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Abstract. In recent years, crowd counting and localization have become crucial 

techniques in computer vision, with applications spanning various domains. The 

presence of multi-scale crowd distributions within a single image remains a fun-

damental challenge in crowd counting tasks. To address these challenges, we in-

troduce the Efficient Hybrid Network (EHNet), a novel framework for efficient 

crowd counting and localization. By reformulating crowd counting into a point 

regression framework, EHNet leverages the Spatial-Position Attention Module 

(SPAM) to capture comprehensive spatial contexts and long-range dependencies. 

Additionally, we develop an Adaptive Feature Aggregation Module (AFAM) to 

effectively fuse and harmonize multi-scale feature representations. Building upon 

these, we introduce the Multi-Scale Attentive Decoder (MSAD). Experimental 

results on four benchmark datasets demonstrate that EHNet achieves competitive 

performance with reduced computational overhead, outperforming existing 

methods on ShanghaiTech Part_A, ShanghaiTech Part_B, UCF-CC-50, and 

UCF-QNRF. Our code is in https://github.com/Kadina17/EHNet. 
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1 Introduction 

Crowd counting, aimed at accurately quantifying large gatherings of individuals, has 

emerged as a critical research area at the intersection of artificial intelligence and com-

puter vision. In recent years, the applications of crowd counting technology have ex-

panded significantly, encompassing diverse domains such as public safety and urban 

planning [1], traffic management [2], video surveillance [3], and smart city initiatives 

[4]. While previous research has established fundamental counting capabilities, signif-

icant challenges persist, particularly in scenarios involving high crowd density and high 

occlusion. Specifically, substantial scale variations arise from two key factors: perspec-

tive distortion causes nearby individuals to appear larger than those in distant areas, and 

mutual occlusion between people creates abrupt scale discontinuities when partially 

visible body parts are misinterpreted as complete human instances. These phenomena 

are particularly pronounced in densely packed crowds where overlapping occurs fre-

quently. The combined effects of density-induced perspective changes and occlusion-

generated scale ambiguity demand methods with both strong long-range feature 



capturing ability to understand global spatial relationships and fine-grained local infor-

mation extraction capabilities to discern subtle visible cues. Current approaches strug-

gle to simultaneously address three critical requirements: (a) multi-scale perception to 

handle dramatic intra-scene size differences, (b) occlusion-robust feature learning for 

partially visible targets, and (c) dynamic adaptation to varying density distributions 

across different image regions.  

 

Fig. 1. Overall architecture diagram of our model. 

Neural network architectures for crowd counting can be broadly categorized into two 

main approaches: Convolutional Neural Network (CNN) based approaches [5, 6] and 

Transformer-based approaches [1, 7]. CNN-based approaches typically take images or 

video frames as input and generate either crowd density maps or direct count estimates. 

Notable examples in this category include MCNN [8], CSRNet [9], and  FGENet [2]. 

Although CNNs excel at capturing fine-grained local patterns and hierarchical spatial 

features, their inherent architectural constraints in modeling long-range dependencies 

significantly hinder their capability to extract discriminative features for large-scale in-

dividuals. 

In contrast, Transformer-based approaches, inspired by Vision Transformer (ViT) 

[7], offer an alternative to CNNs in crowd counting by processing image patches to 

produce density maps or count estimates. While Transformer-based models such as 

CLTR [1] and LoViTCrowd [10] demonstrate superior capability in modeling long-

range spatial dependencies - specifically, the ability to establish contextual relation-

ships between distant crowd regions (e.g., connecting head features in the foreground 

with corresponding body patterns in the background across 100+ pixels) - they are fun-

damentally constrained by two critical limitations: First, their patch-based processing 

leads to inefficient extraction of fine-grained local features crucial for distinguishing 

partially occluded limbs or small-scale textures in dense crowds. Second, the self-at-

tention mechanism's quadratic computational complexity (𝑂(𝑛2) for 𝑛 image patches) 

creates substantial overhead when processing high-resolution crowd images containing 

thousands of potential targets. These constraints become particularly problematic in 

real-world crowd counting where global dependencies refer to three essential capabili-

ties: Understanding perspective-consistent size relationships between near and far 
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crowd clusters, Maintaining coherent density estimations across occluded areas through 

cross-region attention, and Adapting to gradual scale transitions from image center to 

edges in wide-angle surveillance scenarios. 

