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Abstract. Multivariate time series anomaly detection (MTAD) has significant 

practical relevance in various applications. Despite the recent proposals of nu-

merous MTAD models, none have demonstrated consistent optimal performance 

across various scenarios. Hence, there is an urgent need to investigate the accu-

rate selection of the most appropriate MTAD model for a specific dataset. Most 

studies on model selection depend on extensive pre-trained models.  Neverthe-

less, in real-world situations, labels for time series anomaly data are seldom ac-

cessible, and the training cost of pre-trained models is significant. This paper 

presents an unsupervised method for selecting multivariate time series anomaly 

detection model based on rank aggregation of performance metrics. We create a 

reliable performance ranking by aggregating rankings from various unsupervised 

evaluation metrics. Subsequently, an early-stopping mechanism is applied to 

minimize computational expenses by identifying the Top-K models that consist-

ently maintain their ranking in robust performance throughout the epochs. Exten-

sive experiments on six real-world datasets demonstrates that our proposed un-

supervised model selection method is comparably effective to the supervised 

method in selecting the optimal MTAD model. 

Keywords: Multivariate Time Series, Anomaly Detection, Model Selection, 

Rank Aggregation. 

1 Introduction 

The rapid advancement of automated systems in practical applications has resulted in 

the generation of extensive volumes of time-varying data from diverse sensors, leading 

to the creation of multivariate time series data. Multivariate time series anomaly detec-

tion (MTAD) has garnered significant interest in both academic and industrial research 

endeavors. Numerous MTAD models have been proposed, ranging from traditional ma-

chine learning models to complex deep learning models [16, 21, 22]. 



With the progression of anomaly detection technology, the detection performance of 

these MTAD models is consistently improving, albeit with notable variations across 

diverse scenarios or datasets. There is no universally optimal model for anomaly detec-

tion, indicating that no single model can consistently achieve the highest performance 

across various scenarios or datasets. 

We aim to address the prevalent issue named multivariate time series anomaly de-

tection model selection, which is frequently encountered in practice but often disre-

garded in academic research. That is, How to select an appropriate anomaly detec-

tion model for unlabeled time series datasets to achieve optimal anomaly detection 

performance? 

The time series model selection method typically encounters the following chal-

lenges: (1) Time series data is essentially unlabeled [8]. Acquiring data labels for ex-

tensive time series datasets is a laborious, costly, and error-prone task. (2) The absence 

of standardized and universally acknowledged evaluation metrics leads to inconsisten-

cies in defining “good” performance, consequently causing variations in model selec-

tion results. Most anomalies in time series tend to appear consecutively, forming mul-

tiple anomaly segments [18]. Time series anomaly detection ought to be evaluated us-

ing range-based metrics rather than point-based metrics [12]. The absence of acknowl-

edged evaluation metrics leads to inconsistencies in defining “good” performance. (3) 

The computational cost of the model selection training process is substantial. Existing 

model selection methods depend on the performance results of all candidate models 

that have been pre-trained on different datasets. Currently, the predominant MTAD 

models are based on deep learning, requiring each model to train over numerous epochs 

on each dataset. 

In this paper, we introduce an unsupervised method for multivariate time series 

anomaly detection model selection to address the aforementioned challenges. For Chal-

lenge 1, our method is based on two unsupervised “surrogate” metrics which are related 

to detection performance and do not require anomaly labels. For Challenge 2, our 

method employs a range of evaluation metrics to obtain performance rankings for two 

unsupervised metrics. Subsequently, the performance ranking ordered by these diverse 

evaluation metrics is aggregated to achieve a more robust performance ranking. For 

Challenge 3, we design an early-stopping mechanism to terminate the epochs of deep 

learning training in order to mitigate the computational cost. 

2 Related Work 

Anomaly detection model selection aims to determine the most suitable anomaly de-

tection model for a specific dataset. Utilizing pre-training in model selection has been 

a well-established practice in the field. Recently, Zhao et al. explored the application 

of meta-learning for outlier detection methods [27]. The method relies on a collection 

of historical outlier detection datasets that contain ground-truth (anomaly) labels and 

the historical performance of models on these meta-training datasets. The meta-features 

of datasets are utilized to construct a model that“recommends” an anomaly detection 

method for a given dataset. Concurrently, Kotlar et al. proposed a meta-learning method 
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with novel meta-features to select anomaly detection models using labeled data during 

the training phase [10]. The aforementioned studies do not specifically address time 

series datasets. 

For time series datasets, Ying et al. concentrated on model selection towards time 

series datasets [24]. The time series are characterized based on a predetermined set of 

features. An anomaly-labeled time series dataset from a knowledge base is utilized to 

train a classifier for model selection and a regressor for hyper-parameter estimation. A 

comparable method is proposed by Zhang et al. who extracted time series features to 

select optimal models through exhaustive hyper-parameter tuning. And a classifier is 

then trained by using the extracted time series features and results on model perfor-

mance as labels [26]. 

