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Abstract. Object detection in aerial imagery faces unique challenges due to small 

object scales, ambiguous textures, and dense distributions. Traditional detection 

methods often struggle with preserving structural information of small targets 

and effectively utilizing both global context and local details. To address these 

limitations, we propose STE-YOLO (Small Target Enhancement YOLO), featur-

ing two key innovations: a Multi-level Content-Aware Feature Enhancement 

Module (MCAFE) that dynamically adjusts feature fusion strategies, and a Local-

Enhance Global Attention (LEGA) module that effectively balances global con-

text and local feature representation. Extensive experiments on VisDrone2019 

dataset demonstrate that STE-YOLO significantly outperforms baseline models. 

Compared to YOLOv10, our method achieves improvements of 10.8% in 

mAP@0.5 and 11.0% in mAP@0.5:0.95 on VisDrone2019. Additionally, we 

conducted generalization experiments on DOTAv1.5 dataset, where our method 

also shows strong performance, demonstrating the robustness and adaptability of 

our approach across different aerial imagery scenarios while maintaining ac-

ceptable computational overhead. 

Keywords: Small object detection, target recognition, Deep learning, Computer 

vision, YOLO. 

1 Introduction 

Object detection in aerial imagery has emerged as a crucial task in computer vision, 

with extensive applications in urban planning, environmental monitoring, and surveil-

lance. With the rapid advancement of unmanned aerial vehicle (UAV) technology, the 

demand for aerial image information extraction has grown substantially [1]. High-pre-

cision object detection algorithms serve as the foundation for accurate object localiza-

tion and tracking, driving the intelligent development of UAV systems [2]. However, 

compared to conventional natural image processing, aerial object detection faces 

unique challenges: limited recognition features, small object scales, ambiguous tex-

tures, dense object distributions, and complex backgrounds—all of which significantly 

challenge algorithm design and optimization[3,4]. 



In recent years, deep learning-based object detection algorithms have become predom-

inant in this field [5]. These algorithms can be categorized into two-stage and single-

stage approaches. Two-stage detection algorithms [7] first generate potential object 

proposals using region proposal techniques, followed by classification and regression 

[8]. In contrast, single-stage detection algorithms like YOLO and SSD employ a unified 

architecture that directly predicts object locations and categories[9,10].While single-

stage approaches offer improved real-time performance, YOLO faces significant limi-

tations when applied to aerial imagery. Standard convolutional operations and Feature 

Pyramid Networks [11] struggle to balance broad contextual information with crucial 

local details, leading to information loss in small object detection [12]. Furthermore, 

YOLO's feature extraction mechanisms inadequately capture complex spatial relation-

ships in aerial imagery, particularly for small targets where the balance between global 

context and local details is critical. Although attention mechanisms [13,14] have been 

introduced to address these issues, they still exhibit limitations in modeling complex 

local spatial relationships and determining the relative importance of different regions. 

To address these challenges, we propose Small Target Enhancement YOLO(STE-

YOLO), an enhanced object detection algorithm specifically designed for aerial im-

agery. Our main contributions are threefold: 

(1) We introduce a Multi-level Content-Aware Feature Enhancement Module 

(MCAFE) that dynamically adjusts feature fusion strategies based on input con-tent, 

significantly improving the model's capability in preserving structural in-formation of 

small objects. 

(2) We design a novel Local-Enhance Global Attention (LEGA) module that ef-fec-

tively balances global context and local feature representation, achieving su-perior per-

formance in capturing both long-range dependencies and fine-grained details. 

(3) Extensive experiments on VisDrone2019 datasets demonstrate the effective-ness 

of our approach in small object detection while maintaining computational efficiency. 

Specifically, STE-YOLO shows significant improvements compared to the baseline 

YOLOv10: on VisDrone2019, the improvements are 10.8% in mAP@0.5 and 11.0% 

in mAP@0.5:0.95; 

2 Related Work 

2.1 YOLO 

The You Only Look Once (YOLO) model is widely recognized in object detection for 

its high accuracy and fast inference speed. Since its development in 2015[15], YOLO 

has evolved through multiple versions, each introducing significant improvements. 

