draMamba model achieves an accuracy of 0.6821, significantly outperforming the 

MRFFE-removed variant (0.6196) and the DSSM-removed variant (0.5979). In sum-

mary, the ablation study confirms that the synergy between DSSM and MRFFE is piv-

otal to HydraMamba's strong performance. Their combination not only enhances multi-

scale temporal representation but also improves the robustness and expressiveness of 

the model. 

4.5 Sensitivity Analysis 

To further evaluate the impact of each layer on overall performance, we based on the results 

shown in Figure 2, model performance sensitivity to the number of layers is dataset-dependent, 

but the general trend indicates that deeper models tend to improve performance, especially with 

5-layer configurations often exhibiting optimal or near-optimal performance across multiple da-

tasets.While some datasets are sensitive to the number of layers or achieve good performance 

with shallower architectures, 5-layer models, overall, demonstrate greater potential.Determining 

the optimal number of layers still requires dataset-specific experimental tuning to balance per-

formance, generalization, and efficiency. 

This analysis suggests that model depth should be adapted to the data, rather than adopting a 

one-size-fits-all approach. Experimentation remains crucial for selecting the appropriate number 

of layers. 

      

(a) Layer Number Impact on Datasets      (b)  Layer Number Impact on Datasets 

Fig. 2. Sensitivity Analysis 

5 Conclusions 

Introducing HydraMamba, this paper presents a novel multiscale time series classifica-

tion model engineered to effectively capture temporal dynamics through a synergistic 
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architecture of three key modules: the MRFFE, designed to extract discriminative fea-

tures across multiple temporal resolutions; the TFRM, which adaptively highlights sa-

lient temporal patterns; and the DSSM, inspired by dynamic state-space modeling for 

computationally efficient enhancement of long-range dependency modeling. The effi-

cacy of HydraMamba is comprehensively validated by experiments conducted on 30 

UEA benchmark datasets, demonstrating its superior performance by achieving the best 

average rank (3.400) and matching the highest number of top-1 results (8 datasets), thus 

outperforming a range of state-of-the-art baselines, further supported by ablation stud-

ies that confirm the substantial contributions of both MRFFE and DSSM to these per-

formance gains, underscoring the powerful synergy between multiscale representation 

and dynamic sequence modeling inherent in HydraMamba. 

In the future, we plan to extend HydraMamba to multivariate, online, and long-form 

time series tasks, and explore its adaptability in real-world applications such as 

healthcare monitoring, financial forecasting, and industrial process analysis. 
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