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Abstract. Neural combinatorial optimization (NCO) for solving scheduling 

problems has attracted more and more research interest because they do not rely 

on expert knowledge. However, existing NCO approaches face significant chal-

lenges in the flexible job shop scheduling problem (FJSP), because neural net-

works struggle to effectively capture the heterogeneous interactions among mul-

tiple machines and operations. To address this issue, we propose a bidirectional 

cross attention neural architecture trained by deep reinforcement learning. Our 

approach introduces a dual interaction mechanism to enable simultaneous learn-

ing of operation priorities and machine availability constraints. We demonstrate 

the effectiveness of this approach through extensive experiments, showing its su-

periority over classical network architectures on synthetic datasets. 

Keywords: Deep Reinforcement Learning, Flexible Job Shop Scheduling Prob-

lem, Neural combinatorial optimization, Cross-Attention. 

1 Introduction 

The flexible job shop problem (FJSP) is a fundamental problem in operations research 

and industrial engineering [1]. The goal of FJSP is to find the optimal operations order-

ing and machine assignments to minimize an objective function such as makespan. The 

NP-hard nature of FJSP makes it extremely difficult to solve. Traditional solve methods 

usually rely on exact algorithms, heuristics and metaheuristics based on decades of re-

search. For example, exact algorithms, including cutting plane and branch-and-bound, 

can find the optimal solution for the FJSP. However, the exponential time complexity 

of these algorithms makes it challenging to apply them to large-scale practical problems 

[2]. On the other hand, (meta)heuristic algorithms, like genetic algorithms and tabu 

searches, are capable of yielding high-quality solutions within a limited timeframe. 

Nevertheless, they do not ensure optimality [3,4]. Moreover, the development of effi-

cient (meta)heuristic algorithms hinges on expert experience and domain knowledge 

[5,6,7]. 
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In recent years, neural combinatorial optimization (NCO) methods have attracted 

growing attention. This is because they address the drawbacks of traditional methods 

and enable the learning of a general scheduling strategy [8]. Typically, these methods 

entail designing a sophisticated network architecture to represent a scheduling strategy. 

The policy network is commonly trained through either supervised learning or rein-

forcement learning. The supervised - learning approach utilizes numerous FJSP prob-

lem instances along with their optimal solutions as training data [9]. This method is 

simple and intuitive, however, the time cost of obtaining optimal solutions is substan-

tial, particularly when dealing with large-scale instances. On the other hand, reinforce-

ment learning-based methods formulate the FJSP as a Markov decision-making pro-

cess, in which rewards are rationally devised to align with the objective function [10]. 

In contrast to supervised learning-based methods, reinforcement learning does not ne-

cessitate optimal labels. Nonetheless, its performance is constrained by the effective-

ness of state representation [11]. Motivated by the fact that the job scheduling problem 

can be depicted as a disjunctive graph, a state representation method grounded in graph 

neural networks learns the partial solution of FJSP by representing it as such a disjunc-

tive graph [12]. Nevertheless, the disjunctive graph fails to adequately capture the 

multi-associative relationships among operations and machines in FJSP, often render-

ing the redesign of the disjunctive graph based on domain knowledge [13]. Another 

state representation approach involves learning operations and machines as sequences 

without positional embeddings, leveraging the attention mechanism [14]. Although the 

attention-based representation method has yielded promising results thus far, it still 

lacks an efficient means of learning the heterogeneous relationships between operations 

and machines. 
To address this issue, our contribution is to propose a bidirectional cross-attention 

neural architecture. It consists of two novel components: (1) operation-to-machine at-

tention that dynamically identifies suitable machines for pending operations, and (2) 

machine-to-operation attention that evaluates workload compatibility from the ma-

chine's perspective. This network is trained by the Actor-Critic algorithm. Finally, we 

demonstrate the effectiveness of this network architecture by conducting comprehen-

sive comparative experiments with traditional methods as well as classical NCO meth-

ods on synthetic datasets. 

The rest of the paper is organized as follows. Section II describes the formal descrip-

tion of FJSP and reviews some NCO works related to FJSP. Section III details our pro-

posed methodology. Section IV reports the experimental results. Section V summarizes 

the paper. 