YOLOv3 (2018) incorporated more efficient backbone structures [16], multiple an-

chors, and spatial pyramid pooling [17]. Recent versions have introduced innovations 

including mosaic data augmentation (YOLOv4)[18], practical deployment functions 

(YOLOv5)[19], and NMS-free detection architecture (YOLOv10)[20,21,22,23]. 

In aerial imagery applications, several specialized adaptations have emerged. FFCA-

YOLO introduced modules for feature enhancement and context awareness to address 

small object detection challenges. LA-YOLO integrated the SimAM attention 
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mechanism and a fusion block with normalized Wasserstein distance to improve detec-

tion in low-altitude scenarios [24]. YOLO-SS incorporated an optimized backbone and 

restructured loss function specifically for small object detection [25]. More recently, 

ARF-YOLO integrated a coordinate-based attention module into YOLOv8, boosting 

both accuracy and speed [26]. 

Our work builds upon these foundations while addressing their limitations in small 

object detection through novel attention and feature enhancement mechanisms de-

signed specifically for aerial imagery challenges. 

2.2 Attention Mechanism 

The attention mechanism was first applied to the NLP field by Bahdanau et al. in 2014, 

and it has been over a decade since then [30]. Now, the attention mechanism is widely 

used in many fields, including machine translation, speech recognition, and computer 

vision. In deep learning, attention mechanisms give models the ability to differentiate 

and focus on important parts of the input. There have been many variants in recent 

years. For example, SENet first introduced channel attention to explicitly model de-

pendencies between channels [31]. CBAM further expanded on SENet's foundation by 

combining channel and spatial attention to learn "what" and "where" information sep-

arately [32]. GAM addressed the cross-dimensional interaction problem that traditional 

attention mechanisms overlooked, preserving more information by eliminating pooling 

operations [33]. SimAM explored a more lightweight direction by proposing a param-

eter-free attention mechanism, while EMA reduced computational complexity through 

expectation maximization algorithm. 

3 Methodology 

This chapter will introduce the overall architecture of the STE-YOLO algorithmic 

model and the improved modules we developed to enhance small object detection per-

formance, including the Multi-level Content-Aware Feature Enhancement Module 

(MCAFE) and Local-Enhance Global Attention (LEGA). These innovative modules 

are designed to address the challenges faced by traditional object detection algorithms 

when processing small objects in aerial imagery, including insufficient feature repre-

sentation, loss of target features, and inadequate utilization of contextual information. 

Through the organic integration of these modules, our model can significantly improve 

the detection performance of small objects. 

3.1 Overall Structure of our Model 

To balance detection accuracy and real-time performance, we choose YOLOv10 as the 

foundation architecture of STE-YOLO. STE-YOLO consists of three key components: 

a feature extraction backbone network, an enhanced neck network, and a detection 

head. In the backbone network, we adopt YOLOv10's architecture: utilizing C2f and 



SCDown modules for feature extraction, and integrating SPPF and PSA modules at the 

end to enhance feature representation. 

Fig. 1. Structure of STE-YOLO. 

For the neck network, we have made significant improvemeEnhancents to the orig-

inal structure. First, we introduce a custom-designed Local-enhance Global Attention 

Module, which significantly enhances the model's capability to detect small objects by 

processing global and local feature information in parallel. Additionally, we replace the 

traditional simple upsampling operation with a Multi-level Content-Aware Feature En-

hancement Module, which improves feature representation through adaptive feature re-

organization. The detection head employs the v8Detect structure and adds a lightweight 

tiny object detection head, responsible for transforming the enhanced multi-scale fea-

tures into predictions of object location, category, and bounding box coordinates, 

achieving efficient and accurate object detection. 
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3.2 Local-Enhance Global Attention (LEGA) 

Recent advances in computer vision have highlighted the importance of effectively bal-

ancing global and local feature representation. While convolutional neural networks 

(CNNs) excel at capturing local patterns, their limited receptive fields can hinder the 

modeling of long-range dependencies. Conversely, attention mechanisms are effective 

at capturing global context but may overlook crucial local details.  To address this prob-

lem, inspired by GLSA\cite{b14}, we propose the Local-Enhance Global Attention 

(LEGA) module. Simultaneously, this module can effectively aggregate and represent 

both global and local spatial features, thereby enhancing model performance in both 

large-scale and small-scale target localization tasks through the enhancement of task-

relevant information and suppression of redundant information. 

