

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Evolutionary Replay-Driven Federated Class-

Incremental Learning for Cyber-attack Detection

Junyan Su1,3, Wenbo Fang1,3, Linlin Zhang2, Wengang Ma1,3, Junjiang He1,3

Xiaolong Lan1,3 and Tao Li1,3

1 School of Cyber Science and Engineering, Sichuan University, Chengdu, 610065, China
2 School of Software, Xinjiang University, Urumqi, 830000, China

3Key Laboratory of Data Protection and Intelligent Management

(Sichuan University), Ministry of Education, Chengdu, China
fangwenbo@stu.scu.edu.cn

Abstract. With the continuous evolution of cyber-attack patterns and strategies,

the task of detecting cyber-attacks in real-time has become increasingly critical.

However, existing replay-based class-incremental learning methods face two

fundamental challenges: a) relying on continuous sample aggregation may raise

concern about privacy data leakage, and b) lacking careful consideration of

evolving cyber-attacks, leading to insufficient detection capabilities for attack

variants. In this paper, we propose an evolutionary replay-driven federated class-

incremental learning for cyber-attack detection, which effectively enhances the

detection of variants in incremental learning tasks while protecting data privacy.

Specifically, at task 𝑇, each local client trains a classification model and stores

prototypical features (‘genes’) for each class, accompanied by a category-specific

convolutional autoencoder (CAE) model. Under privacy-preserving mecha-

nisms, a global network attack detection model is trained via federated learning,

with subsequent updates propagated to local client models. At task 𝑇 + 1, old

knowledge genes are generated from the stored prototypical sample library using

a gene evolution strategy and the pre-trained CAE model. These generated fea-

tures are integrated with new data for model update. Finally, the detection model

is updated again through the federated learning mechanism. Extensive experi-

ments conducted on authoritative datasets demonstrate the effectiveness of our

proposed method. Experimental results show that our method achieves 90.16%

accuracy in Task 2 and 85.90% accuracy in Task 3. Notably, in Task 3, our

method outperforms the random replay method by 4.66%, the GAN-based replay

method by 6.91%, and the VAE-based replay method by 22.32%.

Keywords: Federated Learning, Incremental Learning, Cyber-attack Detection.

 Corresponding author

1 Introduction

In recent years, with the successive open-sourcing and advancement of AI models such

as ChatGPT1 and DeepSeek2, related technologies have gradually permeated the cyber-

security domain. According to GlobeNewswire [1], global cyberattacks in 2024 in-

creased by 44% compared to 2023, with generative AI (GenAI) being leveraged to ac-

celerate attack development. This trend mandates that existing detection methods con-

tinuously identify cyber-attacks without forgetting old knowledge and effectively de-

tect attack variants.

Class-incremental learning (CIL) [2]–[5] has attracted significant attention due to its

effectiveness in mitigating catastrophic forgetting in models. In particular replay-based

methods are widely regarded as the most effective approach to overcoming catastrophic

forgetting. For example, Sylvestre et al. [6] introduced iCaRL, a novel training strategy

enabling CIL: it requires only a small subset of training data from existing classes to

coexist with new data and allows gradual addition of new classes. Despite the promising

performance of incremental learning methods in cyberattack detection, they still face

two fundamental challenges: a) First, CIL approaches that continuously aggregate sam-

ples may lead to privacy data leakage, especially for sensitive cyberattack data. b) Ex-

isting incremental learning methods lack adequate consideration of the continuous evo-

lution of cyberattacks, making them ineffective in dealing with ever-emerging attack

variants.

One potential solution to the first challenge is federated learning (FL) [7], a concept

proposed by Google in 2016. FL trains an optimal global model by enabling local cli-

ents to train models individually and only upload model parameters to the server,

thereby effectively avoiding privacy data leakage through the non-aggregation of raw

data.

A potential solution to the second challenge is evolutionary algorithms (EAs), a class

of global optimization algorithms that mimic biological evolution mechanisms to solve

complex problems through processes such as natural selection, genetic variation, and

population iteration. Indeed, cyberattack variants essentially involve combinatorial var-

iation of features, which aligns well with the crossover and mutation mechanisms of

biological genes. As such, evolutionary algorithms provide an effective approach to

enhancing the ability of the model to detect cyberattack variants by leveraging these

evolutionary principles.

In this paper, we propose evolutionary replay-driven federated CIL for cyber-attack

detection. The main contributions of this paper are as follows:

1) To protect privacy data, we propose an evolutionary algorithm-driven feature

replay-based CIL method within a federated learning framework. This ap-

proach stores prototypical samples and evolves them through evolutionary al-

gorithms during the new task learning phase to generate old knowledge,

thereby mitigating the model’s catastrophic forgetting issue.

1 https://openai.com/chatgpt/
2 https://www.deepseek.com/

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2) To enhance the model’s capability to detect attack variants, we develop an at-

tack variant generation method driven by evolutionary algorithms. By leverag-

ing gene evolution strategies and CAEs from prototypical samples, this method

generates attack variants to improve detection performance on evolving

cyberattack patterns.

3) We construct a cyber-attack detection model based on deep residual networks

and conduct extensive experiments on public datasets. The results demonstrate

that our proposed method achieves an accuracy of 90.16% in Task 2 and

85.90% in Task 3. Notably, in Task 3, it outperforms the random replay method

by 4.66%, the GAN-based replay method by 6.91%, and the VAE-based replay

method by 22.32%.

The remainder of this paper is structured as follows: Section 2 reviews the latest

research on replay-based CIL and federated CIL. Section 3 describes in detail the pro-

posed method. Section 4 presents the experimental design and results. Finally, Section

5 concludes the paper and discusses future work.

2 Related Work

 Replay-based CIL is widely regarded as the most effective approach to addressing the

catastrophic forgetting problem in models. Meanwhile, to protect privacy data, re-

searchers have proposed federated CIL methods. For example, Mao et al. [8] introduced

a novel Hierarchical Federated Incremental Learning for Network Intrusion Detection

(HFIN) method. Chen et al. [9] proposed a federated CIL framework named Generative

Federated CIL (GenFCIL), which introduces a lightweight generator to facilitate

knowledge sharing among clients and preserve cumulative knowledge from all clients.

