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Abstract. To address the issues of insufficient feature extraction in complex 

environments, missed detections of small-scale pests and diseases, and inade-

quate multi-scale feature fusion in crop pest and disease detection, this paper 

proposes an improved YOLOv8-based pest and disease identification algo-

rithm.First, to enhance feature extraction in complex scenarios, the Swin 

Transformer module was introduced into the YOLOv8 backbone network. Lev-

eraging its hierarchical structure and Shifted Window Multi-Head 

Self-Attention, the model’s ability to capture global pest and disease features 

was strengthened. Second, to mitigate missed detections of small-scale pests 

and diseases, an SE attention module was added to the Neck, enabling adaptive 

channel-wise feature weighting to enhance feature representation. Finally, the 

YOLOv8 Concat module was replaced with BiFPN, which uses a learnable bi-

directional fusion strategy to optimize cross-scale feature interactions. Experi-

mental results showed that the improved YOLOv8 model excelled in detecting 

23 crop pests and diseases, achieving 96.6% precision and 98.2% mAP50. It 

also maintained high accuracy and efficiency under challenging conditions like 

overcast or strong lighting, demonstrating strong application potential. 
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1.Introduction 

In modern agricultural production, pests and diseases pose a significant threat to crop 

yield and quality. Traditional manual detection methods are costly, inefficient, and 

highly subjective, making them unsuitable for large-scale applications. High-precision 

techniques such as spectral imaging [1] are limited by their high costs. Deep learn-

ing-based object detection algorithms offer new solutions for intelligent pest and dis-

ease detection but still face challenges, including insufficient feature extraction in 

complex environments, missed detections of small-scale pests, and inadequate mul-

ti-scale feature fusion.Deep learning detection methods are generally categorized into 

two-stage and single-stage algorithms [2]. Two-stage methods achieve higher accu-

racy but are slower, whereas single-stage methods offer slightly lower accuracy but 

faster detection speed, making single-stage methods more suitable for agricultural 

scenarios with limited computing resources and real-time requirements. This study 

adopts the YOLOv8 single-stage detection algorithm and proposes several improve-

ments. The main contributions are as follows: 

1. To address the challenge of insufficient feature extraction caused by complex 

lighting variations, weed interference, and target occlusion in pest and disease de-

tection, the Swin Transformer module is introduced into the YOLOv8 backbone 

network. This enhances the model's global feature extraction capability and im-

proves its ability to distinguish pests and diseases from complex backgrounds. 

2. To mitigate the issue of missing small-scale pests and diseases, the SE attention 

module is incorporated into the Neck part of the model. This module adaptively 

enhances key channel features, thereby improving the detection accuracy of small 

targets. 

3. To improve multi-scale feature fusion, which is often insufficient due to variations 

in pest and disease size across different growth stages and viewing angles, the 

Concat module in YOLOv8 is replaced with the BiFPN module. This enables bidi-

rectional weighted feature fusion, enhancing multi-scale detection performance and 

making the model more adaptable to the diversity of pests and diseases. 

2.Related Works 

2.1.Traditional Machine Learning Methods 
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Traditional machine learning methods primarily rely on handcrafted feature extraction 

combined with classifiers for pest and disease detection. These studies typically de-

sign features based on color, texture, and shape, utilizing classification algorithms 

such as SVM, Decision Trees, or KNN for identification [3]. 

Pusadan et al. [4] employed the HSV color feature extraction method and the KNN 

algorithm to detect pests and diseases in cocoa pods. When using the hold-out meth-

od, the best accuracy achieved was 84.44% at k=5. However, this approach suffered 

from issues such as sensitivity to image quality, imbalanced feature value distribu-

tions, and variations in object input positions.Kale and Shitole [5] integrated KNN, 

SVM, and Random Forest for crop pest and disease detection. While KNN demon-

strated good stability in handling complex data, its overall accuracy was lower than 

that of SVM, with weaker generalization capability.Chanda and Biswas [6] utilized 

K-means clustering and the Particle Swarm Optimization (PSO) algorithm in combi-

nation with a Backpropagation Neural Network (BPNN) for disease detection. Alt-

hough their method achieved an accuracy of 96.2% in certain pest and disease identi-

fication tasks, it incurred high computational costs and struggled with 

high-dimensional data processing. 