As shown in  

Fig. 2, LEGA adopts a three-stream architecture design, including Local Stream, 

Global Stream, and Gate Stream. This three-stream architecture enables effective fu-

sion of local-global features. The design simultaneously captures global and local spa-

tial features while further optimizing feature representation and information flow. 

Through the incorporation of adaptive attention mechanisms and deep convolutional 

feature extraction, the architecture achieves an effective balance between model per-

formance and computational efficiency. The overall structure can be expressed as: 

 𝐿𝐸𝐺𝐴(𝑋) = 𝑋 ⋅ 𝐹(𝐿(𝑋), 𝐺(𝑋)) ⋅ 𝑇(𝑋) (1) 

where the local spatial features L(X) are primarily modeled through the Local 

Stream, while the global spatial features G(X) are captured through the Global Stream. 

After non-linear transformation, these features are combined to form the fusion feature 

F(L(X),G(X)). The gating function T(X) is implemented as a simple sigmoid activation 

on the first channel of the input feature, which acts as a lightweight attention mecha-

nism to modulate the feature response. 

 

Fig. 2. Overview of the LEGA module. 

Local Stream. Although the GLSA\cite{b14} module effectively captures global-local 

features, the Local Spatial Attention (LSA) component has inherent limitations in mod-

eling local spatial relationships.To enhance the capture of local spatial dependencies, 



we propose a Local Stream that performs weighted feature aggregation through 

SoftPooling operation.  Unlike LSA which relies on cascaded convolutional layers with 

sigmoid activation, our approach implements an efficient pooling-based attention 

mechanism.  The Local Stream first projects features through a 1×1 convolution to re-

duce channel dimensions, followed by SoftPooling operation that generates im-

portance-weighted feature maps.  Specifically, SoftPooling computes weighted aver-

ages within local regions using an exponential weighting scheme: 

 𝑆𝑜𝑓𝑡𝑃𝑜𝑜𝑙(𝑥) =
∑ 𝑥𝑖𝑒

𝑥𝑖𝑖∈𝑅

∑ 𝑒𝑥𝑖𝑖∈𝑅
 (2) 

where 𝑥𝑖 represents the input feature at position 𝑖, and 𝑅 denotes the local pooling re-

gion.  This formulation naturally emphasizes stronger feature responses while suppress-

ing weaker ones through the exponential term 𝑒𝑥𝑖 . The weighted features are then pro-

cessed through two convolutional layers at reduced spatial resolution for computational 

efficiency, before being transformed back to the original channel dimensions. A final 

sigmoid activation normalizes the attention weights to [0,1]. Additionally, we incorpo-

rate a lightweight channel gate that operates on the first channel to modulate the atten-

tion response, helping to prevent over-emphasis of local patterns. 

 

Fig. 3. Structure of Local Stream. 

Global stream. Global stream is an adaptive feature enhancement mechanism, which 

optimizes feature representation through spatial attention and channel modulation. The 

unit includes two main steps: spatial context information acquisition and context-based 

feature enhancement. 

Given input feature 𝐹1, the feature first undergoes channel dimension adjustment: 

 𝐹𝑔 = Conv1×1(𝐹1) (3) 

The spatial context information is obtained using an attention mechanism. The module 

first calculates a spatial attention map, then performs feature aggregation: 

 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = MatMul (𝑋,Softmax (Conv1×1(𝐹𝑔))) (4) 
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where 𝑋 is the reshaped matrix of input feature 𝐹𝑔 with dimensions (𝑁, 𝐶, 𝐻 ×𝑊). The 

attention mechanism achieves adaptive focus on important regions through learnable 

spatial weights.After obtaining the context information, the module optimizes feature 

representation through a channel multiplication branch: 

 𝐺(𝐹1) = 𝜎(MLP(𝐶𝑜𝑛𝑡𝑒𝑥𝑡)) ⊙ 𝐹𝑔 (5) 

where 𝜎 represents the sigmoid activation function and ⊙ denotes element-wise mul-

tiplication. MLP represents a multi-layer perceptron, which is composed of two 1×1 

convolution layers with LayerNorm and ReLU activation functions in the middle. To 

ensure training stability, the last layer of MLP adopts a zero initialization strategy, 

which makes the module's behavior closer to identity mapping in the early stages of 

training. Overall, this design not only effectively captures global context information 

but also enhances feature expressiveness through its feature enhancement strategy. 