Dong et al. [10] developed a novel Local-Global Anti-Forgetting (LGA) model to ad-

dress catastrophic forgetting at both local and global levels. Lu et al. [11] presented

FCIDF, a new federated CIL method based on dynamic feature extractor fusion. FCIDF

integrates global knowledge into local features through personalized fusion rates, ena-

bling each client to learn a personalized incremental model. By leveraging meta-learn-

ing in each incremental learning round, FCIDF ensures that knowledge from both old

and new tasks is incorporated into personalized training. Zhang et al. [12] proposed

Cross-FCL, a cross-edge federated continuous learning framework that uses a parame-

ter-decomposition-based federated continuous learning model to allow devices to retain

previously learned knowledge while participating in new task training. Li et al. [13]

introduced Re-Fed+, a general and low-cost Federal Incremental Learning (FIL) frame-

work designed to help clients cache important samples for replay.

3 Method

In this section, we first introduce the overall framework of the proposed evolutionary

replay-driven federated CIL for cyber-attack detection. Second, we describe the selec-

tion of exemplar samples. Third, we explain the generation of replay samples, where a

genetic evolution strategy is introduced to produce variant samples with evolutionary

characteristics. Finally, we detail the complete workflow of incremental learning in the

federated learning scenario.

Fig. 1. Overall Framework

3.1 Overall Framework

The overall framework of the evolutionary replay-driven federated CIL for cyber-attack

detection is illustrated in Fig. 1. It consists of three main components: exemplar sample

selection, replay sample generation and federated learning training.

(1) Exemplar Sample Selection: Upon receiving a new task each time, the local client

saves a certain number of exemplar samples for each class of data into an exemplar

memory bank. In subsequent tasks, these exemplars are used to generate replay samples

for past tasks.

(2) Replay Sample Generation: Using the genetic evolution strategy and a CAE

model, replay samples are generated from the exemplars in the memory bank. This

process aims to alleviate catastrophic forgetting in incremental learning and helps the

model adapt to the evolutionary characteristics of cyber-attacks.

(3) Federated Learning Training: The framework primarily consists of a server and

multiple local clients. The server aims to communicate with each client, aggregate their

model parameters, train a global model, and distribute this global model to all clients

for detecting cyber-attacks across all datasets. The primary tasks of the client include

receiving data, storing exemplar samples, training the CAE and local models, interact-

ing with the server to update the local models. Upon receiving new training data, the

client evolves the stored exemplar samples from past tasks to generate variant samples,

and trains a new local model to meet the requirements of incremental learning.

We will describe these steps in detail below. It is important to note that this paper as-

sumes both clients and the server are honest. Specifically, clients strictly follow the

configured protocol for local model training, accurately upload their model parameters,

The server also adheres to honest behavior. It correctly receives model updates from all

clients, properly aggregates the global model.

3.2 Exemplar Sample Selection

Exemplar samples refer to those that are most representative of a specific category and

can capture the core characteristics of that category. In incremental learning, selecting

representative exemplar samples is critical for retaining knowledge from previous

tasks. To identify these exemplar samples, we propose a selection method based on

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

distance and density weighting, and store them in an exemplar memory bank for sub-

sequent replay sample generation.

(1) Cluster Partitioning. For samples of each category, we use the K-means clustering

algorithm to divide them into three clusters. The cluster centers, obtained by calculating

the geometric mean of samples within each cluster, represent the feature distribution

centers of the clusters.

(2) Distance and Density Calculation. For samples in each cluster, we first compute

the Euclidean distance between each sample and the cluster center. The Euclidean dis-

tance measures the similarity between a sample and the cluster center, with samples

closer to the center better representing the cluster’s core features. Additionally, we in-

troduce sample density as a weighting factor, as higher-density samples are more likely

to reside in the cluster’s core region. Combining these two factors, we calculate a

weighted score for each sample as follows:

 𝑆𝑐𝑜𝑟𝑒(𝑥) = 𝛼 ∗
1

𝑑(𝑥,𝐶)
+ 𝛽 ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) (1)

where, 𝑑(𝑥, 𝐶) denotes the Euclidean distance between sample x and cluster cen-

ter 𝐶, 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) represents the density of sample 𝑥, and 𝛼 , 𝛽 are hyperparameters

that balance the weights of distance and density in the selection of exemplar samples.

It is important to note that both distance and density values are normalized prior to

computing the weighted score to eliminate scale differences.

(3) Selection. Exemplar samples are selected by integrating distance and density met-

rics. We rank the samples within each cluster based on their weighted scores and select

the top-k samples. These selected samples, covering both cluster centers and high-den-

sity core regions, maximize the retention of core knowledge from previous tasks and

provide a high-quality data foundation for subsequent replay sample generation.

3.3 Replay Sample Generation

To better capture the evolutionary characteristics of cyber-attacks and enhance the gen-

eralization ability of the model, we propose a genetic evolution strategy-based method

for generating replay samples. The genetic evolution strategy simulates biological evo-

lutionary processes, drawing inspiration from natural selection and genetic principles.

Through this strategy, we simulate the evolutionary process of cyber-attacks to produce

diverse attack variants, thereby improving the model’s ability to recognize evolving

attack types.

Next, we detail the replay sample generation process, which comprises two main

steps: generating variant samples via evolution strategies, and selecting high-quality

variants.

(1) Evolution Strategies. We employ three genetic evolution strategies to generate

variant samples: Single Gene Mutation (SGM), Multi-point Crossover (MPC), and Dif-

ferential Evolution (DE).

a. SGM. Single Gene Mutation involves randomly selecting one feature value in a sam-

ple for mutation. For the mutated gene, a new random value is generated based on the

allowable range of the original feature. Specifically, a position j is randomly selected

from the feature vector of the current sample, and its value is mutated within the pre-

defined range associated with that feature. The implementation process is described in

detail in Algorithm 1.
Algorithm 1 SGM

Input:Sample S, Previous labels Y, Feature dimension D

Output: 𝑆𝐺𝑀𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

1：Initialize:

2： ℛ ← Initial Range Dictionary (6, D)

3：if y = 0 then

4： ℛ[0][0] ← (𝑚𝑖𝑛0,0, 𝑚𝑎𝑥0,0)；ℛ[0][1] ← (𝑚𝑖𝑛0,1, 𝑚𝑎𝑥0,1)…

5：else if y = 1 then

6： ℛ[1][0] ← (𝑚𝑖𝑛1,0, 𝑚𝑎𝑥1,0)；ℛ[1][1] ← (𝑚𝑖𝑛1,1, 𝑚𝑎𝑥1,1)…

7：end if

8：for i ← 1 to |S| do

9： f ∼ U(0, D-1)