Traditional machine learning is limited by manually designed features, struggling 

with complex pest morphology, background interference, and multi-scale targets. Its 

detection process is inefficient and unsuitable for large-scale agriculture. In contrast, 

deep learning, with end-to-end learning and automatic feature extraction, overcomes 

these limitations. 

2.2.Deep Learning Methods 

In recent years, deep learning has emerged as a key technology for crop pest and dis-

ease detection due to its ability to perform automatic feature extraction and 

high-dimensional modeling. Convolutional Neural Networks (CNNs) and their vari-

ants, such as ResNet [7], MobileNet [8], and EfficientNet [9], as well as object detec-

tion algorithms like Faster R-CNN [10] and the YOLO series , have been widely ap-

plied in this domain. However, these methods still present certain limitations in prac-

tical applications. 

Sood and Singh [11] employed convolutional neural network models based on 

ResNet50 and VGG16 for wheat rust detection. Experimental results indicated that 

VGG16 achieved high detection accuracy when provided with a sufficient number of 

samples. However, its adaptability to variations in lighting conditions and complex 



field backgrounds was poor, making it susceptible to noise interference and limiting 

its effectiveness in detecting small-scale pests and diseases.Priyadharshini et al. [12] 

utilized Faster R-CNN combined with VGG16 to detect tomato leaf pests and diseas-

es, achieving an accuracy of 98% with relatively fast detection speeds, making it 

suitable for certain pest and disease scenarios. However, as a two-stage detection 

algorithm, this approach has a high model complexity and significant computational 

resource consumption, making it difficult to meet real-time detection requirements. 

Furthermore, it struggles with recognizing pests and diseases across multiple 

scales.Yang et al. [13] designed a lightweight YOLOv5-based model for detecting 

bayberry fruit pests and diseases, improving inference speed and expanding the recep-

tive field. However, the model primarily focused on fruit detection and did not ac-

count for early-stage pest and disease characteristics on leaves, limiting its effective-

ness in early warning applications. 

In summary, although deep learning has made significant progress in crop pest and 

disease detection, further improvements are needed to enhance adaptability to com-

plex environments, improve small-scale target detection accuracy, and optimize mul-

ti-scale feature fusion. These advancements are essential to meet the demands for high 

precision, real-time performance, and broad applicability. 

3. Disease And Insect Detection Overview 

3.1. Datasets 

This study utilized a publicly available dataset from the Roboflow platform, which 

comprised 23,123 images covering 23 different types of crop pests and diseases. The 

dataset was randomly divided into training, validation, and test sets in a ratio of 

15:1:1. The specific classification and the number of images for each pest and disease 

category are illustrated in Figure 1. 
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Fig. 1. Classification of pest and disease datasets and their quantities 

In the pest and disease identification task, data preprocessing is performed to en-

hance the model’s generalization ability in complex environments, such as rainy con-

ditions, overexposed settings, and low-light scenarios. This preprocessing improves 

the model’s robustness and recognition accuracy. Figure 2 presents a selection of 

images from the dataset. 

 

Fig. 2. Display of partial crop pest and disease datasets 

During preprocessing, images are aligned, cropped (10–85% horizontal, 4–82% 

vertical), and resized to 640×640 to reduce background interference. The 

HVI-CIDNet[14] model enhances visibility in low light, improving feature contrast. 

To boost robustness, each sample undergoes two augmentations, including 90° rota-



tion, 20% grayscale, brightness adjustment (-15% to +15%), and bounding box rota-

tion (-10° to +10°), aiding recognition under varying conditions.Figure 3 illustrates 

the effects of data augmentation on crop disease images. 

 

Fig. 3. Examples of image data augmentation for crop diseases 

3.2. YOLOv8 Introduction 

YOLOv8 [15] is an optimized single-stage object detection algorithm that enhances 

accuracy and flexibility. Its architecture includes three components: Backbone, Neck, 

and Head. The Backbone uses a lightweight C2f module for better feature extraction, 

while the Neck employs an improved Feature Pyramid Network (FPN) and Path Ag-

gregation Network (PAN) for multi-scale fusion. The decoupled Head separates clas-

sification and regression tasks, improving prediction accuracy. YOLOv8 also adopts 

an anchor-free design, simplifying training and reducing hyperparameter dependency. 