 

Fig. 4. Structure of Global Stream. 

3.3 Multi-level Content-Aware Feature Enhancement Module 

To address the limitations of traditional methods while simultaneously enhancing fea-

ture representation and fusion capabilities, we propose a Multi-level Content-Aware 

Feature Enhancement Module (MCAFE). This module not only improves the quality 

of feature upsampling through content-aware mechanisms, but also significantly en-

hances feature discrimination and semantic understanding through multi-level pro-

cessing and channel attention.   Unlike traditional methods that focus solely on spatial 

resolution recovery, MCAFE integrates dynamic feature processing, adaptive fusion, 

and attention enhancement in a unified framework.   This comprehensive approach en-

ables the module to better handle the complex scenarios in aerial imagery where objects 

exhibit diverse scales and dense distributions. The specific structure of the module is 

as follows: 

Feature Adjustment Layer. Employs 1 × 1 convolution to adjust the channel dimension 

of input features, establishing an appropriate feature representation foundation for 



subsequent processing. This lightweight preprocessing step can flexibly adjust the num-

ber of feature channels and optimize computational efficiency. 

 

Fig. 5. Structure of Multi-level Content-Aware Feature Enhancement Module (MCAFE). 

Content-Aware Feature Reorganization. As the core component of the module, it dy-

namically generates content-aware upsampling weights for adaptive weighted combi-

nation of neighborhood features at each pixel location. It specifically includes two key 

steps: 

─ Kernel Prediction: Predicts dynamic reorganization kernels through a lightweight 

convolutional neural network, which can be represented as: 

 𝑲 = Softmax𝒫(𝑭input) ∈ 𝑅𝑘𝟚×𝐻×𝑊 (6)  

where 𝑘 is the reorganization kernel size, and 𝒫 is the kernel prediction network. 

─ Feature Reorganization: Performs feature reorganization and upsampling using the 

predicted dynamic kernels: 

 𝑭𝒐𝒖𝒕(𝑝) = ∑ 𝑲(𝑝, 𝑞)𝑞∈Ω𝑘(𝑝)
⋅ 𝑭(𝑞) (7)  

where 𝑝  represents the target position, and Ω𝑘(𝑝)  denotes the 𝑘 × 𝑘  neighborhood 

centered at 𝑝. 

Channel Attention Enhancement. Introduces a channel attention mechanism after fea-

ture reorganization, which captures inter-channel dependencies through global infor-

mation modeling to adaptively adjust the weight distribution of feature channels. This 

design can highlight important features while suppressing secondary information, 

thereby improving the discriminative ability of features. Through the utilization of 

global contextual information, the attention mechanism can better understand and 
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leverage semantic associations between feature channels, further enhancing the effec-

tiveness of feature representation. 

The multi-level content aware feature enhancement module not only improves the 

spatial resolution of feature maps with high quality, but also significantly enhances the 

model's feature expression and discrimination ability through multi-level feature pro-

cessing. Especially by introducing channel attention mechanism, the module can better 

capture and utilize the correlations between features. More importantly, by adopting a 

lightweight network structure and optimized computational implementation, this mod-

ule maintains low computational overhead and has good practicality, enabling it to bet-

ter cope with complex scenes and small object detection tasks in aerial images. 

4 Experiments 

4.1 Dataset and Metric 

In this study, we primarily conducted experiments on the VisDrone 2019 dataset and 

performed a generalization test on the DOTAv1.5 dataset. The VisDrone 2019 dataset 

consists of 7,019 high-quality UAV-captured images (6,471 for training and 548 for 

validation). The objects are divided into ten categories: pedestrians, people, bicycles, 

cars, vans, trucks, tricycles, awning tricycles, buses, and motorcycles. To further eval-

uate our model's generalization capability to new scenarios, we conducted a generali-

zation experiment on the DOTAv1.5 dataset, which contains 2,806 images with 

188,282 instance annotations across 16 object categories (including aircraft, ships, stor-

age tanks, and various facilities). By testing on these two datasets with different view-

ing angles, object scales, and scene complexities, we were able to comprehensively 

assess our algorithm's performance and adaptability in aerial imagery analysis. 

