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Abstract. Image vectorization works to convert raster images into vector 

graphics, which is widely used in various fields. The current state-of-the-art ap-

proaches are learning-based models, which aims to establish the correlation be-

tween the raster image and a specific number of randomly distributed primitives 

through deep learning, such as Bézier curves. However, these methods have not 

payed attention to the influence of some important factors on the performance of 

vectorization, such as the number of primitives and the initial primitive positions. 

Therefore, the converted vector outputs usually suffer from various shortcomings 

such as excessively high number of primitives, unclear rendering of details, color 

mean errors, and prolonged primitives optimization time. 

To address the aforementioned issues, we propose an image vectorization 

framework termed TIFVec, which takes the Bézier curves as primitives and dis-

covers the interdependent mechanism among different factors. In the framework, 

we introduce the texture intensity field (TIF), which is able to guide the optimi-

zation of those factors above, in terms of the primitive initialization strategy and 

TIF-based objective function. Based on TIF, the connections among different 

factors can be constructed, and the performance of vectorization can be effec-

tively improved. 

The experimental results demonstrate that our method significantly outper-

forms the current state-of-the-art models across multiple datasets, in terms of the 

visual results, evaluation indicators, and primitives optimization time. Experi-

ments demonstrate that our method achieves state-of-the-art among self-super-

vised models and unsupervised methods. 
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1 Introduction 

Image vectorization is the process of converting a raster image into a compact, easy to 

edit, distortion-free vector graphic, which has been studied extensively in vision, 

graphics, and other areas. Representative research on image vectorization can be cate-

gorized into heuristic approaches and learning-based approaches. 

The heuristic approaches, such as mesh-based [1] and curve-based [2] methods, an-

alyze the pixel points and fit the paths and shapes using vector primitives in a heuristic 

way. However, these methods may suffer from accuracy loss when dealing with certain 

image details or shapes. For instance, the primitive curves may fail to capture sharp 

edges or subtle variations in the image, while the grids may struggle to accurately rep-

resent complex shapes within the image. 

The learning-based approaches propose to train a model that transforms the raster 

images into vector parameters, e.g, rendering images using a fixed number of randomly 

distributed Bézier curves [3], and hierarchical layering of Bézier curves for image ren-

dering [4]. The core intuition of current approaches is to utilize a differentiable raster-

izer as the bridge between the raster and vector domains, so the model can learn to 

optimize or modify the vector parameters by fitting the contents of raster images during 

the training process. Learning-based models have greatly improved the quality of vec-

torized images, but they still need to address the following challenges: 

1. The number of the vector primitives should be minimized to accelerate the image 

rendering. Fewer primitives also benefits storage and transmission. 

2. The distribution of the vector primitives should be optimized to describe the image 

details so as to minimize the image distortion. 

However, the current approaches fail to discover the influence of those important 

factors on the performance of vectorization, such as the number of primitives, the initial 

primitive positions. They arbitrarily use a fixed number of primitives and randomly 

distribute them as initialization without considering the complexity of image textures, 

and both the areas of complex textures and the smooth areas are equally treated during 

the rendering process. These lead to an excessively high number of primitives, unclear 

rendering of fine texture details in complex areas, error in color mean, and prolonged 

primitives optimization time. 

To address the aforementioned issues, we propose an image vectorization framework 

that relies on the texture intensity field(TIF), referred as TIFVec (Texture Intensity 

Field based Vectorization), which also takes the Bézier curves as primitives. The basic 

intuition is that the distribution of the primitives can be optimized according to the 

image textures. For example, the regions of complex textures should consume more 

primitives for the rendering of details, while smooth regions should consume fewer 

primitives. Based on this simple intuition, we introduce TIF to discover the variation of 

the image textures, which can further guide the number of employed primitives and 

their initial distribution. By constructing the connections among various factors that 

affect the performance of vectorization, the training objectives can be optimized for 

rendering different types of regions, so as to improve the overall vectorization quality. 