2 Background and Related Work 

2.1 Flexible Job Shop Scheduling Problem 

The FJSP involves scheduling a set of jobs 𝐽, where each job 𝑖 ∈ 𝐽 comprises a se-

quence of operations 𝑂𝑖 . Each operation 𝑗 ∈ 𝑂𝑖 must be processed on a machine 𝑘 se-

lected from its eligible machine set 𝑀𝑖𝑗, with a processing time 𝑝𝑖𝑗𝑘. Decision variables 

include binary machine assignment 𝑥𝑖𝑗𝑘(1 if operation 𝑗 of job 𝑖 uses machine 𝑘), and 
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timing variables 𝑠𝑖𝑗(start time) and 𝑐𝑖𝑗(completion time) for each operation. The objec-

tive of this problem is to determine the decision variables to minimize the maximum 

completion time of all jobs, while respecting the following constraints: 1) the operations 

of job 𝑖 ∈ 𝐽 must be processed in the sequential order defined by 𝑂𝑖; 2) each operation 

𝑂𝑖𝑗  must be assigned to exactly one machine from its compatible set 𝑀𝑖𝑗; and 3) no two 

operations assigned to the same machine 𝑘 may have overlapping processing time in-

tervals. 

2.2 NCO with Graph Neural Networks 

The Flexible Job Shop Scheduling Problem (FJSP) has garnered significant attention 

in recent years, particularly with the integration of advanced computational techniques 

such as Graph Neural Networks (GNNs) and Deep Reinforcement Learning (DRL).  

Zhang et al. [15] showed the potential of GNN in the field of scheduling problems by 

modeling the solution construction process of the job scheduling problem as a disjunc-

tive graph and training it with deep reinforcement learning. Song et al. [16] extended 

this idea to FJSP, where they added machines as graph nodes to the disjunctive graph 

to achieve a unified representation of operations and machines. Ho et al. [17] proposed 

a novel method termed “residual scheduling,” which emphasizes the removal of irrele-

vant machines and jobs. There are also approaches that consider redesigning the graph 

structure or employing advanced GNNs. Echeverria et al. [18] designed a new graph 

structure with jobs, machines, and operations as graph nodes, and designed six types of 

edges, which significantly enhances the state representation. Wan et al. [19] considered 

the heterogeneous relationship between operations and machines in FJSP, and used the 

meta-path-based heterogeneous graph neural network as a state representation network. 

However, these methods are far from the optimal because the graph structure cannot 

fully characterize the FJSP. 

2.3 NCO with Attention Networks 

Due to the remarkable effect of the attention mechanism in routing problems, some 

studies have recently started to try to use the attention mechanism as a representation 

method for FJSP [20]. Shao et al. [21] achieved the first joint representation of multi-

dimensional spatio-temporal information in a dynamic scheduling environment by de-

signing a multi-channel state matrix (containing operation, machine load, and residual 

operation features) with a hierarchical structure. On this basis, Xu et al. [22] adopts the 

Transformer architecture to construct a compact state space, and its innovative dual-

attention module establishes dependencies across time steps at the operation level and 

the machine level respectively, which effectively solves the gradient decay problem in 

long range scheduling decisions. Notably, the dual attention architecture proposed by 

Wang et al. [23] achieves decoupled feature learning between the operations and ma-

chine streams through the operation message attention block and the machine message 

attention block. Based on [23], Zhao et al. [24] used a dynamic attention-based feature 

extraction method to process the attention coefficients of operation nodes and machine 

nodes separately to better capture the competitive relationship. However, most of the 



existing attention-based representation methods focus on inter-operations or inter -ma-

chines, and have not yet explicitly constructed the dynamic association relationship be-

tween operations and machines. 

3 Proposed Method 

In this section, we present the main research approaches. Firstly, we model the FJSP as 

a Markov decision-making process (MDP). Secondly, the bidirectional cross-attention 

network architecture, the actor network and the critic network are described in detail. 

Finally, deep reinforcement learning strategy is introduced. Fig. 1 illustrates the overall 

workflow of our method. 

3.1 MDP Formulation 

To train the network using deep reinforcement learning, we need to formulate the FJSP 

as a MDP. The following sections describe the five key components of the MDP in 

detail. 