We evaluate our model using several metrics, with mAP (Mean Average Precision) 

at two IoU thresholds (0.5 and 0.5:0.95) as our primary accuracy metrics. The mAP is 

calculated as: 

 𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖
𝑁
𝑖=1  (8) 

 𝐴𝑃 = ∫ 𝑃(𝑅)
1

0
 𝑑𝑅 (9) 

where N is the number of classes, P denotes precision, and R represents recall. To assess 

model efficiency, we also measure parameter count (Params) and inference speed 

(FPS). 

4.2 Implementation Details 

All experiments were conducted in the Linux operating system environment, using 

NVIDIA A100 GPU equipped with CUDA 12.2. The software environment is based 

on Python 3.10 and PyTorch 2.0.1 framework to achieve efficient model training and 

inference. For training, we used a batch size of 8. The maximum number of training 

epochs was set to 250, with an early stopping strategy implemented - training terminates 



when validation metrics show no improvement for 50 consecutive epochs.Following 

YOLOv8's default training strategy, we used pretrained weights on the MS COCO da-

taset to initialize our models. We employed the SGD optimizer with an initial learning 

rate of 0.01, momentum of 0.937, and weight decay of 0.0005. The learning rate was 

scheduled using a cosine annealing strategy that gradually decreases to 1e-4 by the end 

of training, with a 3-epoch linear warmup period at the beginning.For data augmenta-

tion, we utilized YOLOv8's comprehensive augmentation pipeline, which includes: 

1. Mosaic augmentation: combining four training images into one 

2. Random affine transformations: rotation (±10°), scaling (0.5-1.5), and translation 

(±10% of dimensions) 

3. HSV color space augmentation: random adjustments to hue (±0.015), saturation 

(0.7-1.3), and value (0.4-1.6) 

4. Random horizontal flips with probability 0.5 

5. Mixup: blending two images with coefficients sampled from beta distribution B 

(8.0, 8.0) 

6. Adaptive padding to maintain aspect ratio while resizing to 640×640 pixels 

We used the default YOLOv8 loss function, which combines classification, object-

ness, and box regression losses with automatic balancing. The inference confidence 

threshold was set to 0.001 during validation for comprehensive evaluation, with NMS 

using an IoU threshold of 0.7. Most experiments followed YOLOv10's default param-

eter settings to maintain experimental reproducibility and comparability, with minor 

adjustments made for specific scenarios. 

4.3 Ablation experiment 

To evaluate the effectiveness of our proposed improvement strategies for drone aerial 

image detection tasks, we conducted a series of ablation experiments on the Vis-

Drone2019 dataset using YOLOv10m as the baseline model. During the experimental 

process, we sequentially integrated the LEGA module into the neck of the YOLOv10m 

model, introduced the MCAFE module in the upsampling process, and adopted the 

YOLOv8 detection head to optimize the model's precise localization capability for tiny 

target objects. On this basis, we compared the specific impact of incorporating different 

modules on the detection accuracy of the baseline model. The experimental results are 

shown in Table 1. 

Table 1. Ablation study of different components in STE-YOLO. 

YOLO MCAFE LEGA Head mAP@0.5 mAP@0.5:0.95 

√    0.418 0.254 

√ √   0.422 0.258 

√  √  0.433 0.264 

√ √ √  0.438 0.268 

√ √ √ √ 0.463 0.283 
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4.4 Overall Performance 

We conducted comprehensive experiments comparing our proposed STE-YOLO 

model against state-of-the-art YOLO variants (YOLOv5, YOLOv6, YOLOv8, 

YOLOv9, and YOLOv10) as well as Faster R-CNN and RT-DETR using the Vis-

Drone2019 benchmark dataset. The evaluation metrics included mean Average Preci-

sion (mAP) at different thresholds (0.5 and 0.5:0.95), model parameters (Params), pre-

cision, recall, and inference speed in Frames Per Second (FPS). 

Table 2. Performance comparison of different models on VisDrone2019 dataset. 