In details, our contributions can be summarized as follows: 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

1. By introducing the concept of texture intensity field, the texture complexity of an 

image can be estimated to guide the optimization of primitive distribution, based on 

which an effective and efficient model for image vectorization is proposed. We pro-

vide several solutions to construct the TIF, including finite-difference threshold fil-

ter, gray-level co-occurrence matrix filter, and segmentation of connected regions. 

2. Based on the constructed TIF, 2 strategies are designed to initialize the number and 

position distribution of primitives, based on finite-difference threshold and region 

segmentation respectively. Both strategies can distribute a larger number of primi-

tives in regions with complex textures and fewer primitives in regions with simpler 

textures. 

3. We propose a novel TIF-based objective function to guide the model adjusting the 

rendering parameters according to different regions, based on which we can avoid 

the influence of the error in mean color and distortion, and achieve a significant 

increment in rendering efficiency. 

4. We evaluate our TIFVec on 2 public datasets including the Fonts [5] and Emoji1, 

and also 3 more sophisticated and challenging self-collected datasets including the 

animated images, artistic images, and realistic photos (will be released along with 

this work). Experimental results demonstrate that our TIFVec significantly outper-

form the state-of-art vectorization models in terms of the effectiveness and effi-

ciency. With certain SSIM criteria, the appropriate number of primitives can be ef-

fectively controlled to guarantee the editability and compactness of the vectorized 

images. 

2 Related works 

2.1 Heuristic Methods 

In the past decade, significant progress has been made using heuristic algorithms. 

Mesh-based methods divide the image into non-overlapping 2D patches and interpolate 

colors between them, with blocks in triangular [1,6,7], rectangular [8,9], or irregular 

[10,11] shapes. Curve-based methods typically use Bézier curves as geometric primi-

tives with colors defined on both sides of the curves [12]. Xie et al. [2] proposed tracing 

curves in the Laplacian domain to create a hierarchical representation that accurately 

reconstructs vector art and natural images. 

2.2 Learning-based Methods 

In recent years, with the rise of deep learning, researchers have employed neural net-

works to tackle the vectorization problem. [13] proposed a transformer-based architec-

ture that utilizes CNN to convert technical line drawings into vector parameters. 

Sketchformer [14] was proposed to recover raster images from sketches by a trans-

former-based network. [5] trained an image Variational Auto Encoder (VAE) and used 

a decoder to predict the vector parameters by the learned latent variables obtained from 

 
1 https://github.com/googlefonts/noto-emoji 



the image. [15] introduced a hierarchical vectorization model to perform the interpola-

tion and generation tasks.[3] proposed a differentiable rasterizer that allows for the ma-

nipulation and generation of vector parameters using raster-based objective functions 

and machine learning techniques. [4] proposed Layer-wise Image Vectorization, 

namely LIVE and used the differentiable rasterizer [3] to fit each vector curve. [16] 

proposed O&R, which is a fast Top-Down approach for raster to vector image conver-

sion, optimizing and reducing vector parameters to aim at a low budget of shapes for 

vectorization. 

3 Method 

As mentioned before, the existing approaches initialize the primitives in an arbitrary 

manner, which results in many problems. We thus propose our TIFVec to provide a 

better solution. As shown in Fig. 1, we formulate TIFVec as 2 stages. 

 

Fig. 1. Framework of the TIFVec. 

Stage 1): Primitives initialization that distributing the primitives across a rectangle 

canvas of the same size as the raster image. We offer 2 primitive initialization strate-

gies: one is referred to as FTPD, and the other is CRSPD, both of their implementations 

are guided by the TIF. Each one of the strategies can be chosen as needed to produce 

the initialization results. 

At this stage, we actually distribute shapes that consist of 4 Bézier curve primitives 

connected end to end to form approximately small circles, with a radius set to 3 pixels. 

Previous work [4] has demonstrated that these small primitive-circles can effectively 

reduce the artifacts generated during the vectorization process. For these primitive-cir-

cles, the color is sampled from the corresponding positions in the raster image to fill 

the circles, so as to reduce the rendering errors caused by color randomness. 

In the following discussion on primitives initialization, we use the term "primitives'' 

to refer to "primitive-circles'' for simplicity and clarity.  