State. Based on the characteristics of the FJSP, we propose a compact state represen-

tation consisting of three types of entities: operations, machines, and compatible oper-

ation-machine pairs. Given a decision time step 𝑡, each operation can be classified into 

one of three distinct statuses: completed, pending, or unscheduled. Since completed 

operations are meaningless for current and future decisions, we remove them from 𝑠𝑡. 

The remaining set of operations we define as the decision-relevant operations 𝑂𝑢(𝑡). 

Each pertinent operation 𝑂𝑖𝑗 ∈ 𝑂𝑢(𝑡) can be represented as a feature vector ℎ(𝑂𝑖𝑗) ∈

ℝ10. We define 𝑀𝑢(𝑡) as the set of related machines, where each machine 𝑀𝑘 ∈ 𝑀𝑢(𝑡) 

is described by a feature vector ℎ(𝑀𝑘) ∈ ℝ8. The feature vector ℎ(𝑂𝑖𝑗 , 𝑀𝑘) ∈ ℝ8 cor-

responds to each pair of compatible operation-machines (𝑂𝑖𝑗 , 𝑀𝑘) ∈ 𝐴(𝑡). The mean-

ing of the specific elements in each feature vector and the formula can be found in [23]. 

As scheduling proceeds, more and more operations are completed resulting in a de-

creasing state space. 

Action. The action space at a decision time step 𝑡 is the set of compatible operation-

machines pairs 𝐴(𝑡), which gets smaller and smaller as sequential decisions are made. 

State Transition. After taking an action, each state feature vector is updated accord-

ingly. The updated operations, machines, and compatible operation-machines pair fea-

ture vectors represent the new state 𝑠𝑡+1 and indicate the completion of the current ac-

tion. 

Reward. To align with the optimization objective of FJSP, we use the difference in the 

partial scheduling maximum time span between 𝑠𝑡 and 𝑠𝑡+1. We set the discount factor 
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γ to 1 so that the cumulative reward is equal to the negative makespan. Therefore, min-

imizing the objective function is equivalent to maximizing the cumulative reward. 

Policy. The policy 𝜋(𝑎𝑡|𝑠𝑡) computes the probability distribution of the action space 

𝐴(𝑡) in state 𝑠𝑡. The deep reinforcement learning algorithm continuously optimises the 

parameters of the bidirectional cross-attention network, the action network and the 

critic network by sampling and evaluating the actions 𝑎𝑡 to maximize the expectation 

of the cumulative reward. 

 

Fig. 1. The overall workflow of our method. 

3.2 Policy Network 

State representation learning is crucial for the effectiveness of deep reinforcement 

learning. In the MDP Formulation subsection, we introduced the set of feature vectors 

of states, however the underlying representations between them need to be learnt by 

neural networks. Since the job scheduling problem can be represented as a disjunctive 

graph and graph neural networks are naturally good at learning graph-structured data, 

graph neural networks are often used as state representation networks. However, a dis-

junctive graph can only represent operations and their relationships, and cannot repre-

sent the complex heterogeneous interactions between multiple operations and machines 

in the FJSP. The self-attention mechanism, on the other hand, is able to identify the 

important elements by learning the interrelationships of the elements within the se-

quences, and thus it is adopted to characterize the set of operations and machines. Com-

pared to CNNs and MLPs that can only handle fixed sequence lengths, self-attention 

can handle sequences of different lengths, which is important for the FJSP because real-

world scenarios have different scales. 

However, self-attention networks have difficulty dealing with the complex connec-

tivity relationships between operations and machines. Unidirectional cross-attention 

can only capture dependencies from a single perspective, leading to information asym-

metry and suboptimal local solutions. For example, operation-to-machine attention can 

learn an operation's preference for machines but fails to reflect the machine's selection 

constraints. Moreover, selecting machines solely from the operation's perspective may 

overlook the machine's global state, causing the scheduling strategy to converge to 
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suboptimal solutions. However, a bidirectional interaction mechanism can simultane-

ously model two critical aspects: 1) dynamically evaluating an operation's suitability 

for machines, and 2) assessing operation compatibility from the machine's perspective. 