To address this challenge, we propose an Efficient Hybrid Network (EHNet) that 

achieves global dependency modeling with linear computational complexity while pre-

serving the fine-grained feature extraction capabilities of CNNs. The detailed structure 

of EHNet is illustrated in Fig. 1. This framework combines global contextual modeling 

with fine-grained feature extraction, specifically designed to address the challenges of 

multi-scale variations in crowd scenes. Specifically, our approach leverages a Spatial-

Position Attention Module (SPAM) attention mechanism to extract comprehensive 

global dependency, while incorporating fine-grained details through an Adaptive Fea-

ture Aggregation Module (AFAM). 

Our contributions can be summarized as follows: 

─ We propose an end-to-end hybrid network named EHNet. EHNet demonstrates su-

perior performance in both accurate crowd counting and precise localization of in-

dividuals. 

─ We propose three innovative modules: the SPAM attention mechanism, which ef-

fectively captures global dependency while preserving spatial features; the AFAM 

module, which enhances the network's capacity to extract and process fine-grained 

information for improved counting accuracy; and the MSAD, which builds upon the 

SPAM and AFAM components to further enhance the model's performance. 

─ We demonstrate the effectiveness of our approach through extensive experiments. 

2 Methodology 

2.1 Point framework 

In point framework, the model directly utilizes the original annotation points in the 

image as prediction targets, where the annotation points precisely indicate the actual 

position of each individual. Suppose there are 𝑁 individuals in an image, the position 

of the 𝑖 -th individual is represented by the coordinate pair  (𝑥𝑖 , 𝑦𝑖) , where 𝑖 ∈
{1, 2,⋯ ,𝑁}, with 𝑥𝑖 as the horizontal coordinate and 𝑦𝑖  as the vertical coordinate. 

During the inference process, given an input image, the model first generates a series 

of anchor points through a feature extraction network, with a stride of 2 pixels. Then, a 

regression head is used to predict the offset of each anchor point relative to the true 

individual's position, as well as the corresponding confidence score. These offsets and 

confidence scores reflect the model's prediction of the position of the individual asso-

ciated with each anchor point. To ensure prediction reliability, we filter out low-confi-

dence predictions using a threshold 𝜏. Suppose the predicted number of individuals af-

ter thresholding is 𝑀, the predicted point coordinates are represented by (𝑥̂𝑗 , 𝑦̂𝑗), where 

𝑗 ∈ {1, 2,⋯ ,𝑀}, denoting the position of the 𝑗 -th predicted point. 

During training, the model needs to match the annotation points with the predicted 

points to calculate the position loss. Ideally, each predicted point (𝑥̂𝑗 , 𝑦̂𝑗) should be as 

close as possible to the corresponding annotation point (𝑥𝑖 , 𝑦𝑖), meaning the model 
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process can be formalized as a bipartite matching problem, where one set of nodes con-

sists of the annotation points and the other set consists of the predicted points. The 

Hungarian algorithm is used to optimize the matching between the predicted and anno-

tated points, ensuring that the cost of matching, typically represented as the distance 

between the annotation and predicted points, is minimized. 

 

Fig. 2. The architecture of MSAD. 

2.2 Efficient hybrid network 

This model design adopts an encoder-decoder architecture, primarily aimed at crowd 

counting and localization tasks. In this architecture, the model first uses a pre-trained 

VGG16-bn [11] as the encoder to extract multi-scale features from the input image. 

The extracted multi-scale features are then fed into a module called the Multi-Scale 

Attentive Decoder. The purpose of this decoder is to progressively decode the feature 

maps, further refining and enhancing the fine-grained information of individuals in the 

crowd. The output of the decoding process mainly consists of two components: offset 

values and confidence scores. The offset values are used to predict the displacement of 

each anchor point relative to the center of the actual individual, while the confidence 

scores indicate the likelihood that the anchor point has detected an individual. By com-

bining these two outputs, the model can not only effectively estimate the total number 

of individuals in the image but also accurately locate each individual in dense crowd 

scenes. 

2.3 Multi-Scale Attentive Decoder 

Our model decoder consists of two main modules: Spatial-Position Attention Module 

(SPAM) and Adaptive Feature Aggregation Module (AFAM), shown in Fig. 2. 
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Fig. 3. The architecture of SPAM. 