Stage 2): Primitives optimization that driven by a differential vector graphics raster-

izer [3], during which the primitives are continuously adjusted by diffusion, defor-

mation, movement, color transformation etc., to make the vectorized canvas approach 
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the raster image. At this stage, we introduce TIF to the loss function to enhance the 

model's focus on image details. 

We provide 3 methods for constructing the TIF, but there are many more methods 

available for building TIF beyond these 3. 

3.1 Texture Intensity Field 

The textures can reflect the content complexity of a region in an image, which is crucial 

in guiding the primitives distribution, including their initial number, placement, and 

contribution weight on different region types. The principle is that regions of complex 

textures should consume more primitives for detailed rendering, while smooth regions 

should consume fewer primitives. We thus define the Texture Intensity Field (TIF) for 

the first time: TIF is a two-dimensional matrix of the same size as the raster image that 

each magnitude in the TIF should be able to reflect the complexity level of the textures 

of its corresponding neighborhood in the raster image. According to this definition, we 

provide 3 methods for constructing the TIF, as follows: 

By finite-difference threshold filter: a) For each pixel 𝑝𝑖 , 𝑖 ∈ {1, … , 𝑤 ×  ℎ} , 

where 𝑤 ×  ℎ represents the image size, we select an 𝑛 ×  𝑛 neighborhood of 𝑝𝑖, where 

n=9 by default. b) Compute the finite-difference magnitude in eight directions for each 

pixel within the neighborhood and set a finite-difference threshold 𝑐𝑔. Empirically, we 

set 𝑐𝑔=50. c) Finally, calculate the count of pixels in the neighborhood whose finite-

difference are greater than 𝑐𝑔 in all eight directions, and the count is normalized as the 

texture intensity 𝑣𝑖. 

By gray-level co-occurrence matrix filter: a) For each pixel 𝑝𝑖 , 𝑖 ∈ {1, … , 𝑤 ×  ℎ}, 

select a neighborhood of size 𝑛 ×  𝑛 to represent the surrounding region, where n=9 by 

default. b) Calculate the gray-level co-occurrence matrix (GLCM) of the neighborhood 

and use the entropy value as the texture intensity of 𝑝𝑖 , denoted as 𝑣𝑖: 

𝑣𝑖 = ∑ 𝑃𝑗
𝑖𝑙𝑜𝑔𝑃𝑗

𝑖

𝑛×𝑛

𝑗=1

(1) 

where 𝑃𝑖  is the GLCM of the neighborhood surrounding 𝑝𝑖  and 𝑗 is the index of the 

matrix. c)  Finally, 𝑣𝑖 is normalized. 

The GLCM [17] provides comprehensive information about an image's gray levels, 

including direction, adjacent spacing, and variation amplitude. High entropy values in 

GLCM indicate complex textures, vice versa. 

By segmentation of connected regions: a) Utilize the Canny algorithm to detect the 

edges of the image, and then employ the breakpoints linking algorithm [18] to connect 

the non-closed edge regions to obtain all connected regions. b) Use a centroid to repre-

sent each of the connected regions. For the irregular regions whose centroid falls out-

side or the regions with large areas that a single point is insufficient to represent the 

entire region, we continuously perform segmentation operations on these regions. Spe-

cifically, taking the centroid point of each region as the origin, we conduct horizontal 



and vertical cuts respectively, thereby dividing the region into four sub-connected re-

gions. After each segmentation, we update the set of connected regions. The above 

segmentation and update operations are repeated until all regions meet the predefined 

conditions. c) Use a filter with size of 9 × 9 to statistically count the number of centroid 

points within each region. 

Each intensity value in TIF should be normalized to [0, 1). Fig.2 exemplifies the 

heat-maps of the TIF constructed by 3 proposed methods. The red portion of the heat-

map clearly indicates the more intricate texture present in the original image, particu-

larly in areas such as the faces and hands of the cat and mouse. In contrast, the back-

ground heat-map is entirely blue, indicating a smooth area. It can be observed that there 

is hardly any significant difference between the heat-maps constructed by different 

methods. In fact, there are many other approaches to construct TIF, as long as it aligns 

with our definition of TIF. Each can be chosen to guide the generation of primitives 

initialization strategies and the construction of loss function. In the subsequent experi-

ments described, we adopted TIF constructed by gray-level co-occurrence matrix filter. 