In contrast to methods based on pre-training models, Goswami et al. introduce a 

method to combine rankings from three categories of surrogate metrics to create a ro-

bust composite metric for unsupervised model selection [8]. Nevertheless, the method 

is computationally intensive, requiring over 5,000 training models and numerous met-

rics. 

3 Problem Statement 

Let {𝑥𝑡, 𝑦𝑡}𝑡=1
𝑇  denote a time series with samples (𝑥1,⋯ , 𝑥𝑇), 𝑥𝑡 ∈ 𝑅𝑑and anom-

aly labels (𝑦1,⋯ , 𝑦𝑇), 𝑦𝑡 ∈ {0,1}, where 𝑦𝑡 = 1 indicates that the observation 𝑥𝑡 

is an anomaly. Anomaly labels are only used to evaluate our model selection method 

and do not play a role in the actual model selection process. 

Inspired by [8], let M = {𝐴𝑖}𝑖=1
𝑁  denote a set of 𝑁 candidate anomaly detection 

models. Each model 𝐴𝑖 is a tuple including detector and hyperparameters, e.g. (GDN 

[4], out_layer_inter_dim=128, topk=5, · · ·). 

The candidate anomaly detection models require unlabeled time series as training 

data. We consider a training / test set {𝑥𝑡}𝑡=1
𝑡𝑡𝑒𝑠𝑡−1 and {𝑥𝑡}𝑡=𝑡𝑡𝑒𝑠𝑡

𝑇 , where the training 

set {𝑥𝑡}𝑡=1
𝑡𝑡𝑒𝑠𝑡−1 is used without labels during the training process. It should be noted 

that 𝐴𝑖  denotes a trained model after the training process. 

We assume that a trained model 𝐴𝑖 , when applied to the test set {𝑥𝑡}𝑡=𝑡𝑡𝑒𝑠𝑡
𝑇 , pro-

duces anomaly scores {𝑠𝑡
𝑖}𝑡=𝑡𝑡𝑒𝑠𝑡
𝑇 , 𝑠𝑡

𝑖 ∈ 𝑅 ≥ 0. We argue that a higher anomaly 

score signifies a greater likelihood that the observation is more likely to be an anomaly. 

Subsequently, the detection performance of the model is determined by calculating the 

anomaly score using the corresponding evaluation metrics 𝑄({𝑠𝑡
𝑖}𝑡=1
𝑇

, {𝑦𝑇}𝑡=1
𝑇

). In 

the next section, we discuss the choice of evaluation metrics. 

Let 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑡𝑒𝑠𝑡, and 𝑌𝑡𝑒𝑠𝑡 denote the training and testing data sets of observa-

tions and the label testing data set, respectively. So, the problem of Unsupervised Time 

series Anomaly Detection Model Selection can be described as follows: Given obser-

vations 𝑋𝑡𝑒𝑠𝑡 and a set of models M = {𝐴𝑖}𝑖=1
𝑁  trained using 𝑋𝑡𝑟𝑎𝑖𝑛, select a model 



from M  that maximizes the anomaly detection evaluation metric 

𝑄(𝐴𝑖(𝑋𝑡𝑒𝑠𝑡),𝑌𝑡𝑒𝑠𝑡). The whole model selection process cannot use anomaly labels. 

 

 

Fig. 1. The framework of our proposed model selection method. 

4 Methodology 

In prior research, the issue of unsupervised model selection has typically been ap-

proached as the task of identifying an unsupervised metric that exhibits strong correla-

tion with supervised metrics [8]. As demonstrated by Fig. 1, we identified two classes 

of unsupervised metrics (Prediction Error and Performance of Anomaly Injection) 

due to their intuitive fit. After evaluating the performance ranking of candidate models 

using various metrics, we introduce a robust ranking aggregation method to obtain the 

composite ranking of model performance within each training epoch. We design an 

early-stopping mechanism to reduce the computational costs. This mechanism exam-

ines the Top-K models that consistently maintain their ranking in robust performance 

across epochs. 

4.1 Prediction Error 

One key attribute of an effective anomaly detection model is its ability to accurately 

predict or reconstruct time series data. This is the reason why numerous unsupervised 

MTAD models use prediction or reconstruction errors as anomaly scores without anom-

aly labels. Through the computation of prediction errors, various standard evaluation 

metrics are derived for time series forecasting tasks, including mean squared error 

(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). 