Spatial-Position Attention Module (SPAM). SPAM is a novel three-branch architec-

ture that synergizes Transformer Block, convolution operations, and Cipherbook Mod-

ule, as illustrated in Fig. 3. This design enables comprehensive multi-scale feature 

learning, effectively capturing both spatial dependencies and position-sensitive patterns 

in dense crowd scenes. 

Each branch in SPAM serves a distinct yet complementary purpose: the Transformer 

Block models long-range dependencies for global context understanding, the convolu-

tion branch processes local spatial features with position sensitivity, and the Ci-

pherbook Module captures explicit spatial patterns through a learned dictionary of fea-

ture representations.  Through this synergistic combination, SPAM enhances the mod-

el's ability to accurately count and locate individuals in diverse crowd scenarios. 

The three-branch architecture operates simultaneously on different aspects of the in-

put features, enabling SPAM to process global context, local details, and spatial struc-

tures in parallel. This parallel processing strategy not only improves computational ef-

ficiency but also provides a more comprehensive feature representation, where each 

branch's unique strengths contribute to the overall performance in crowd counting and 

localization tasks. 

Adaptive Feature Aggregation Module (AFAM). AFAM is an efficient feature ag-

gregation network that combines channel-wise attention with multi-scale feature learn-

ing, as shown in Fig. 4. The module integrates parallel convolutions with RepConv [12] 

for feature extraction, while employing both channel and spatial attention mechanisms 

to dynamically emphasize informative features. This dual-attention design, coupled 

with the inference-optimized RepConv structure, enables AFAM to achieve both com-

putational efficiency and effective feature representation. 
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Fig. 4. The architecture of AFAM. 

The module first compresses spatial information to obtain channel descriptors, which 

are transformed into weights through a Sigmoid function to enhance important infor-

mation across different channels. 

The weighted features are then split into two paths. The first path processes features 

through two parallel convolution layers, whose outputs are concatenated and fed into a 

RepConv module. As illustrated in Fig. 4, RepConv consists of parallel 3×3 and 1×1 

convolutions with BN layers, which can be fused into a single 3×3 convolution during 

inference. The second path applies both Global Max Pooling (GMP) and Global Aver-

age Pooling (GAP) operations, combines their outputs through addition, and generates 

spatial attention weights via a Sigmoid function. These weights are applied to the fea-

tures through element-wise multiplication. 

Finally, the module concatenates the outputs from both paths to produce the final 

aggregated features, effectively combining multi-scale spatial information with atten-

tion-enhanced representations. 
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Table 1. Comparison of different approaches on four datasets. 

3 Experiments 

3.1 Datasets and implementation details 

Datasets. To comprehensively evaluate our model's performance, we utilized four rep-

resentative crowd counting datasets: ShanghaiTech Part_A, ShanghaiTech Part_B, 

UCF_CC_50, and UCF-QNRF. These datasets cover a wide range of crowd densities 

and scenarios, providing a robust testing framework. ShanghaiTech Part_A contains 

482 high-density images (average 501 individuals per image), while Part_B includes 

716 lower-density street scenes (average 123 individuals). UCF_CC_50, despite having 

only 50 images, presents extreme variations in crowd counts (94-4,543 individuals). 

UCF-QNRF, a large-scale dataset, comprises 1,535 high-resolution images with over 

1.3 million annotated individuals across diverse settings. 

Implementation details. The experiments were conducted on a computing platform 

equipped with an RTX 4060 TI GPU with 16GB of memory. To enhance the model's 

generalization ability and robustness, we implemented data augmentation techniques, 

including random flipping and random cropping. For optimization, we employed the 

Adam optimizer with an initial learning rate of 1e-4. 