10： y ← Y[i]

11： (min, max) ← ℛ[y][f]

12：δ ← min + (max-min)×U(0,1)

13： 𝑆𝐺𝑀𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔[i,f] ← δ

14：end for

15：return 𝑆𝐺𝑀𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

b. MPC. Multi-point Crossover refers to generating new samples by exchanging featur

es between two samples of different classes, i.e., swapping gene segments within the f

eature space. Specif ical ly , two samples 𝑚𝑎𝑙𝑎
𝑝𝑎𝑟𝑒𝑛𝑡

= [𝑔𝑎
1 , 𝑔𝑎

2, . . . , , 𝑔𝑎
𝑀] and

 𝑚𝑎𝑙𝑏
𝑝𝑎𝑟𝑒𝑛𝑡

= [𝑔𝑏
1, 𝑔𝑏

2, . . . , , 𝑔𝑏
𝑀] are randomly selected, and a crossover point 𝒈𝒂

𝒊 is ran

domly chosen. The gene segments before the crossover point in 𝑚𝑎𝑙𝑎
𝑝𝑎𝑟𝑒𝑛𝑡

 are combin

ed with the gene segments after the crossover point in 𝑚𝑎𝑙𝑏
𝑝𝑎𝑟𝑒𝑛𝑡

, and vice versa. This

 results in two new variant samples 𝑚𝑎𝑙𝑎
𝑐ℎ𝑖𝑙𝑑 and 𝑚𝑎𝑙𝑏

𝑐ℎ𝑖𝑙𝑑 , which inherit partial geneti

c characteristics from the parent samples. The implementation process is described in

detail in Algorithm 2.
Algorithm 2 MPC

Input: GSGZ, Population size N, Crossover points 𝐶𝑛

Output: 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

1：Initialize:

2： 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← ∅；ℒ ← Unique(GSGZ.labels)

3：for k = 1 to N do

4： Randomly select 𝐿𝑖, 𝐿𝑗 ∈ L where i≠j

5： 𝒢𝐿𝑖,𝒢𝐿𝑗← RandomSelection(GSGZ, 𝐿𝑖, 𝐿𝑗)

6： CP ← Sort(RandomSample(1, |𝒢| − 1, 𝐶𝑛))；𝑪𝑷 ← [0] ∪ 𝑪𝑷 ∪ [|𝒢|]

7： for m = 1 to |CP| − 1 do

8： if m is odd then

9： 𝑀𝑃𝐶𝑖[𝐂𝐏m: 𝐂𝐏m+1] ← 𝒢𝐿𝑗[𝐂𝐏m: 𝐂𝐏m+1]

10： 𝑀𝑃𝐶𝑗[𝐂𝐏m: 𝐂𝐏m+1] ← 𝒢𝐿𝑖[𝐂𝐏m: 𝐂𝐏m+1]

11： else

12： 𝑀𝑃𝐶𝑖[𝐂𝐏m: 𝐂𝐏m+1] ← 𝒢𝐿𝑖[𝐂𝐏m: 𝐂𝐏m+1]

13： 𝑀𝑃𝐶𝑗[𝐂𝐏m: 𝐂𝐏m+1] ← 𝒢𝐿𝑗[𝐂𝐏m: 𝐂𝐏m+1]

14： end if

15： end for

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

16： 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔∪{𝑀𝑃𝐶𝑖 ,𝑀𝑃𝐶𝑗}

17：end for

18：return 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

c. DE. Differential Evolution is a population-based evolutionary algorithm that involv

es iterative operations such as mutation, crossover, and selection on a randomly initial

ized population. Specifically, two parent samples 𝑚𝑎𝑙𝑐
𝑝𝑎𝑟𝑒𝑛𝑡

= [𝑔𝑐
1, 𝑔𝑐

2, . . . , , 𝑔𝑐
𝑀]and

𝑚𝑎𝑙𝑑
𝑝𝑎𝑟𝑒𝑛𝑡

= [𝑔𝑑
1 , 𝑔𝑑

2 , . . . , , 𝑔𝑑
𝑀] are first randomly selected from the population. These

parent samples undergo random mutation and crossover operations to generate new va

riant samples 𝑚𝑎𝑙𝑐
𝑐ℎ𝑖𝑙𝑑 and 𝑚𝑎𝑙𝑑

𝑐ℎ𝑖𝑙𝑑 . The implementation process is described in detai

l in Algorithm 3.

(2) Sample Selection. After applying the evolution strategies, a large number of cyber-

attack variant samples are generated. However, some samples may not conform to the

category requirements after evolution. To minimize the interference of such samples

during local model training, it is necessary to perform a quality-based selection of the

generated samples. Upon receiving new task data, we train a CAE for each class to

learn and memorize the feature distribution of that class. After generating samples via

genetic evolution strategies, the reconstruction error of the CAE is utilized to evaluate

whether the newly generated samples align with the characteristics of the original class.

Samples meeting the criteria are preserved. The detailed implementation process is de-

scribed in Algorithm 4.

Algorithm 3 DE

Input: Population matrix𝐏 ∈ ℝN ×D,

Scale factor 𝐹 ∈ [0, 2], Crossover rate 𝐶𝑅 ∈ [0, 1]

Output: 𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

1：Initialize:

2：𝑁 𝑃, 𝐷 ← dim(𝐏)；𝐕 ← zeros(𝑁 𝑃, 𝐷)；𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← zeros(N P, D)

3：𝐟𝐨𝐫 i ← 1 to 𝑁 𝑃 𝐝𝐨

4： Randomly select {𝑟1,𝑟2,𝑟3} ; V[i, :] ← P[𝑟1, :] + F · (P[𝑟2, :] − P[𝑟3, :])

5：end for

6：for i ← 1 to N P do

7： 𝑗𝑟𝑎𝑛𝑑 ← random integer in [0, D − 1]

8： for 𝑗 ← 1 to D do

9： 𝐢𝐟 rand() < 𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑 𝐭𝐡𝐞𝐧 U [i,𝑗] ← V [i,𝑗]

10： else U [i,𝑗] ← P [i,𝑗]

11： end if

12： end for

13：𝐞𝐧𝐝 for

14：𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← clip(𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, lb, ub)

15：return 𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

3.4 Overall Workflow of Incremental Learning in Federated Scenarios

Our proposed method aims to achieve CIL in federated scenarios for cyber-attack de-

tection. In this subsection, we detail the complete workflow.