 

Fig. 2. Heat-maps of the TIF constructed by 3 methods. Regions that appear in red indicate higher 

magnitude of the texture complexity.  

3.2 TIF-based Primitive Initialization Strategy 

During the primitive initialization, TIF is used to guide the number and placement of 

the primitives. The principle is that the areas with high texture intensity are distributed 

densely packed primitives, and vice versa. Based on this, we propose 2 strategies to 

determine the distribution of the primitives: 

Finite-difference Threshold Primitive Distribution (FTPD) strategy: a) Given a 

fixed number 𝑁 of primitives and an arbitrary-sized raster image 𝐼𝑚, and assume the 

textures in the 𝐼𝑚 is smooth. b) Segment the 𝐼𝑚 into K regions based on the TIF, and 

pixels with the same intensity magnitude are assigned to the same region. The proba-

bility distribution of primitives in region $t$ is defined as 𝑃𝑡: 

𝑃𝑡 =
𝑣𝑡 𝑙𝑜𝑔 𝑛𝑡

∑ 𝑣𝑖 𝑙𝑜𝑔 𝑛𝑖
𝐾
𝑖=1

(2) 
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where 𝑡 ∈ {1, … , 𝐾}, 𝑣𝑡 is the texture intensity value in TIF, 𝑛𝑡 is the number of pixels 

in region 𝑡 that have the same value of 𝑣𝑡. The number of primitives distributed in re-

gion 𝑡 is denoted as 𝑁𝑡, and it is equal to 𝑁𝑃𝑡 . Through this, we distribute more primi-

tives in regions with higher texture intensity and larger area. 

FTPD strategy targets the case of a fixed number of primitives. Since majority of 

current vectorization methods  adopt a fixed number of primitives, this strategy enables 

us to show the performance advantages of our method compared with other methods 

under the condition of using the same number of primitives. 

Connected Region Segmentation Primitive Distribution (CRSPD) strategy: This 

strategy is aimed at scenarios where a fixed number of primitives is not required. Intu-

itively, the more primitives there are, the better the rendering quality of the image. A 

fixed number of primitives may lead to insufficient image rendering and loss of texture 

details. 

The CRSPD strategy can automatically determine the number and positions of the 

primitives. The idea of this strategy is consistent with the construction of TIF through 

segmentation of connected regions. It consists of 2 simple steps: 1)firstly segment the 

connected regions in the image using a traditional connected components analysis 

method [20]; 2) secondly select the centroid of each connected region as the initializa-

tion position for the primitives. The connected regions with higher texture intensity 

tend to be smaller and denser, resulting in a larger number of initialization positions for 

the primitives. Conversely, the connected regions with lower texture intensity tend to 

be larger and sparser, leading to a decrease in the number of initialization positions for 

the primitives. The number of  

primitives in this strategy depends entirely on the number of connected regions in 

the image. 

3.3 TIF-based Loss Function 

In previous works [3,19], mean square error (MSE) loss (𝐼𝑚 − 𝐼𝑚)2 are utilized to ad-

just the distinction between raster image 𝐼𝑚 ∈ 𝑅𝑤×ℎ×3， and rendered output 𝐼𝑚 ∈

𝑅𝑤×ℎ×3, where RGB channels are considered and 𝑤 × ℎ represents the image size. 

MSE loss is simple and effective in optimization stage, however, it is calculated 

based on all available pixels, which leads the model paying excessive attention on the 

optimization of smooth regions that occupy the most area, while ignoring the details of 

the image. As shown in Fig.3(b), based on MSE loss, the color of the visual rendering 

results tends to be bias to the mean color, while the TIF-based loss function preserves 

the color and shape of the target.  