The loss function integrates Task-Aligned Assigner and Distribution Focal Loss for 

better target matching, and the Spatial Pyramid Pooling-Fast (SPPF) module boosts 

adaptability to objects of various sizes. Overall, YOLOv8 balances accuracy, flexibil-

ity, and speed, making it ideal for real-time pest and disease detection. 

3.3. Improved YOLOv8 

To address the limitations of pest and disease feature extraction in complex environ-

ments, including insufficient detection of small-scale pests and inadequate multi-scale 

feature fusion, this study optimized the YOLOv8 model as follows:  

First, the Swin Transformer was integrated into the backbone to enhance feature 

extraction by combining convolution with window-based self-attention. It alternates 

between Window Multi-Head Self-Attention (W-MSA) and Shifted Window Mul-

ti-Head Self-Attention (SW-MSA), capturing global and local features while reducing 
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complexity. This improved the model’s ability to identify pest-affected areas in chal-

lenging conditions like uneven lighting or background similarity, enhancing pest and 

disease feature extraction.Second, the SE attention module was incorporated into the 

Neck structure to improve the detection of small-scale pests and edge regions. By 

introducing the SE attention module, the model leverages global pooling to capture 

channel-wise dependencies, adaptively adjusting feature channel weights to empha-

size critical pest-related features while suppressing background noise. This enhance-

ment strengthened the detection of weakly represented pests, improving the model’s 

performance in early-stage pest and disease identification tasks.Finally, BiFPN re-

placed Concat for multi-scale feature fusion to address pest scale variations. 

YOLOv8’s simple concatenation struggles to integrate hierarchical features, reducing 

detection accuracy. BiFPN introduced a learnable weighted fusion strategy, enhancing 

small pest detection and improving large pest recognition. Its bidirectional interaction 

between top-down and bottom-up pathways ensured more effective feature integration 

across different scales.The improved YOLOv8 network architecture is illustrated in 

Figure 4. 

 

Fig. 4. Improved YOLOv8 network architecture 

3.3.1. Swin-Transform  

In natural farmland environments, illumination changes, weed interference, and oc-

clusion hinder feature extraction, reducing detection accuracy. Traditional CNNs 

struggle with large-scale variations and uneven lighting due to limited receptive 



fields. To overcome this, Swin Transformer [16] was integrated into the YOLOv8 

Backbone, using W-MSA and SW-MSA to expand the receptive field. This enabled 

the model to capture both local and global features, improving the recognition of pest 

and disease contours in complex scenarios. 

In Swin Transformer, pest and disease images are divided into non-overlapping 

windows, and features within each window are processed using W-MSA, reducing 

computational complexity and enabling linear scaling with image size. However, this 

window partitioning limits interaction between features from different windows. To 

overcome this, Swin Transformer introduces SW-MSA, which shifts window posi-

tions between layers to connect previously isolated windows. This expanded the re-

ceptive field and improves the model’s ability to capture global patterns, enhancing 

recognition of pest and disease features. The process is shown in Figure 5. 

 

Fig. 5. Shifting window attention mechanism on pest and disease leaf images 

Within each window, self-attention weights are computed using the scaled 

dot-product attention mechanism as follows: 

𝑄 = 𝑋 ∙ 𝑊𝑄   (1) 

    𝐾 = 𝑋 ∙ 𝑊𝐾  (2)     

   𝑉 = 𝑋 ∙ 𝑊𝑉  (3)    

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝐾
+ 𝐵) 𝑉  (4) 

Where X represents the input feature matrix within the window; 𝑊𝑄、𝑊𝐾 and 

𝑊𝑉 are the linear transformation matrices for the query, key, and value, respectively; 

𝑑𝑘 denotes the dimension of the key vector, and √𝑑𝑘 is used for scaling to prevent 
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excessively large gradients; B is the relative position encoding within the window, 

which facilitates modeling of local relationships.  

The Swin Transformer enhanced multi-scale feature extraction, making the model 

more adaptable to complex environments with varying pest and disease sizes, shapes, 

and structures. This improved its ability to distinguish pest-affected regions from the 

background and extract pest-related features in intricate settings. 