This design effectively resolves the information asymmetry and local optimization is-

sues inherent in unidirectional attention methods. Therefore, we propose a model based 

on a bidirectional cross-attention network. 

The general architecture of the model is shown in Fig. 2. It utilizes two attention 

channels to deal with operations and machines separately. These channels are called 

the operation feature extractor and the machine feature extractor, respectively. The op-

eration feature extractor processes the operation feature vectors through a stack of self-

attention layer and cross-attention layer. In each operation feature extractor pair, we 

process operations so that 1.) in the first layer, an operation pays attention to each other 

only with its predecessor and successor, and performs a mask on the attention coeffi-

cients of the nonexistent predecessor and successor, and 2.) in the second layer, opera-

tions are used as queries, machines are used as keys and values, and each operation 

computes the attention coefficients only with its machines that can process it.  

 

Fig. 2. The general architecture of Bidirectional Cross-Attention Network. The network takes 

Vector(O) and Vector(M) as inputs. The outputs of two self-attention modules are cross fed into 

the "Multi-head Operation-Machine Cross-Attention" and "Multi-head Machine-Operation 

Cross-Attention" modules respectively. Finally, the network generates two output vectors, H(O) 

and H(M). 

Similarly, a stack of self-attention layer and cross-attention layer is utilized by the 

machine feature extractor to process the machine feature vectors. In each machine fea-

ture extractor pair, we process machines so that 1.) in the first layer, a machine pays 

attention to each other only with machines that are in a competitive relationship, where 

competitive relationship means that there is an overlap in the operations that these ma-

chines can process, and 2.) in the second layer, machines are used as queries, operations 

are used as keys and values, and each machine computes the attention coefficients only 

with operations that it can process. Details about the self-attention layer can be referred 

to the practice in [23]. 
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Bidirectional Cross-Attention Network. Since self-attention only focuses on the iso-

morphic relationships between feature vectors within the operation or machine, the goal 

of cross-attention is to automatically mine the heterogeneous edge relationships be-

tween the operation and machine to provide more adequate decision-relevant infor-

mation for the action network. The self-attention module of the operation feature ex-

tractor can be referred to [23]. The inputs to the operation-to-machine cross-attention 

module are the operation feature matrix 𝑂 ∈ ℝ𝑁×𝑑𝑜  and the machine feature matrix 

𝑀 ∈ ℝ𝑀×𝑑𝑚 from the self-attention layer, where 𝑂 and 𝑀 are the number of operations 

and machines, respectively, and 𝑑𝑜 and 𝑑𝑚 are the feature dimensions. The operation 

features are mapped as query vector 𝑄 by query transformation matrix 𝑊𝑄, and the ma-

chine features are mapped as key vector 𝐾 and value vector 𝑉 by key matrix 𝑊𝐾 and 

value matrix 𝑊𝑉 , respectively: 𝑄 = 𝑂𝑊𝑄 , 𝐾 = 𝑀𝑊𝐾 , 𝑉 = 𝑀𝑊𝑉 , where 𝑊𝑄 ∈

ℝ𝑑𝑜×𝑑𝑜𝑢𝑡 , 𝑊𝐾 ,𝑊𝑉 ∈ ℝ𝑑𝑚×𝑑𝑜𝑢𝑡 , and 𝑑𝑜𝑢𝑡 is the output dimension. Then, the scaled dot 

product attention score matrix 𝑆 ∈ ℝ𝑁×M is computed for each operation with each ma-

chine and the nonlinearity is enhanced by applying LeakyReLU. The invalid connec-

tions are masked by a dynamic mask matrix 𝐴 ∈ {0,1}N×M, the invalid position scores 

are set to negative infinity, and the attention weights α are subsequently obtained by 

normalizing each row: 

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (
𝑄𝐾𝑇

√𝑑𝑜𝑢𝑡

)) (1) 

The normalized attention weight α is weighted and summed with the value vector V to 

obtain the updated operation feature 𝑂 : 

𝑂 = 𝛼𝑉 (2) 

To capture multi-dimensional interactions, we extend to a multi-head mechanism. 