To resolve this problem, we propose a novel TIF-based loss function, formulated as 

follows: 

ℓ𝑇𝐼𝐹 =
1

3
∑ 𝑣𝑖 ∑(𝐼𝑚𝑖,𝑐 − 𝐼𝑚𝑖,𝑐)2

3

𝑐=1

𝑤×ℎ

𝑖=1

(3) 



where 𝑖 is the index of the pixel in the image 𝐼𝑚, 𝑣𝑖 is intensity magnitude in TIF, 𝑐 is 

the index of the RGB channel. The TIF-based loss function emphasizes the differences 

in region with higher texture intensity while suppressing the differences in region with 

lower texture intensity. By this design, we can avoid the impact of the error in color 

mean during the primitives optimization and maintain the accuracy of texture recon-

struction, as shown in Fig.3(c). Additionally, the TIF-based loss function can signifi-

cantly reduce the primitives optimization time as well. 

 

Fig. 3. Differences between MSE and TIF-based Loss.  

4 Experiments 

4.1 Datasets 

Since the TIF defined reflects image texture complexity, we can define the texture com-

plexity of each dataset as: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
1

𝑛
∑ 𝐿1𝑛𝑜𝑟𝑚

𝑛

𝑡=1

(𝑇𝐼𝐹) (4) 

Where 𝑛 is the number of images in dataset. We evaluate the effectiveness and superi-

ority of our proposed TIFVec on 5 datasets from various aspects, which are detailed in 

Table.1 ordered by texture complexity. 

Table 1. Description of the 5 datasets, Fonts is from [5] and Emoji is widely used in existing 

vectorization methods [4,16,19] separately. 

Dataset Quantity Contents public Complexity 

Fonts 134 characters yes 0.179 

Emoji 203 emojis yes 0.257 

Animations 93 animations no 0.330 

Art 52 arts no 0.532 

Realistic 35 photos no 0.733 
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4.2 Implementation 

Our TIFVec is implemented in PyTorch and all comparisons are performed on hard-

ware with an NVIDIA Geforce RTX 3090 GPU and 12 Intel(R) Silver 4214R CPU. In 

the primitive initial phase, we set the circle radius to 3 pixels and distribute 12 control 

points evenly along the circumference. Additionally, we use 1000 primitives in FTPD 

strategy for all experiments, and set the number of iterations as 1000 in the primitive 

optimization stage. 

4.3 Evaluation metric of vectorization. 

We employ PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) to 

quantify the similarity between the input raster images and output vector graphics. Dur-

ing the evaluation process, all vector outputs are rasterized into images with their orig-

inal size by CairoSVG2 for comparison. 

4.4 Comparison Experiments 

  

Fig. 4. Comparison with learning-based methods on Fonts dataset (low complexity dataset).  

Visual Comparison: We compare our method with some representative learning-based 

vectorization methods, including SVG-VAE [5], DeepSVG [15], Im2Vec [19], LIVE 

[4], and O&R [16]. The previous work [21] has already demonstrated that SVG-VAE, 

DeepSVG, Im2Vec are unable to handle objects with complex content. For a fair com-

parison, we perform experiments exclusively on Fonts and Emoji datasets. We use the 

FTPD stratery and set the number of primitives as 16 that is same to LIVE and O&R. 

Fig.4 presents part of the visual results. It is worth noting that SVG-VAE and DeepSVG 

require vector supervision during the rendering process, while the Emoji dataset does 

not have corresponding vector ground truth. Therefore, SVG-VAE and DeepSVG can-

not be tested on this dataset. It can be observed that LIVE, O&R and our method ex-

cellently accomplish the task of vectorizing simple images. 

To demonstrate the performance of our TIFVec on complex datasets, we compared 

it with representative heuristic methods and learning-based vectorization methods on 

the Animations, Art and Realistic photos datasets. The methods in comparison include  

 
2 https://github.com/kozea/cairosvg 



 

Fig. 5. Comparison with representative heuristic methods and learning-based methods on 3 da-

tasets of high complexity. The first 3 rows consist of images from the Animations dataset, along 

with 2 enlarged image details. The middle 3 rows display images from the Art dataset, and the 

final 3 rows showcase images from the Realistic photos dataset. 