(1) Problem Definition. In the federated learning framework, there is one central serv

er S and K local clients, where each client receives T incremental tasks. In federated i

ncremental learning, each task is independent and requires R communication rounds.

The label sets of different tasks are disjoint. To mitigate catastrophic forgetting, we m

aintain an exemplar memory bank 𝑀 to store samples of old classes. It is worth menti

oning that the exemplar storage, CAE training per class, and replay sample generation

 occur only in the first communication round of each federated incremental task. Subs

equent rounds focus solely on local model training.

(2) Local Model Training at Task 𝑇.

a. Local Model Architecture. In federated CIL, the model must handle dynamically

shifting task data. However, deeper networks are at risk of suffering from gradient van-

ishing and degraded feature propagation. Additionally, varying feature distributions

across tasks challenge traditional convolutional networks in dynamically adjusting

channel-wise importance. To address these issues, we design a dual-attention residual

network comprising CNN backbone, three residual blocks and dual-attention mecha-

nisms (SE Attention and Spatial Attention).

Algorithm 4 Replay Sample Generation

Input: Samples 𝑆𝐺𝑀𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔,CAE models M∈{ℓ: model},Target counts Q∈ℕ, Thresholds

T∈{ℓ: τ },Labels L

Output: Replay samples 𝐺

1：Initialize: G ← ∅, C ← {ℓ : 0 | ∀ℓ ∈ L};

2：while ∃ℓ ∈ L where C[ℓ] < Q do

3： Generate candidates O ← stack(𝑆𝐺𝑀𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑀𝑃𝐶𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝐷𝐸𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) ;

4： foreach sample o ∈ O do

5： x ← tensor(𝑜𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠); ℒ ← {};

6： foreach ℓ ∈ L do

7： 𝑥 ← M [ℓ](x);

8： ℒ[ℓ] ← ∥ 𝑥 − x ∥2;

9： (ℓ𝑚𝑖𝑛, τ𝑚𝑖𝑛) ← (ℒ);

10： if τ𝑚𝑖𝑛 < T [ℓ𝑚𝑖𝑛] and C[ℓ𝑚𝑖𝑛] < Q then

11： G ← G ∪ {(𝑜𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, ℓ𝑚𝑖𝑛)};

12： C[ℓ𝑚𝑖𝑛] ← C[ℓ𝑚𝑖𝑛] + 1;

13：return G

Initial Convolution Module. This module consists of convolutional layers, batch nor-

malization, and 𝑅𝑒𝐿𝑈 activation. It performs preliminary feature extraction and dimen-

sional transformation, mapping heterogeneous data into a unified feature space for

downstream processing.

Residual Blocks. Residual connections mitigate feature information loss and gradient

vanishing, enabling efficient feature propagation. By directly passing original features

to deeper layers, the network retains critical information while supporting depth scal-

ing. The block structure is defined as:

 𝐻(𝑥) = 𝐶𝑜𝑛𝑣1𝐷(𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣1𝐷(𝑋𝑖𝑛)))) (2)

 𝑋𝑠𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐻(𝑥) + 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡(𝑋𝑖𝑛))𝜖ℝ𝐵×𝐶𝑜𝑢𝑡×𝐿/𝑠𝑡𝑟𝑖𝑑𝑒 (3)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝑆ℎ𝑜𝑟𝑡𝑐𝑢𝑡(𝑥) = {
𝑥,

𝐶𝑜𝑛𝑣1𝐷(𝑥),
𝑖𝑓 𝐶𝑖𝑛=𝑐𝑜𝑢𝑡 𝑎𝑛𝑑 𝑠𝑡𝑟𝑖𝑑𝑒=1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4)

Attention Mechanisms. We propose the use of SE Attention and Spatial Attention to

enhance feature representations from the channel and spatial dimensions, respectively,

thereby improving the model’s capability to detect cyber-attack variants. Specifically,

SE Attention adaptively learns the importance weights of channels through global av-

erage pooling and fully connected layers, employing a squeeze-and-excitation mecha-

nism to enable the model to focus on critical features. Spatial Attention learns spatial

position weights by concatenating average-pooled and max-pooled features, thereby

enhancing the model’s representation of significant spatial regions. The specific de-

scriptions of the modules are as follows:

 𝑆𝑞𝑢𝑒𝑒𝑧𝑒: 𝑧𝑐 =
1

𝐿
∑ 𝑋𝑐,𝑙

𝐿
𝑙=1 (5)

 𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛: 𝑠 = 𝜎(𝑊2  𝑅𝑒𝐿𝑈(𝑊1  𝑧)) (𝑊1𝜖ℝ𝐶/𝑟×𝐶 , 𝑊2𝜖ℝ𝐶×𝐶/𝑟) (6)

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 𝜎(𝐶𝑜𝑛𝑣1𝐷(𝐶𝑜𝑛𝑐𝑎𝑡))𝜖ℝ𝐵×1×𝐿 (7)

b. Local Model Training. Each client operates independently when training its local

model. Upon the arrival of Task 𝑇, the client receives new training data, categorizes it

by class labels y, and trains a CAE for each class to filter replay samples. Additionally,

the client selects exemplar samples from the current task and stores them in the exem-

plar memory bank for subsequent replay sample generation. Finally, the local model is

trained using the architecture described earlier. The detailed implementation process is

outlined in Algorithm 5.
Algorithm 5 Local Model Training

Input: Client ID id, Training data D, Global epoch g

Output: Updated local model parameters 𝜔𝑡

1：Initialize:

2：Exemplar samples bank ℳ← ∅; Extract features X, labels Y from D

4：if current Task T = 0 then

5： if g = 0 then

6： Train CAE; Select exemplar samples and store to ℳ𝑖𝑑

8： 𝜔𝑡 ← Train_model(X, Y)

9： else

10： 𝜔𝑡 ← Train_model(X, Y)