For multivariate time series, we calculate the average of each metric over all the 

variables. MSE assesses the square of the difference between the true value and the 

predicted value. MAE focuses on the absolute error between the true value and the 

predicted value. If a significant difference in magnitude exists between the true values 

of different samples, or if there is more concern about the percentage variance between 

the predicted value and the true value, MAPE is employed. 
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Using the evaluation metrics of prediction error as the metric for anomaly detection 

may not be perfect enough. Unsupervised training datasets for time series typically in-

clude anomaly data, which can have an impact on the accuracy of prediction results. 

Meanwhile, some anomalies are difficult to reconstruct or predict. 

4.2 Performance of Anomaly Injection 

Another key attribute of an effective anomaly detection model is its ability to effectively 

detect the injected anomalies. Given the challenge of acquiring labels for extensive time 

series datasets, one method is to transform the initial unlabeled dataset into a labeled 

dataset by injecting synthetical anomalies. So, the injected anomalies are assigned a 

pseudo label as 1, while the rest of the data points are labeled as 0. Previous study has 

investigated the utilization of synthetic anomaly injection for training anomaly detec-

tion models [3]. 

Thus, the anomaly detection performance of the candidate model set can be assessed 

using supervised evaluation metrics along this research line. Given an initial multivar-

iate time series lacking anomaly labels, we inject six specific types of anomalies ran-

domly. We have developed straightforward, productive programs to inject various types 

of anomalies as illustrated in Fig. 2. 

 

 

Fig. 2. Different types of injected anomalies. We inject different types of anomalies randomly 

across the initial time series. The blue line is initial series before anomalies are injected, the red 

line is the injected anomalies. 

We design six types of injected anomalies, which belong to univariate and multivar-

iate time series anomalies. Univariate time series anomalies change the data of a single 



variable over time, including Noise anomaly, Cutoff anomaly, and Spike anomaly. And 

multivariate time series anomalies change the data of multiple variables simultane-

ously, including Scale anomalies, Speedup anomalies, and Wander anomaly. Only one 

type of anomalies is injected into each sliding window of the multivariate time series 

which has been standardized via Min-max normalization. 

Noise Anomaly. We inject noise drawn from a standard normal distribution 𝒩(0,1) 

into one variable of time series. 

Cutoff Anomaly. We set a random fixed value from 𝒩(0,1) into a period of one 

variable. 

Spike Anomaly. We randomly set the extreme values (±1) within the sliding window. 

Scale Anomaly. We scale the values of different variables using distinct scale factors. 

Differences within data magnitudes across different variables lead to scale anomaly. 

Speedup Anomaly. We change the frequencies of different variables using distinct 

frequency factors. Differences within frequencies across different variables lead to 

speedup anomaly. 

Wander Anomaly. We add a trend (up or down) to different variables. Differences 

within data trends across different variables lead to wander anomaly. 

After injecting anomalies, we can obtain a pseudo-labeled dataset. Therefore, the 

performance of the model 𝐴𝑖  can be measured using the supervised evaluation metrics 

calculated by confusion matrix. However, these point-based metrics ignore the sequen-

tial nature of time series; thus, time series anomaly detection is usually evaluated using 

the point-adjusted (PA) versions of precision and recall [15]. In this case, detecting any 

of these points is treated as if all points inside the anomaly segment were detected. 

And considerable studies have shown the overestimation of anomaly detection per-

formance caused by PA [6, 9, 12]. PA%K is proposed which applies PA only if the 

ratio of correctly detected anomalies to the segment length exceeds the threshold K [9]. 

Recently, sPA is proposed which considers both the position and frequency of alarms 

in the raw results via a ranging function and a rewarding function [12]. Here, we use 

AUCPR applied different point-adjusted versions as the supervised metrics, named 

AUCPR_PA, AUCPR_PA%K and AUCPR_sPA, respectively. AUCPR is more prac-

tical in real-world applications because it directly relates to benefits and costs of detec-

tion results without setting thresholds, and achieving high AUC-PR is more challeng-

ing. Recently, VUSPR is proposed as a robust evaluation metric [15]. Thus, we aim to 

identify models with the highest anomaly detection evaluation metrics (Q includes 

AUCPR_PA, AUCPR_PA%K, AUCPR_sPA and VUSPR). 

Each metric possesses inherent limitations, and the comparability of values across 

different metrics lacks significance. The ranking of candidate models under various 

metrics can indicate the performance of anomaly detection to varying extents. Hence, 

our method involves selecting the optimal model by aggregating the model perfor-

mance rankings of different imperfect metrics. 
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4.3 Performance of Anomaly Injection 

Our candidate models have various noisy detection rankings for each evaluation met-

rics. Inspired by [8], we consider N models and a collection of Z evaluation metrics 

{σ1, σ2, ⋯ , σZ}. Here, we use σz to refer to the evaluation metric and the ranking it 

induces. For any given metric σz, the i𝑡ℎ model receives N − σz(𝑖) points. Thus, the  

i𝑡ℎ  model accrues a total of ∑ (𝑁 − σz(i))
Z
z=1  points. Finally, all the models are 

ranked in decreasing order of their total points. 