Methods Params(M) mAP@0.5 mAP@0.5:0.95 Precision Recall FPS 

Faster R-CNN 41.53 0.327 0.185 0.462 0.318 22.5 

RT-DETR 32.97 0.453 0.275 0.541 0.428 78.0 

YOLOv10 16.46 0.418 0.254 0.540 0.406 181.3 

YOLOv9 20.02 0.439 0.268 0.556 0.422 147.0 

YOLOv8 25.85 0.422 0.256 0.543 0.413 161.3 

YOLOv6 51.98 0.411 0.249 0.530 0.395 153.8 

YOLOv5 25.05 0.422 0.255 0.533 0.415 166.7 

STE-YOLO 27.52 0.463 0.283 0.557 0.440 123.8 

As shown in Table 2, our STE-YOLO demonstrates superior performance on the 

VisDrone2019 dataset compared to all tested models. Our model achieved the highest 

mAP@0.5 of 0.463 and mAP@0.5:0.95 of 0.283, surpassing the baseline YOLOv10 

by significant margins of 10.8% and 11.4% respectively. Even when compared to RT-

DETR, which showed the second strongest performance among the tested models, 

STE-YOLO still outperformed it by 2.2% in mAP@0.5 and 2.9% in mAP@0.5:0.95. 

Notably, our model also achieved the best detection quality metrics with the highest 

precision (0.557) and recall (0.440), indicating superior ability to reduce false positives 

while detecting more true targets. In terms of model efficiency, STE-YOLO has a mod-

erate parameter count of 27.52M, comparable to YOLOv5 (25.05M) and YOLOv8 

(25.85M). While YOLOv10 achieves the highest FPS at 181.3, our STE-YOLO main-

tains real-time processing capabilities at 123.8 FPS while significantly enhancing de-

tection performance, making our approach suitable for practical aerial small target de-

tection applications where accuracy is paramount. 

4.5 Comparative experiment 

As shown in Table 3, STE-YOLO demonstrates significant improvements in detecting 

small objects such as pedestrians and motor, while also showing enhanced detection 

capability for large objects. This improvement can be attributed to LEGA's ability to 

capture both global and local detail information. 

To further validate the generalization capability of the STE-YOLO model, we con-

ducted additional experiments on the DOTAv1.5 (Dataset for Object deTection in Aer-

ial images v1.5) dataset. DOTAv1.5 is a large-scale aerial image object detection da-

taset, comprising 2,806 images and 188,282 instances, covering 16 common object cat-

egories. Compared to VisDrone2019, the DOTAv1.5 dataset features higher image 



resolutions and greater variations in object scales, providing a challenging testing en-

vironment for our model. 

Table 3. Performance comparison of different models on VisDrone2019 dataset. 

Model Target class (AP%) 

Ped. Per-

son 

Bike Car Van Truck Tri. Awn. 

Tri. 

Bus Mo-

tor 

YOLOv5 44.5  35.4 17.1 80.7 47.2 40.3 31.3  17.2 61.3 46.8  

YOLOv6 42.9 33.9 13.1 80.2 47.1 40.5 30.9 17.5 58.8 46.7  

YOLOv8 45.8  35.5 16.1 81.1 47.0 38.9 32.2 15.9 62.0 47.3  

YOLOv9 46.5  36.1 19.4 81.4 48.8 43.1 34.6 18.5 61.5 49.5 

YOLOv10 44.0  35.4 17.0 80.9 47.1 40.6 30.8 15.0 60.2 47.2  

Ours 54.1 43.5 18.9 85.1 50.7 41.7 35.9 18.8 59.0 55.2 

As shown in Table 4, STE-YOLO demonstrates excellent performance on the DOTA 

dataset, achieving an mAP of 41.7%, surpassing several benchmark models. This result 

proves that our proposed model not only excels in scenarios with densely distributed 

small objects (such as VisDrone2019) but also exhibits strong adaptability in pro-

cessing aerial images with large-scale variations and complex backgrounds. 

Table 4. Generalization performance of different models on DOTAv1.5 dataset. 