Adobe (a commercial software), DiffVG [3] (primitive number=1000), LIVE [4] (prim-

itive number=1000), for O&R [16], we ensure that the primitive number after optimi-

zation and reduction is 1000. For each image, we select two detail areas and magnify 

them. All results are illustrated in Fig.5. 
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We magnify 2 regions with complex textures from each image to showcase the de-

tails. Adobe experiences content loss, such as in light reflection on the green leaf and 

the eyes of the Buddhist statue. DiffVG encounters color bias issues in processing all 

images, O&R did not handle the gaps between primitives well, leading to a fragmented 

feeling in the image. while LIVE suffers from detail loss with complex images. By 

contrast, TIFVec with FTPD strategy performs better than LIVE overall, but still has 

some detail loss when processing Buddhist statue image due to primitive number limi-

tations. However, using the CRSPD strategy in TIFVec preserves details well in each 

image, making it the most effective method. 

Table 2. Average SSIM and PSNR comparison among learning-based methods and our 

TIFVec(FTPD) on Fonts, Eomji datasets. 

Methods 
Fonts Emoji 

PSNR SSIM PSNR SSIM 

SVG-VAE 22.25 0.433 × × 

DeepSVG 24.71 0.524 × × 

Im2Vec 27.86 0.808 30.51 0.942 

LIVE 29.40 0.885 32.94 0.969 

O&R 28.15 0.796 31.77 0.955 

FTPD 32.29 

+2.89 

0.985 

+0.100 

35.87 

+2.93 

0.668 

-0.001 

 

Quantitative Comparison: We evaluate the vectorization accuracy on the Fonts da-

taset and Emoji dataset by comparing the PSNR and SSIM metrics. For fair compari-

son, we calculate metrics for each image in the dataset. Table.2 presents the average 

results of objective metrics. The LIVE model slightly surpassed our TIFVec(FTPD) by 

0.001 only in the SSIM while consuming 16 times the primitive optimization time of 

our method. Except this, our method achieves top-notch performance on both datasets. 

Regarding primitives optimization time, we will provide an analysis in subsequent sec-

tions. 

Table 3. Average SSIM and PSNR comparison among representative heuristic methods, learn-

ing-based methods and our TIFVec(FTPD and CRSPD) on Animations, Art, Realistic photos 

datasets. number of primitives is set to 1000 in DiffVG, LIVE, O&R. 

Methods 
Animations Art Realistic photos 

PSNR SSIM PSNR SSIM PSNR SSIM 

Adobe 36.38 0.978 34.98 0.972 31.06 0.964 

DiffVG 33.47 0.913 30.07 0.852 29.18 0.860 

LIVE 36.47 0.991 32.45 0.964 30.72 0.910 

O&R 36.34 0.967 31.95 0.928 30.55 0.899 

FTPD 36.81 0.992 33.14 0.976 31.28 0.976 

CRSPD 36.30 0.991 33.34 0.982 31.70 0.985 

 



Quantitative Comparison for Animations, Art and Realistic photos datasets are sum-

marized in Table.3. We calculate the average PSNR and SSIM for each dataset. Our 

TIFVec achieves the highest SSIM value across all datasets, while PSNR also received 

the highest score on all datasets with the exception of only the Art dataset. The excep-

tion is due to our vectorization method, which emphasizes capturing textures in images, 

fine details, and minimizing texture loss. This may introduce some redundant noise, 

resulting in a slight decrease in signal-to-noise ratio value. In contrast, the PSNR indi-

cator focuses on the average signal-to-noise ratio value contributed by all pixels. 

Table 4. Average time to achieve specified SSIM threshold on 3 datasets compared learning-

based methods.  

Methods 
Animations Art Realistic photos 

Num time Num time Num time 

DiffVG 1000 20.3m 1000 30.5m 1000 35.6m 

LIVE 1000 23.5h 1000 73.5h 1000 89.5h 

O&R 1000 24.3m 1000 32.2m 1000 45.9m 

FTPD 1000 14.5m 1000 19.5m 1000 27.8m 

CRSPD 522 16.8m 2069 24.5m 3848 32.9m 

 

Primitives Optimization Time Comparison:The primitives optimization time con-

sumed for image vectorization is also important, we compare average value for the 

learning-based methods including  DiffVG, LIVE, O&R and our TIFVec. 