11： end if

12： if g = 0 then

13： Select exemplar samples and store to ℳ𝑖𝑑

14： Gene Evolution: SGM, MPC, DE

18： 𝑋𝑟𝑒𝑝𝑙𝑎𝑦←𝐷𝑘
𝑆𝐺𝑀 ∪ 𝐷𝑘

𝑀𝑃𝐶 ∪ 𝐷𝑘
𝐷𝐸

19： 𝑋′𝑟𝑒𝑝𝑙𝑎𝑦←𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑒𝑝𝑙𝑎𝑦_𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑋𝑟𝑒𝑝𝑙𝑎𝑦)

20： 𝑋′←𝑋 ∪ 𝑋′𝑟𝑒𝑝𝑙𝑎𝑦,𝑌′←𝑌 ∪ 𝑌′𝑟𝑒𝑝𝑙𝑎𝑦

21： 𝜔𝑡 ← Train_model(𝑋′, 𝑌′)

22： else

23： ωt ← Train_model(X′, Y′)

24： end if

25：end if

26：return 𝜔𝑡

(3) Federated Training.

a. Key Generation.

 In federated learning, to protect the privacy of client data, homomorphic encryption

is typically used to secure model parameters, allowing the server to aggregate parame-

ters in encrypted form. Since we assume both the server and clients are trustworthy, the

server generates a key pair. The key generation process is as follows: let p and q be two

large prime numbers satisfying 𝑔𝑐𝑑(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1, 𝑛 = 𝑝𝑞. The public key

is 𝒫𝒦 = (𝑛, 𝑔), and the private key is 𝒮𝒦 = (𝜆, 𝜇),where 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1), 𝜇 =
(𝐿(𝑔𝜆 𝑚𝑜𝑑 𝑛2))−1 𝑚𝑜𝑑 𝑛. At the start of federated training, the server distributes the

public key to all clients, while the private key is retained solely by the server.

 b. Client Parameter Encryption.

 After completing local model training, the client encrypts its local model parame-

ters. Let 𝜔𝑘
𝑟 denote the local parameters of client k, and r be a random number satisfy-

ing 𝑟 < 𝑁. The client encrypts 𝜔𝑘
𝑟using the public key, generating the ciphertext, which

is then uploaded to the server. The encryption formula is:

 𝜔𝑘
𝑟̃ = 𝐸𝒫𝒦(𝜔𝑘

𝑟) = 𝑔𝜔𝑘
𝑟

𝑟𝑁 𝑚𝑜𝑑 𝑁2 (8)

c. Sever Parameter Aggregation.

 The server collects and aggregates the parameters uploaded by all clients. Under

encryption, the global model parameters are computed and distributed to all clients. The

aggregation formula is:

 𝑆 = ∏ =𝐾
𝑖=1 𝐸𝒫𝒦(𝜔𝑘

𝑟̃) = 𝑔𝜔𝑘
𝑟̃

𝑟1
𝑁 ⋅ 𝑔𝜔𝑘

𝑟̃
𝑟2

𝑁 ⋅. . .⋅ 𝑔𝜔𝑘
𝑟̃

𝑟𝑘
𝑁 𝑚𝑜𝑑 𝑁2

 = 𝑔∑ 𝜔𝑘
𝑟̃𝐾

𝑖=1 ⋅ ∏ 𝑟𝑖
𝑁 𝑚𝑜𝑑 𝑁2 𝐾

𝑖=1 (9)

 After completing the aggregation, the server distributes the global model parame-

ters to all clients, concluding one round of federated communication.

d. Client Parameter Update.

 Upon receiving the encrypted global parameters from the server, each client de-

crypts them and updates its local model using the formula:

 𝜔𝑠𝑢𝑚
𝑟 = 𝐿(𝜔𝑎𝑣𝑔

𝑟̃ 𝑚𝑜𝑑 𝑁2) ∙ 𝜇 𝑚𝑜𝑑 𝑁

 =
𝐿(𝑔∑ 𝜔𝑎𝑣𝑔

𝑟̃𝐾
𝑖=1 ⋅ ∏ 𝑟𝑖

𝑁 𝑚𝑜𝑑 𝑁2) 𝐾
𝑖=1

𝐿(𝑔𝜆 𝑚𝑜𝑑 𝑁2)
 𝑚𝑜𝑑 𝑁

 = ∑ 𝜔𝑎𝑣𝑔
𝑟̃ 𝑚𝑜𝑑 𝑁𝐾

𝑖=1 (10)

 This marks the completion of one round of federated training interaction between

the clients and the server. Each task undergoes R rounds of this process, ultimately

yielding an optimal global cyber-attack detection model.

(4) Local Model Training at Task 𝑇 + 𝟏. To mitigate catastrophic forgetting when

the next task arrives, we generate replay samples using genetic evolution strategies.

First, we retrieve the exemplar samples stored in the memory bank from previous tasks

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

and load the pre-trained CAEs for each historical class. Then, through genetic evolution

strategies, a large number of replay samples are generated. These samples are filtered

using the CAEs of each class to retain those that conform to the original class charac-

teristics. Subsequently, the generated replay samples are combined with the newly re-

ceived task data to train the local model. Finally, we preserve a certain number of ex-

emplar samples from the current task for each class and update the exemplar memory

bank. After completing the local model training, the federated training process de-

scribed in step (3) is executed to update the global model.

4 Experiment

In this section, we detail the datasets, evaluation metrics, and experimental settings re-

quired for the experiments. We have evaluated the performance of our proposed method

through extensive experiments. First, experiments were conducted on different datasets

to validate the effectiveness of cyberattack detection in federated class-incremental sce-

narios. Next, we compared the experimental results under different replay methods,

contrasting our proposed evolutionary strategy with random replay, GAN-based replay,

and VAE-based replay.

4.1 Datasets

We evaluate our proposed method using the UNSW-NB15 [14] dataset and NLS-KDD

[15] dataset. The UNSW-NB15 dataset is a public dataset specifically designed for re-

search and evaluation of network intrusion detection systems. It covers common attack

types in modern network environments, including 9 classes of attack traffic in addition

to normal traffic. To mitigate the interference of class imbalance issues in experiments,

we select the 6 most populous classes and divide them into 3 tasks with 2 classes per

task. Finally, we partition the dataset into training and test sets at a 4:1 ratio. Specific

setting results for the UNSW-NB15 dataset are shown in Table 1.