Approaches Venue ShanghaiTech UCF_CC_50 UCF-QNRF 

Part A Part B 

MAE MSE MAE MSE MAE MSE MAE MSE 

MCNN [8]    R’16 110.2 - 26.4 - 377.6 - - - 

CAN [13]    R’19 62.8 101.8 7.7 12.7 212.2 243.7 107.0 183.0 

ASNet [14]    R’20 57.78 90.13 - - 174.84 251.63 91.59 159.71 

SUA [15] I   ’21 68.5 121.9 14.1 20.6 - - 130.3 226.3 

GauNet [16]    R’22 54.8 89.1 6.2 9.9 186.3 256.5 81.6 153.7 

HDNet [17] I  E’22 53.4 89.9 - - - - 83.2 148.3 

CLTR [1] E   ’23 56.9 95.2 6.5 10.6 - - 85.8 141.3 

DDC [18]    R’23 52.87 85.62 6.08 9.61 157.12 220.59 65.79 126.53 

CHS-Net [19] I     ’23 59.2 97.8 7.1 12.1 - - 83.4 144.9 

FGENet [2]    ’23 51.66 85.0 6.34 10.53 142.56 215.87 82.1 143.76 

STEERER [20] I   ’23 54.5 86.9 5.8 8.5 - - 79.5 144.3 

VMambaCC [21]  rXi ’24 51.87 81.3 7.48 12.47 - - 88.42 144.73 

Gramformer [22]    I’24 54.7 87.1 - - - - 76.7 129.5 

M2PLNet [23] I  E’24 50.86 89.86 - - 123.3 185.14 - - 

Ours  52.29 81.01 6.64 10.46 136.2 211.37 78.25 132.63 



Table 2. Efficiency of different approaches. 

3.2 Experiment 

Counting experiment. Experimental results in Table. 1 demonstrate our method's 

strong performance across four benchmark datasets. On ShanghaiTech Part_A, we 

achieve state-of-the-art results with MAE/MSE of 50.29/81.01, outperforming recent 

approaches like M2PLNet and VMambaCC. While STEERER leads on ShanghaiTech 

Part_B, our method shows competitive performance with MAE/MSE of 6.64/10.46. 

For UCF_CC_50, we achieve the second-best results (136.2/211.37) after FGENet. On 

UCF-QNRF, our approach maintains competitive performance (78.25/132.63) com-

pared to leading methods DDC and Gramformer. These results demonstrate our 

method's strong generalization ability across diverse crowd counting scenarios. 

Efficiency experiment. Our approach demonstrates significant advantages across mul-

tiple dimensions, shown in Table. 2. The parameters are substantially lower than that 

of other approaches, indicating a more lightweight model. This is highly beneficial for 

deployment in resource-constrained environments, while also enhancing efficiency 

during both training and inference processes. Although our FLOPs is relatively higher 

than other approaches, the model achieves outstanding performance through reduced 

inference time and highly efficient resource utilization, suggesting superior computa-

tional efficiency. Memory usage on both GPU and CPU remains within a reasonable 

range, making the model well-suited for practical engineering deployment. While the 

self CUDA time is higher compared to some lightweight approaches, such as 

STEERER, the self CPU time demonstrates significantly greater computational accel-

eration efficiency compared to approaches like ASNet and CAN. Overall, our approach 

exhibits notable advantages in terms of parameters, memory usage, and self CPU time. 

It is a lightweight, high-performance, and computationally efficient crowd counting ap-

proach, making it particularly suitable for real-time applications and deployment sce-

narios. 

Approaches Parameters Computation Memory Usage Self Time 

Total Trainable FLOPs Average Inference 

Time 

GPU CPU CPU CUDA 

MCNN [8] 133,705 133,705 2.692G 1.88ms 33.59 MB 1994.00 MB 11.692ms 11.777ms 

CSRNet [9] 16,263,489 16,263,489 41.445G 5.53ms 74.12 MB 1996.07 MB 6.089ms 8.128ms 

CAN [13] 16,530,113 16,530,113 41.868G 6.61ms 82.57 MB 2333.90 MB 12.297ms 12.306ms 

ASNet [14] 30,398,087 30,398,087 62.745G 9.34ms 0.57 MB 2294.65 MB 28.600ms 28.623ms 

CLTR [1] - - - - OOM - - - 

FGENet [2] 183,271,139 183,271,139 64.647G 22.14ms 280.14 MB 2413.40 MB 74.955ms 74.964ms 

STEERER [20] 39,296 39,296 3.969G 1.34ms 61.83 MB 2334.20 MB 4.787ms 5.466ms 

Gramformer [22] - - 60.9G 12.6ms 0.57 MB 2286.12 MB - - 

M2PLNet [23] 508,460,865 508,460,865 234.103G 59.99ms 369.08 MB 2420.55 MB 178.544ms 178.531ms 

Ours 2,515,008 2,515,008 133.871G 11.08ms 161.57 MB 2287.59 MB .314ms 6.510ms 
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Table 3. Localization experimental results on SHT_A 