Methods Params(M) mAP@0.5 mAP@0.5:0.95 FPS 

YOLOv10 16.46 0.381 0.236 99.0 

YOLOv9 20.02 0.408 0.256 62.1 

YOLOv8 25.85 0.400 0.252 80.6 

YOLOv6 51.98 0.375 0.233 61.7 

YOLOv5 25.05 0.391 0.244 66.7 

STE-YOLO 27.52 0.417 0.259 64.5 

In order to verify LEGA's performance, we configured it on YOLOv10 for compar-

ative experiments against other advanced attention mechanism modules. As shown in 

Table 5, our module improves the performance of YOLOv10 from baseline (mAP@0.5: 

0.418, mAP@0.5:0.95: 0.255) to 0.433 and 0.264 respectively. Unlike SEAttention 

which primarily focuses on channel relationships through global average pooling, 

LEGA explicitly models spatial dependencies at both local and global levels through 

its dual-stream architecture. Compared to CBAM which applies sequential channel and 

spatial attention, our module processes these dimensions in parallel, preserving more 

spatial information critical for small objects. LEGA's unique advantage for small object 

detection lies in its SoftPooling operation, which preserves fine-grained details through 

exponential weighting of feature responses—particularly beneficial for small objects 

that occupy few pixels with limited distinctive features. Additionally, the dynamic fu-

sion of local and global information helps distinguish small targets from complex back-

grounds common in aerial imagery. The experimental results confirm these advantages, 

showing that LEGA outperforms other attention modules such as SEAttention 

(0.424/0.260), EMA (0.422/0.257), and CBAM (0.424/0.257). 
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Table 5. Ablation study of different attention mechanisms on YOLOv10. 

Methods mAP@0.5 mAP@0.5:0.95 

YOLOv10 0.418 0.255 

YOLOv10+GLSA 0.435 0.265 

YOLOv10+SE 0.424 0.260 

YOLOv10+EMA 0.422 0.257 

YOLOv10+CBAM 0.424 0.257 

YOLOv10+LEGA 0.433 0.264 

4.6 Visualization comparison with baseline models 

To visually demonstrate the detection performance of STE-YOLO, we selected a set of 

representative images from the VisDrone2019 test set. We used YOLOv10m as a base-

line for comparison. 

 

Fig. 6. Visualization results comparison between STE-YOLO and baseline models on low-alti-

tude scenes from the VisDrone2019 dataset. 

Fig. 6 illustrates the detection results in both crowded low-altitude scenes (left col-

umn) and sparse low-altitude scenarios (right column). The figure is organized in three 

rows: the top row shows the original input images, the middle row displays the results 

from the baseline model, and the bottom row presents the outputs of our proposed STE-



YOLO model. These results provide a vivid demonstration of our model's capabilities 

in handling objects of various types and scales. From densely parked small vehicles to 

large industrial facilities, STE-YOLO consistently exhibits accurate localization and 

classification, showing noticeable improvements over the baseline model across differ-

ent scene complexities. 

 

Fig. 7. Visualization results comparison between STE-YOLO and baseline models on the 

DATAV1.5 dataset. 

We evaluated our method on representative images from the DOTAv1.5 test set, 

using YOLOv10m as baseline. Fig. 7 shows detection results in complex aerial scenes. 

Our model exhibits significant advantages in detecting densely distributed multi-scale 

objects, particularly for small and partially occluded targets, demonstrating stronger 

recall under complex backgrounds - a crucial capability for remote sensing applications. 
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5 Conclusions 

In this paper, we proposed STE-YOLO, an enhanced object detection framework for 

aerial imagery.   Our main contributions include two innovative modules: MCAFE and 

LEGA.   MCAFE dynamically adjusts feature fusion strategies based on input content, 

improving small object detection through better structural information preservation.   

LEGA enhances feature representation through a three-stream architecture that bal-

ances global context and local details. 

Experiments on VisDrone2019 and DOTAv1.5 datasets demonstrate the effec-tive-

ness of our approach.   STE-YOLO achieves significant improvements over baseline 

models, with mAP@0.5 increasing from 0.418 to 0.463 on Vis-Drone2019 and from 

0.381 to 0.417 on DOTAv1.5.   While introducing moderate computational overhead, 

our model maintains practical inference speed for real-world aerial object detection ap-

plications. 
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