Table 1. Detailed information about the UNSW-NB15 dataset and its settings

Task Type Training Set Testing Set

Task 1
Normal 74,400 18,600

Generic 47,096 11,774

Task 2
Exploits 35,620 8,905

Fuzzers 19,397 4,849

Task 3
DoS 13,081 3,270

Reconnaissance 11,190 2,797

The NLS - KDD dataset is a classic dataset in the field of network intrusion detection.

Similarly, we selected the 6 most populous classes, and divided them into 3 tasks with

2 classes per task. Due to the highly imbalanced class distribution in the NLS-KDD

dataset, we applied downsampling: for the Normal and Neptune classes, we randomly

sampled 1/10 of the data, while using all data for the remaining classes. The configu-

ration results for the NLS-KDD dataset are presented in Table 2.

For each data set, we divided it into three CIL. In the federated learning framework,

we initialized three local clients and set each task to train for 10 global rounds. In each

global round, the local model is trained for 20 epochs using an Adam optimizer with a

learning rate of 0.001 When training the class-specific CAE for each category, we set

the number of iterations to 20. In the first global round of each incremental task, we

store 500 samples in the prototypical sample library and generate replay samples for

old tasks through the gene evolution strategy, with the number of generated replay sam-

ples matching the size of the largest class in the current task.

Table 2. Detailed information about the NLS-KDD dataset and its settings

Task Type Training Set Testing Set

Task 1
Normal 6,734 1,347

Neptune 4,121 824

Task 2
Satan 3,633 727

Ipsweep 3,599 141

Task 3
Portsweep 2,931 156

Sumrf 2,646 627

Since our research scenario assumes that data across local clients are independently

and identically distributed (i.i.d.), we evenly distribute the data of each task among the

clients to ensure that each client receives different data, thereby realizing data hetero-

geneity across local clients. During testing, however, we use a test set containing all

classes to evaluate the globally aggregated model after federated aggregation, to check

whether the model meets the requirements of incremental learning.

4.2 Experimental environment and evaluation criteria

Our experimental environment is summarized as follows: The processor is a 12th Gen

Intel(R) Core(TM) i7-12700K, and the GPU is an NVIDIA3 GeForce RTX 3090 Ti

with 24GB RAM. The programming language used is Python4 3.9 for Windows 11, the

neural network framework is PyTorch5 version 2.5.0, and the federated learning frame-

work is also built on PyTorch.

We primarily use the following five metrics to evaluate our proposed method: Ac-

curacy, Precision, Recall, False Positive Rate (FPR), and F1 (the weighted average of

precision and recall). These metrics comprehensively assess the model’s performance

on the test set from different perspectives

3 https://www.nvidia.cn/
4 https://www.python.org/
5 https://www.pytorch.org/

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

4.3 Experimental result

(1) Experimental Results on Different Datasets

Table 3 and Table 4 present the performance of our method on the UNSW and NLS-

KDD datasets. The experimental results show that: First, during Task 1, without gen-

erating replay samples and relying solely on local models and federated learning for

global model training, the model achieves an accuracy exceeding 99% on both datasets.

As Task 2 proceeds, the model begins to forget previous tasks, leading to a decrease in

accuracy. However, our approach of generating replay samples through the gene evo-

lution strategy ensures a high detection accuracy at the end of Task 2. For the UNSW

dataset, the detection accuracy is 88.78%, and the F1 score is 0.8944. For the NLS-

KDD dataset, the accuracy is 90.16%, with an F1 score of 0.9058. By Task 3, the

model’s forgetting intensifies, causing a further drop in accuracy. Nonetheless, our

method effectively mitigates catastrophic forgetting, achieving F1 scores of 0.7655 and

0.8563 for the UNSW and NLS-KDD datasets, respectively.

Table 3. Experimental results on the UNSW dataset

Task R Accuracy↑ Precision(%)↑ Recall(%)↑ F1↑ FPR↓

1

2 0.9980 99.80 99.79 0.9979 0.0021

4 0.9975 99.74 99.74 0.9974 0.0026

6 0.9988 99.90 99.85 0.9988 0.0015

8 0.9950 99.41 99.54 0.9947 0.0046

10 0.9950 99.41 99.54 0.9947 0.0046

2

2 0.8770 87.03 92.87 0.8857 0.0386

4 0.8873 87.88 93.46 0.8940 0.0350

6 0.8953 88.34 93.86 0.8994 0.0322

8 0.8878 87.88 93.51 0.8944 0.0349

10 0.8878 87.88 93.51 0.8944 0.0349

3

2 0.8047 74.83 85.86 0.7638 0.0368

4 0.8041 74.65 85.56 0.7628 0.0371

6 0.7893 73.67 84.25 0.7473 0.0399

8 0.8084 74.92 85.94 0.7655 0.0361

10 0.8084 74.92 85.94 0.7655 0.0361

(2) Compare the experimental results under different replay methods

On the NLS-KDD dataset, we compared the proposed method with three traditional

generative replay approaches: random replay, GAN-based generative replay, and VAE-

based generative replay.

Random replay [16] is the most basic strategy, which involves directly storing a small

number of real samples from old tasks and randomly selecting the required quantity to

mix with the current task’s data during new task training, thereby helping the model

retain memory of old knowledge. However, its drawbacks include requiring sufficient

storage space and potential issues with insufficient samples from old tasks.

GAN-based generative replay [17] involves designing a Conditional Generative

Adversarial Network (CGAN) to generate replay samples, which primarily consists of

a generator and a discriminator. The generator takes as input a noise vector with

𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑚 = 130 and the one-hot encoding of class labels. During adversarial train-

ing, the discriminator uses binary cross-entropy loss (BCELoss) with label smoothing,

and the Adam optimizer with hyperparameters 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = 0.0002, 𝛽1 = 0.5,

and 𝛽2 = 0.99. In the generation phase, the model generates a specified number of

samples for each old class, ultimately outputting the feature data and their correspond-

ing class labels.