The module contains   independent attention headers, each with independent header 

parameters. The output of each header is aggregated by concated： 

𝑀𝑢𝑙𝑡𝑖 𝑒𝑎𝑑(𝑂,𝑀) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝐻) (3) 

where ℎ𝑒𝑎𝑑ℎ is the output of the ℎ𝑡ℎ head. The concat preserves the multi-subspace 

information and the output dimension is  × 𝑑𝑜𝑢𝑡, which finally introduces nonlinear-

ity through the ELU activation function. 

For the machine feature extractor, the framework of the machine-to-operation cross-

attention layer is similar to the above module, while the machine self-attention layer 

employs customized attention coefficients based on the intensity of competition. Spe-

cifically, we define the existence of a competitive relationship between a machine 𝑀𝑘 

and another machine 𝑀𝑞 as the existence of an overlapping set Occur𝑘𝑞  of operations 

that can be processed by these two machines. We define the competitive intensity C𝑘𝑞 

to be equal to the sum of the feature vectors of all the overlapping set Occur𝑘𝑞  opera-

tions. Finally, the attention coefficients for machine 𝑀𝑘 and machine 𝑀𝑞 are computed 

as follows： 



𝜇𝑘,𝑞 = 𝑎𝑇𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ([(𝑊1ℎ𝑀𝑘
) ||𝑊2ℎ𝑀𝑞

|| (𝑊2𝑐𝑘𝑞)]) (4) 

where 𝑎𝑇 ,𝑊1,𝑊2 are all linear layers.  

After obtaining the attention coefficients, softmax normalization is applied to 𝑢𝑘,𝑞 

to derive the weights 𝛼𝑘,𝑞, which quantify the influence of machine 𝑀𝑞 on the decision-

making of 𝑀𝑘: 

𝛼𝑘,𝑞 =
exp(𝑢𝑘,𝑞)

∑ exp(𝑢𝑘,𝑞′)𝑞′∈𝒩𝑘

(5) 

where 𝒩𝑘 represents the set of machines that have competitive relationships with ma-

chine 𝑀𝑘. 

Weighted aggregation of competing machines' features is performed to generate the 

new feature ℎ𝑀𝑘
  for machine 𝑀𝑘, which is then used for subsequent scheduling deci-

sions: 

ℎ𝑀𝑘
 = 𝐸𝐿𝑈 (∑ 𝛼𝑘,𝑞𝑊

1

q∈𝒩𝑘

ℎ𝑀𝑘
) (6) 

Actor network and training. For each feasible action 𝑎𝑡 ∈ 𝐴(𝑡), we concat the aver-

age pooling of the operation representations, the average pooling of the machine repre-

sentations, and the edge features and input them to the MLP, outputting the probability 

of the action: 

𝜋𝜃(𝑎𝑡|𝑠𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃𝜃 ([ℎ𝑂𝑖𝑗

(𝐺)
||ℎ𝑀𝑘

(𝐺)
|| ℎ(𝑂𝑖𝑗 , 𝑀𝑘)])) (7) 

The critic network uses MLPs with the same architecture but different parameters. 

Training is done using the PPO algorithm [25], which starts by initializing the policy 

and critic networks. Subsequently, trajectories are gathered, and advantages are com-

puted using the critic network. The policy network is updated by maximizing a clipped 

advantage-weighted probability ratio. Concurrently, the critic network is also updated 

to enhance its estimation of value functions. Both of these updates occur over several 

epochs, utilizing the data from the collected trajectories. 

4 Experiments 

4.1 Datasets 

We define FJSP instances with different number of jobs and machines as (𝑛,𝑚). Our 

experiments use synthetic data generated by [16]. The number of compatible machines 

for each operation and the processing time are sampled from U(1, m) and U(1, 99), 

respectively. Depending on whether the number of operations is the same for each 
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operation, we divide the synthetic data into two groups. We define that the number of 

operations of each job in SD1 is sampled randomly, and the specific sampling method 

can be found in [16]. On the other hand, the SD2 dataset indicates that the number of 

operations in each job is the same and equal to the number of machines. For each group, 

we set up 6 scales, which are (10,5), (20,5), (15,10), (20,10), (30,10), and (40,10). 200 

different instances are generated under each scale, of which 100 are used as validation 

sets and the remaining as test sets. We only trained the models under 4 small scale 

settings, thus a total of 8 models were trained and the training instances were randomly 

generated. 