We test the primitives optimization time to achieve a specified SSIM threshold on 

the Animations, Art, Realistic photos datasets. Here, we set the SSIM threshold to 0.90. 

It is worth noting that we do not limit the number of iterations for the rendering stage 

until the SSIM threshold is reached. In addition, we also present the average number of 

primitives, since the number of primitives in CRSPD strategy is not fixed. As shown in 

Table.4, the time consumed by O&R and DiffVG is very close, with Live taking the 

longest time. Our method takes the shortest average time to reach the SSIM threshold 

in the 3 datasets. This is because our method focuses on areas with high texture inten-

sity, which avoids the time loss caused by correcting details. In addition, LIVE is also 

an iteration-based method, but each time it optimize a primitive, it takes 500 iterations 

(1-5 seconds for each time). Therefore, optimizing 1,000 primitives takes 500,000 iter-

ations, which results in the huge time cost. The previous work [21] also shows that the 

LIVE method takes an average of 25.88 hours in the process of vectorizing manga, 

which is intolerable.   

4.5 Ablation Experiments 

We implement the ablation experiments on the Emoji dataset and the Animations da-

taset. The configurations in Table.5 display the combination of each component of our 

method. In the case of using strategy FTPD on the Emoji dataset, we set the number of 

vector primitives to 16, while on the Animations dataset, we set it to 1000.  
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The experimental results demonstrate that our proposed FTPD and CRSPD strate-

gies, along with the GLCM function, all contribute to improving the accuracy of vec-

torization. Among them, the GLCM function exhibits the greatest improvement in ac-

curacy. This is because during the image optimizing process, we pay more attention to 

regions with higher texture intensity which refers to the detailed parts, thereby avoiding 

the loss of details. Additionally, our FTPD and CRSPD strategies ensure a higher dis-

tribution of primitives in regions with greater texture intensity, further enhancing the 

accuracy of vectorization. 

Table 5. Ablation Experiments on 2 datasets. AD represents average distribution. 

configuration Emoji Animation 

distribution loss PSNR SSIM PSNR SSIM 

AD MSE 32.12 0.790 33.47 0.913 

FTPD MSE 32.28 0.795 33.81 0.936 

CRSPD MSE 32.83 0.939 33.60 0.934 

AD GLCM 34.45 0.960 36.11 0.989 

FTPD GLCM 35.87 0.968 36.81 0.992 

CRSPD GLCM 36.65 0.995 36.30 0.991 

4.6 Analysis of the Number of Primitives 

 

Fig. 6. Minimum number of primitives required to achieve a specific SSIM on each dataset, x-

axis is primitive number. 

To improve the model's practicality, we conducted experiments to determine the mini-

mum number of primitives needed to achieve a specific SSIM, which affects the edita-

bility and compactness of vectorized images. We followed the FTPD strategy and ini-

tially set the number of primitives to 10. Once stability was reached, we added 10 more 

primitives to the current vector output and repeated this process, recording the number 

of primitives and corresponding SSIM values at each stability point. The results for 

each dataset are shown in Fig.6, with the vertical axis representing the SSIM threshold 

and the horizontal axis representing the minimum number of primitives required to 

reach that threshold. We observed that as the number of primitives increased, so did the 

stable SSIM value. However, this increase eventually slowed down and converged. 



5 Conclusion 

In this work, we propose a vectorization framework based on the texture intensity field. 

The framework includes 2 strategies for distributing primitives, and our experiments 

show that the initial primitive distribution, number of primitives, and image texture 

significantly impact the quality of image vectorization. Additionally, we introduce a 

TIF-based objective function to emphasize areas with higher texture intensity during 

primitive optimizing process. Extensive experiments demonstrate the effectiveness of 

our TIFVec framework, which achieves the state-of-the-art performance. 
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