Table 4. Experimental results on the NLS-KDD dataset

Task R Accuracy↑ Precision(%)↑ Recall(%)↑ F1↑ FPR↓

1

2 0.9926 99.22 99.22 0.9922 0.0078

4 0.9926 99.24 99.19 0.9922 0.0081

6 0.9945 99.39 99.44 0.9941 0.0056

8 0.9940 99.35 99.38 0.9936 0.0062

10 0.9940 99.35 99.38 0.9936 0.0062

2

2 0.8861 84.61 93.16 0.8868 0.0366

4 0.8736 84.01 92.41 0.8801 0.0409

6 0.8819 85.31 92.94 0.8896 0.0382

8 0.8967 86.58 93.68 0.8999 0.0335

10 0.9016 87.42 93.99 0.9058 0.0318

3

2 0.8619 81.82 91.99 0.8661 0.0273

4 0.8634 82.21 92.25 0.8694 0.0272

6 0.8561 80.14 91.52 0.8545 0.0285

8 0.8590 80.35 91.66 0.8563 0.0278

10 0.8590 80.35 91.66 0.8563 0.0278

VAE-based generative replay [18] involves designing a Variational Autoencoder

(VAE) model to perform data distribution modeling and generate samples from old

tasks through latent space sampling. This model mainly consists of an encoder and a

decoder. During the training phase, we use an Adam optimizer with a 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
 0.0001 and a 𝑤𝑒𝑖𝑔ℎ𝑡 𝑑𝑒𝑐𝑎𝑦 = 1𝑒 − 5. The loss function is defined as the weighted

sum of the reconstruction loss and the KL divergence: 𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸(𝑟𝑒𝑐𝑜𝑛𝑥 , 𝑥) +
0.5 × 𝐾𝐿(𝑚𝑒𝑎𝑛, 𝑙𝑜𝑔𝑣𝑎𝑟), In the generation phase, we randomly sample from the latent

distributions corresponding to each old class and decode them to generate replay sam-

ples. This method explicitly models the probabilistic characteristics of the data distri-

bution and combines the conditional generation mechanism to ensure that the generated

samples are highly consistent with the samples of the old classes in both the feature

space and the class distribution.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

The experimental results are shown in Table 5. The results indicate that the method

we proposed consistently maintains the highest accuracy. Specifically, in Task 3, our

proposed method outperforms the random replay method by 4.66%, the GAN-based

replay method by 6.91%, and the VAE-based replay method by 22.32%. This difference

demonstrates the effectiveness of the prototypical samples we retained, which can pre-

serve the spatial distribution of the old tasks. In addition, due to its unique biological

evolution mechanism, by simulating gene mutations and recombination's in the process

of natural selection, it retains the most discriminative features of the old tasks and has

a strong ability for variant evolution.

Table 5. The experimental results are compared with different generation replay methods on

the NLS-KDD dataset

T R Acc. Pre.(%) Rec.(%) F1 Acc. Pre.(%) Rec.(%) F1

 Random CGAN

1

2 0.9862 98.87 98.18 0.9852 0.9724 97.77 96.43 0.9703

4 0.9940 99.35 99.38 0.9936 0.9931 99.28 99.25 0.9927

6 0.9945 99.44 99.39 0.9941 0.9936 99.29 99.34 0.9932

8 0.9940 99.38 99.35 0.9936 0.9936 99.32 99.32 0.9932

10 0.9945 99.39 99.44 0.9941 0.9940 99.33 99.40 0.9936

2

2 0.9945 99.39 99.44 0.9941 0.9940 99.33 99.40 0.9936

4 0.8690 83.09 87.58 0.8527 0.8473 85.97 90.95 0.8635

6 0.8486 85.96 86.65 0.8630 0.7792 82.41 87.10 0.8067

8 0.8628 86.92 87.79 0.8735 0.7838 83.90 87.41 0.8184

10 0.8602 86.51 87.45 0.8698 0.7897 84.22 87.72 0.8235

3

2 0.8644 87.01 87.92 0.8746 0.7828 83.63 87.32 0.8160

4 0.8644 87.01 87.92 0.8746 0.7828 8363 87.32 0.8160

6 0.8048 79.93 86.06 0.8288 0.8014 80.50 89.52 0.8154

8 0.8140 79.92 87.31 0.8345 0.7988 80.19 89.56 0.8089

10 0.8187 80.64 87.76 0.8405 0.7729 77.86 88.25 0.7778

 VAE Our Method

1

2 0.9562 96.67 94.26 0.9524 0.9802 98.36 97.39 0.9787

4 0.9931 99.28 99.25 0.9927 0.9926 99.22 99.22 0.9922

6 0.9931 99.28 99.25 0.9927 0.9926 99.24 99.19 0.9922

8 0.9936 99.32 99.32 0.9932 0.9945 99.39 99.44 0.9941

10 0.9926 99.24 99.19 0.9922 0.9940 99.35 99.38 0.9936

2

2 0.9926 99.24 99.19 0.9922 0.9940 99.35 99.38 0.9936

4 0.8006 80.52 88.27 0.8060 0.8776 81.05 92.58 0.8643

6 0.7723 81.05 86.69 0.7943 0.8861 84.61 93.16 0.8868

8 0.7845 82.81 87.33 0.8124 0.8736 84.01 92.41 0.8801

10 0.7805 81.54 87.13 0.8021 0.8819 85.31 92.94 0.8896

3

2 0.7887 82.17 87.59 0.8105 0.8967 86.58 93.68 0.8999

4 0.7887 82.17 87.59 0.8105 0.9016 87.42 93.99 0.9058

6 0.7745 78.02 87.17 0.7857 0.8587 80.12 92.11 0.8570

8 0.5667 72.50 74.05 0.5969 0.8619 81.82 91.99 0.8661

10 0.5633 72.43 73.56 0.5916 0.8634 82.21 9225 0.8694

It is worth noting that the False Positive Rate (FPR) of the gene evolution method

remains at the lowest level in all tasks, indicating that the replay samples it generates

can accurately maintain the boundary characteristics between normal behavior and net-

work attacks. This consistent and stable performance shows that the replay method

based on the evolutionary strategy can effectively alleviate the problem of catastrophic

forgetting of the model in incremental learning.