4.2 Configuration 

We set up lightweight model parameters and training process. In terms of model archi-

tecture, our proposed policy network has only three layers, i.e., two self-attention layers 

and one cross-attention layer. Each layer of the attention mechanism uses 4 attention 

heads, and the output dimension of each attention head in the first layer is 32, and the 

output dimension of each attention head in the second and third layers is 8. Both the 

action network and the critic network contain only two 64-dimensional hidden layers. 

For the PPO parameters, the policy coefficient, value coefficient, and entropy coeffi-

cient in the loss function are set to 1, 0.5, and 0.05, respectively. The GAE parameter 

𝜆 and the discount factor 𝛾 are set to 0.98 and 1, respectively. The network is updated 

4 epochs per episode using the Adam optimizer, with a learning rate 𝑙𝑟 = 2 × 10−4. 

All experiments were performed on a machine equipped with an Intel Xeon Gold 

6226R CPU and a single NVIDIA GeForce RTX 4090 GPU. 

4.3 Baselines and performance metrics 

In order to evaluate our approach more comprehensively, the performance of the pro-

posed model will be compared with heuristic algorithms, exact algorithms, and classical 

learning-based algorithms. Specifically, the heuristic algorithms include FIFO, 

MOPNR, MWKR, SPT. We define FIFO, MOPNR, MWKR, SPT as Priority Dispatch 

Rules (PDR). The exact algorithms are executed by OR-tools under a time constraint 

of 1800 seconds. The classical learning-based algorithms include HGNN [16] and 

DANIEL [23], which are representative of the GNN-based and attention-based meth-

ods, respectively. For the performance metrics, we simply take the makespan given by 

OR-tools as a reference and calculate the relative gap between the 𝐶𝑚𝑎𝑥 of each algo-

rithm and the results of OR-Tools. The calculation method is: 

𝑔𝑎𝑝 = (
𝐶𝑚𝑎𝑥

𝐶𝑚𝑎𝑥
𝑂𝑅

− 1) × 100% (8) 

4.4 Results 

In Table. 1, we report the comparative performance of each method in the same distri-

bution and same size scenarios. For all synthetic data test sets of all problem sizes, our 



method outperforms all the PDRs and classical learning-based methods while main-

taining the same level of inference time. At the same time, our model steadily outper-

forms [16,23], which suggests that the bidirectional cross-attention module can further 

enhance the representation learning capability of the policy network. In the best case, 

it achieves a maximum improvement of 96.87% over [16], and a maximum of 3.01% 

over [23]. In the worst case, our model also manages to achieve an improvement of 

0.90% over [23]. In contrast to the PDRs, our method obtains far better results without 

a significant increase in the solving time. 

Table. 2 reports the comparative performance of each method in a large-scale sce-

nario with the same distribution. For the SD1 dataset, our method reduces the optimality 

gap to 1.42% for the (30,10)-scale problem, outperforming HGNN (13.97%) and 

DANIEL (2.48%), all while maintaining a fast response time of 2.40 seconds. When 

scaled to (40,10), the gap further decreases to 0.52%. In the more challenging SD2 

dataset, our method controls the gap at 9.80% for the (30,10)-scale problem, signifi-

cantly better than HGNN (123.00%) and DANIEL (11.89%). Particularly noteworthy 

is the achievement of a negative gap of -4.83% at the (40,10) scale, surpassing OR-

Tools' reference solution. These results show that our approach balances solution qual-

ity and efficiency, outperforming both learning-based baselines and exact methods un-

der time constraints. 

Table 1. Performance Comparison of Same Distribution and Same Scale Scenarios. 