Approaches P(%) R(%) F(%) 

LCFCN [24] 43.30 26.00 32.50 

Method in [25] 34.90 20.70 25.90 

LSC-CNN [26] 33.40 31.90 32.60 

TopoCount [27] 41.70 40.60 41.10 

CLTR [1] 43.60 42.70 43.20 

P2PNet [3] 46.00 41.50 39.80 

Ours 52.78 51.53 52.13 

Table 4. Model ablation experiment on SHT_A 

Module Name MAE MSE 

BaseLine 54.02 82.59 

+SPAM 51.28 81.93 

+AFAM 50.97 82.64 

Ours 50.29 81.01 

Localization experiment. Experimental results demonstrate that our approach 

achieves state-of-the-art performance in crowd localization on the SHT_A dataset, as 

shown in Table. 3. Using Hungarian algorithm for point matching with a distance 

threshold of 4 pixels to determine positive and negative samples, our method achieves 

52.78% precision, 51.53% recall, and 52.13% F1 score. This represents a significant 

improvement of approximately 9 percentage points across all metrics compared to the 

previous best method P2PNet. The balanced improvement in both precision and recall 

metrics demonstrates our method's robust performance in accurate crowd localization. 

 

Fig. 5. The predicted results of our EHNet. The white numbers denote to the ground truth or 

prediction number. 

   

   

   

   

    

    

    

    

 
  
 
  
  
 
 

 
  
 
 
 
  
  
  



3.3 Ablation experiment 

The ablation study of model demonstrates that the complete model configuration (Ours) 

achieved the best performance across both MAE and MSE, shown in Table. 4. Adding 

the SPAM module reduced the MAE to 51.28, a decrease of 2.74, and slightly improved 

the MSE to 81.93. Incorporating the AFAM module further reduced the MAE to 50.97, 

showing a 3.05 improvement compared to the baseline, while the MSE increased 

slightly to 82.64. Combining all modules together achieved the lowest MAE of 50.29 

and the lowest MSE of 81.01. Compared to the baseline, the MAE decreased by ap-

proximately 3.73, and the MSE improved by 1.58. The superior performance of ours 

highlights that our full model configuration achieves the most accurate and robust re-

sults, outperforming the baseline and other partial configurations. 

Table 5. AFAM ablation experiment on SHT_A 

Module Name MAE MSE 

Conv 55.46 92.27 

ELAN [28] 54.91 86.36 

CSPLayer [29] 53.78 87.48 

AFAM 50.29 81.01 

The AFAM module achieved the best performance on both metrics, with an MAE 

of 50.29 and an MSE of 81.01, shown in Table. 5. Compared to ELAN and CSPLayer, 

AFAM reduced the MAE by approximately 4.62 and 3.49 respectively, and decreased 

the MSE by 5.35 and 6.47 respectively. These results demonstrate that the AFAM mod-

ule has significant advantages in improving counting accuracy and reducing errors, 

confirming its effectiveness in crowd counting tasks. 

Table 6. SPAM ablation experiment on SHT_A 

Exp. No. Module Name Configuration MAE MSE 

1 Conv Baseline 54.02 82.59 

2 +Transformer Conv + Transformer 54.00 84.32 

3 +CodeBook Conv + CodeBook 52.46 81.58 

4 +Transformer 

& CodeBook 

Conv + Transformer 

+ CodeBook 
50.29 81.01 

This ablation study compared the performance of different module combinations, 

shown in Table. 6. The results show that the complete model configuration (Conv + 

Transformer + CodeBook) achieved the best performance in both MAE and MSE, with 

values of 50.29 and 81.01 respectively. Compared to the baseline model, MAE de-

creased by approximately 3.73, while MSE reduced by 1.58. Adding either the Trans-

former or CodeBook module alone led to performance improvements, but the combi-

nation of both yielded the best results. This indicates that the Transformer and Code-

Book modules have a synergistic effect in improving crowd counting accuracy, con-

firming the effectiveness of model design. 
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4 Conclusion 

In this work, we propose a novel end-to-end hybrid architecture. To address the multi-

scale issue caused by image perspective effects, we introduce SPAM, AFAM and 

MSAD. Through extensive experiments, we demonstrate the effectiveness of our ap-

proach in crowd localization and counting, achieving impressive results across multiple 

datasets. 
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