In model selection, we only care about top-ranked models. Thus, to improve model 

selection performance at the top-ranks, we only consider models at the top-k rankings, 

setting the positions of the rest of the models to N [5]. Specifically, under the top-k 

aggregation scheme, the i𝑡ℎ  model accrues a total of ∑ (Φ[σz(i) ≤ k] ∙ (N −Z
z=1

σz(i))) points. This increases the probability of models which have top-k ranks con-

sistently across evaluation metrics, to have top ranks upon aggregation. 

4.4 Early-stopping Mechanism of Epochs 

In the context of model selection, it is impractical to train every candidate model across 

numerous iterations of training using various datasets. We argue that multiple iterations 

of training epochs in deep learning lead to a gradual decrease in the loss function by 

employing continuous forward and back propagation processes, ultimately resulting in 

a consistent anomaly detection performance. Nevertheless, the relative performance 

rank among the models remains constant after low training iterations. Hence, we pro-

pose an early-stopping mechanism of training to minimize redundant iterative epochs. 

This mechanism operates by assessing the stability of the Top-α models within the ro-

bust performance rank. 

The mechanism is intuitive: if the sequence of the Top-α model within the robust 

performance ranking remains consecutively consistent for β epochs (where α and β are 

set as 3 by default), the model selection process will cease computation and suggest the 

Top-1 model to the user for anomaly detection. 

5 Experimental Studies 

5.1 Experimental Setup 

Six public real-world anomaly detection datasets are used including SWaT [13], 

SMAP [14], MSL [14], PSM [1], SMD [17], and ASD [11]. In our proposed model 

selection method, we pre-set the candidate model set of GDN [4], OmniAnomaly [17], 

MSCRED [25], LSTM-VAE [16], TimesNet [21], USAD [2], TranAD [19], 

DAGMM [28], FCSTGNN [20] and FourierGNN [23] models. The experimental sec-

tion of this paper primarily aims to validate the validity of our proposed model selection 

method. 



We evaluate our model selection method by considering the adjusted best F1 score 

and AUCPR of the top-1 model in the robust performance rank. We conduct a compar-

ative experiment of our method against four baseline methods: (1) “Supervised” in-

volves utilizing labeled training datasets for the purpose of model selection. (2) “Ran-

dom” involves selecting models from the candidate model set randomly, followed by 

determining detection performance on the testing set. (3) “Ideal” identifies the optimal 

model from the testing set based on the supervised metrics and provides its correspond-

ing performance. (4) “TimeGPT” [7] is proposed as the first foundation model for time 

series, capable of detecting anomalies for diverse datasets not seen during pre-training. 

5.2 Results and Discussion 

Table 1 presents the anomaly detection performance of the selected methods from 5 

model selection methods on six datasets in terms of F1 score and AUCPR. Each base-

line provides a specific threshold selection method, and the best F1 score is reported 

correspondingly. The best results are highlighted in bold except for “Ideal” known as 

the best standard answer. Our results show that our proposed unsupervised model se-

lection method is comparably effective to the “Supervised” method in selecting the 

optimal MTAD model. 

Our results in Table 2 indicate that there is no single evaluation metric that consist-

ently selects the best model across all datasets. The ablation study presented in Table 2 

demonstrates that the impact on detection performance varies across datasets when dif-

ferent evaluation metrics are excluded from the comprehensive method. Understanding 

the potential anomalies present in datasets beforehand can aid in the process of model 

selection. After the removal of Top-K aggregation, there is a significant decrease in 

performance, suggesting that concentrating solely on the “top” candidate models can  

 

Table 1. Best F1 scores and AUCPR of our method and its baselines on datasets. The best score 

under “Ideal” is boldfaced. 
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Table 2. Ablation study in terms of F1 score and AUCPR of our method and its variants. 

 
enhance performance after the ranking aggregation (w/o Top-K Aggre.). The removal 

of the early-stopping mechanism has minimal effect on performance, suggesting that 

the mechanism does not decrease computational cost at the expense of performance 

(w/o Early-stopping). 

6 Conclusion 

In this paper, we propose a model selection method to address the prevalent issue mul-

tivariate time series anomaly detection model selection. By aggregating the perfor-

mance ranks obtained by individual evaluation metrics, we obtain a more robust per-

formance rank of candidate models. We introduce an early-stopping mechanism to re-

duce the computational cost by terminating the epochs of training. The experimental 

results illustrate that our proposed unsupervised model selection method is as effective 

as the supervised selection of the optimal model. 
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