 

Size 
Top 

PDR 

Learning-based Solver  

HGNN 

[16] 

DANIEL 

[23] 
Ours 

OR-Tools 

SD1 

(10,5) 
Gap 17.56% 15.94% 10.79% 9.89% 

96.32 
Time 0.16s 0.45s 0.21s 0.39s 

(20,5) 
Gap 11.50% 12.26% 5.00% 2.84% 

188.15 
Time 0.32s 0.81s 0.53s 0.78s 

(15,10) 
Gap 19.31% 16.30% 12.37% 10.83% 

143.53 
Time 0.50s 1.22s 0.96s 1.17s 

(20,10) 
Gap 10.27% 10.10% 1.29% 0.12% 

195.98 
Time 0.71s 1.77s 1.13s 1.59s 

 

SD2 

 

(10,5) 
Gap 57.67% 69.70% 25.18% 23.96% 

326.24 
Time 0.16s 0.46s 0.24s 0.41 s 

(20,5) 
Gap 38.85% 75.91% 11.50% 9.91% 

602.04 
Time 0.33s 0.94s 0.62s 0.98 s 

(15,10) 
Gap 86.41% 114.09% 56.75% 54.01% 

377.17 
Time 0.51s 1.50s 1.06s 1.29 s 

(20,10) 
Gap 78.63% 125.31% 31.45% 28.44% 

464.16 
Time 0.70s 1.95s 1.35s 1.96 s 
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Table 2. Performance Comparison with Distributed Large-Scale Scenarios. 

 

Size 
Top 

PDR 

Learning-based Solver  

HGNN 

[16] 

DANIEL 

[23] 
Ours 

OR-Tools 

SD1 

(30,10) 
Gap 13.93% 13.97% 2.48% 1.42% 

274.67 
Time 1.09 s 2.84s 2.07s 2.40s 

(40,10) 
Gap 13.35% 13.72% 1.50% 0.52% 

365.96 
Time 1.50 s 3.81s 2.98s 3.20s 

SD2 

(30,10) 
Gap 59.77% 123.00% 11.89% 9.80% 

692.26 
Time 1.10 s 2.93s 2.81s 3.12s 

(40,10) 
Gap 35.93% 103.58% -3.59% -4.83% 

998.39 
Time 1.50 s 3.93s 4.05s 4.47s 

To validate the necessity of the proposed bidirectional cross-attention mechanism, 

we conducted systematic ablation experiments. As shown in Table. 3, the experiments 

compared the performance of different attention configurations across two problem 

scales (SD1 and SD2), yielding the following conclusions: 1.) The complete model 

(Ours) achieved optimal performance in all tasks, with significantly lower Gap values 

than other variants (e.g., only 0.12% for SD1(20,10), representing a 0.26-1.17 percent-

age point reduction compared to single cross-attention versions). This conclusively 

demonstrates the importance of simultaneously modeling bidirectional interactions be-

tween operators (OP) and machines (MC); 2.) Scalability analysis revealed that while 

runtime increased with problem size (SD1 from 0.39s to 1.59s), the improvement in 

Gap was more substantial (e.g., a 9.77 percentage point reduction from SD1(10,5) to 

(20,10)), indicating the mechanism's particular suitability for complex scenarios. These 

results consistently verify the critical role of bidirectional cross-attention in enhancing 

model performance. 

Table 3. Performance Comparison with Different Attention Network Configurations. 

Size 
without 

cross-Att 

only OP-

cross-MC 

only MC-

cross-OP 
Ours 

OR-

Tools 

SD1 

(10,5) 
Gap 10.81% 10.52% 10.61% 9.89% 

274.67 
Time 0.22s 0.32s 0.24s 0.39s 

(20,10) 
Gap 1.29% 0.38% 0.51% 0.12% 

365.96 
Time 1.13s 1.42s 1.22s 1.59s 

SD2 

(10,5) 
Gap 25.22% 24.87% 25.02% 23.96% 

692.26 
Time 0.25s 0.34s 0.28s 0.41s 

(20,10) 
Gap 31.62% 29.41% 29.51% 28.44% 

998.39 
Time 1.38s 1.83s 1.44s 1.96s 



5 Conclusions 

The FJSP is a classic combinatorial optimization problem in fields such as manufactur-

ing and cloud computing. Due to the inadequacy of current attention-based mechanisms 

for state representation, this paper proposes a bidirectional cross-attention network to 

learn the heterogeneous relationship between operations and machines. Through exten-

sive experiments on synthetic data, this paper demonstrates that our model can further 

improve the performance stably without significantly increasing the inference time. In 

the future, we hope to generalize this model to the dynamic and complex constraint 

variant FJSP. 
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