5 Conclusion

To mitigate the issues of catastrophic forgetting in models and the leakage of private

data, we propose evolutionary replay-driven federated class-incremental learning for

cyber-attack detection. The experimental results show that in the incremental tasks on

different datasets, the F1 scores of our proposed method reach 0.8944, 0.7655, 0.9058,

and 0.8563 respectively. Compared with the random replay, CGAN, and VAE methods,

in Task 3, our method outperforms the random replay method by 4.66%, the GAN-

based replay method by 6.91%, and the VAE-based replay method by 22.32%. Alt-

hough we have achieved the detection of cyber-attack variants in the federated class-

incremental scenario, there are still the following limitations and drawbacks. For ex-

ample: (1) In the federated process, we assume that both the clients and the server are

honest. However, in practical applications, the clients and the server may be subject to

malicious attacks and exhibit dishonest behaviors. (2) When dividing the task data for

each client, we assume by default that the data of each client is independently and iden-

tically distributed. Therefore, our future research directions will focus on the scenarios

of federated learning poisoning and non-independently and identically distributed client

data.

Acknowledgement. This work was supported in part by the National Natural Science

Foundation of China (No. U24A20239, No. 62032002, No. 62402300, No. 62366052);

in part by the Sichuan Provincial Science and Technology Department regional inno-

vation cooperation key project (No. 2025YFHZ0265); in part by the Youth Science

Foundation of Sichuan (No. 2025ZNSFSC1474); in part by the Sichuan Province Sci-

ence and Technology Innovation Seedling Project (No. MZGC20240056)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

References

1. Check Point Software.https://www.globenewswire.com/news-release/2025/01/14/3009378

/0/en/Check-Point-Software-s-2025-Security-Report-Finds-Alarming-44-Increase-in-Cybe

r-Attacks-Amid-Maturing-Cyber-Threat-Ecosystem.html.Accessed Jan 2025.

2. Chen, H., Wang, Y., Hu, Q.: Multi-Granularity Regularized Re-Balancing for Class Incre-

mental Learning. IEEE Trans. Knowl. Data Eng. 35(7), 7263-7277(2023)

3. Yang, Y., Sun, Z., Zhu, H., Fu, Y., Zhou, Y., Xiong, H., Yang, J.: Learning Adaptive Em-

bedding Considering Incremental Class. IEEE Trans. Knowl. Data Eng. 35(3), 2736-2749

(2023)

4. Mehrnoosh, M., Mohammad, R., Aram, G.: History Repeats: Overcoming Catastrophic For-

getting for Event-Centric Temporal Knowledge Graph Completion. In: Proceedings of the

Association for Computational Linguistics (ACL), Toronto, Canada, pp. 7740-7755(2023)

5. Dusan, V., Ondrej, B.: Unsupervised Pretraining for Neural Machine Translation Using

Elastic Weight Consolidation. In: 2019 57th Association for Computational Linguistics

(ACL), Florence, Italy, pp. 130–135(2019)

6. Sylvestre, A. R., Alexander, K., Georg, S. Christoph, H. L.: Icarl: Incremental Classifier

and Representation Learning. In: Proceeding of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Hawaii, USA, pp. 5533-5542(2017)

7. H. Brendan, M., Eider, M., Daniel, R., Seth, H., Blaise, A. Y. A.: Communication-efficient

learning of deep networks from decentralized data. In: Proceeding the 20th International

Conference on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282(2017)

8. Mao, J., Wei, Z., Li, B., Zhang, R., Song, L.: Toward Ever-Evolution Network Threats: A

Hierarchical Federated Class-Incremental Learning Approach for Network Intrusion Detec-

tion in IIoT. IEEE Internet Things J., 11(18), 29864-29877(2024)

9. Chen, Y., Alysa, Z. T., Feng, S., Yu, H., Deng, T., Zhao, L.: General Federated Class-Incre-

mental Learning With Lightweight Generative Replay. IEEE Internet Things J., 11(20),

33927-33939(2024)

10. Dong, J., Li, H., Cong, Y., Sun, G., Zhang, Y., Luc, V. G.: No One Left Behind: Real-World

Federated Class-Incremental Learning. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI),

46(4), 2054-2070(2024)

11. Lu, Y., Yang, L., Chen, H. R., Cao, J., Lin, W., Long, S.: Federated Class-Incremental

Learning With Dynamic Feature Extractor Fusion. IEEE Trans. Mob. Comput., 23(12),

12969-12982(2024)

12. Zhang, Z., Guo, B., Sun, W., Liu, Y., Yu, Z., Cross-FCL: Toward a Cross-Edge Federated

Continual Learning Framework in Mobile Edge Computing Systems, IEEE Trans. Mob.

Comput., 23(1), 313-326(2024)

13. Li, Y., Wang, H., Qi, Y., Liu, W., Li, R.: Re-Fed+: A Better Replay Strategy for Federated

Incremental Learning, IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), (Early Access)

14. UNSW-NB15 Dataset: https://research.unsw.edu.au/projects/unsw-nb15-dataset

15. NSL-KDD Dataset: https://www.unb.ca/cic/datasets/nsl.html

16. Ahmet, Y., Ozlem D. I.: Class-Incremental Continual Learning for Human Activity Recog-

nition with Motion Sensors. In: Proceeding of the 32nd Signal Processing and Communica-

tions Applications Conference (SIU), Mersin, Turkiye, pp.1-4(2024)

17. Aishwarya, A., B., Biplab B, Fabio, C., Subhasis, C.: Semantics-Driven Generative Replay

for Few-Shot Class Incremental Learning. In: Proceeding of the 30th ACM International

Conference on Multimedia (ACM’MM), pp.5246-5254(2022)

https://www.globenewswire.com/news-release/2025/01/14/3009378/0/en/Check-Point-Software-s-2025-Security-Report-Finds-Alarming-44-Increase-in-Cyber-Attacks-Amid-Maturing-Cyber-Threat-Ecosystem.html
https://www.globenewswire.com/news-release/2025/01/14/3009378/0/en/Check-Point-Software-s-2025-Security-Report-Finds-Alarming-44-Increase-in-Cyber-Attacks-Amid-Maturing-Cyber-Threat-Ecosystem.html
https://www.globenewswire.com/news-release/2025/01/14/3009378/0/en/Check-Point-Software-s-2025-Security-Report-Finds-Alarming-44-Increase-in-Cyber-Attacks-Amid-Maturing-Cyber-Threat-Ecosystem.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/nsl.html

18. Gabriela, S., Karla, S.: Feedback-Driven Incremental Imitation Learning Using Sequential

VAE. In: 2022 IEEE International Conference on Development and Learning (ICDL), Lon-

don, United Kingdom, pp.238-243(2022)