3.3.2. SE-Attention Module 

In crop pest and disease detection, complex backgrounds and subtle, blurred pest 

features make traditional convolution-based methods prone to noise interference, 

leading to missed detections or false positives. To address this, the 

Squeeze-and-Excitation (SE) attention module [17] was integrated into YOLOv8's 

Neck. The SE module uses Global Average Pooling (GAP) to extract global channel 

information and adaptively adjusts channel weights based on pest and disease texture 

and color. This enhanced key feature response, such as disease edges, while sup-

pressing background noise, improving detection performance in complex agricultural 

environments. 

 

Fig. 6. SE Attention Module 

The SE attention module consists of three components: the Squeeze stage, the Ex-

citation stage, and the Scale stage, as illustrated in Figure 6. 

In the Squeeze stage, GAP captures global features while reducing redundancy, 

aiding disease texture detection. The Excitation stage assigns channel importance 

using ReLU and Sigmoid, enhancing pest and disease-related features while sup-

pressing background noise. In the Scale stage, attention weights refine feature repre-

sentation, improving disease detection in complex environments. For instance, the SE 

module highlights abnormalities in color or texture within diseased areas, which en-

hanced the model’s accuracy. The SE attention module significantly improved the 



model’s ability to detect small-scale pest and disease symptoms, identify subtle color 

differences, and maintain robustness in noisy backgrounds, providing a strong foun-

dation for accurate detection in complex agricultural settings. 

3.3.3. BiFPN 

In crop pest and disease detection, accurate identification of both small and large 

affected areas is challenging due to significant scale differences. Traditional feature 

fusion methods, like YOLOv8's Concat module, use fixed fusion weights, which limit 

performance for small or large targets. To address this, the Concat module was re-

placed with the Bidirectional Feature Pyramid Network (BiFPN) [18]. BiFPN im-

proves upon the traditional Feature Pyramid Network (FPN) by incorporating learna-

ble weights, allowing dynamic adjustment of feature map importance based on target 

size. This enables better fine-grained detection for small-scale regions and improved 

boundary recognition for large-scale areas. The BiFPN structure is shown in Figure 7. 

 

Fig. 7. Comparison of FPN and BiFPN architectures 

BiFPN enhances multi-scale perception in complex environments, handling over-

lapping leaves, uneven lighting, and diverse pest and disease morphologies while 

balancing accuracy and efficiency. Replacing the original module with BiFPN signif-

icantly improved detection of small pest regions and irregular disease boundaries. 

4.Experiments 
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4.1. Equipment And Parameter Settings 

The experimental operating system in this study was Ubuntu 20.04, with PyTorch as 

the deep learning framework for model development. The specific training environ-

ment is detailed in Table 1. 

Table 1. Experimental environment configuration   

Parameters Configuration 

CPU 12 vCPU Intel(R) Xeon(R) Silver 4214R CPU  

GPU RTX 3080 Ti 

GPU memory size 12GB 

Operating systems ubuntu20.04 

Deep learning architecture PyTorch 1.11.0 + Cuda 11.3 + 

The training parameters were set as follows: the input image size was 640×640, the 

batch size was 16, and the initial learning rate was 0.01. The model was trained for a 

total of 120 epochs. The detailed parameter settings are shown in Table 2. 

Table 2. Training parameter configurations 

Parameters Value 

Task Detect 

Epochs 120 

Batch Size 16 

Image Size 640 

Optimizer SGD 

4.2. Comparative Experiments 

To validate the effectiveness of the proposed model, Faster R-CNN, SSD, YOLOv5, 

YOLOv8, and the improved YOLOv8 model were selected for comparison experi-

ments under the same training environment using the Roboflow crop pest and disease 

dataset. To evaluate the detection performance of the improved YOLOv8 model, rel-

evant metrics such as Precision, Recall, and mAP were used as evaluation indicators. 

The training process is illustrated in Figure 8. 



 

Fig. 8. Training process of improved YOLOv8 model 

The experimental results indicated that although Faster R-CNN achieved a high re-

call rate (87.65%) and could detect most pest and disease targets, it suffered from low 

precision (56.89%), leading to frequent misclassification of background regions as 

pest or disease areas. Additionally, its inference speed was slow (23.94 FPS), making 

it unsuitable for real-time agricultural applications. The SSD model demonstrated a 

much faster detection speed (119.72 FPS), making it suitable for preliminary screen-

ing in rapid detection scenarios. However, it had a relatively low recall rate (67.83%), 

resulting in significant missed detections, particularly in complex backgrounds and 

small pest or disease regions. This limitation made it challenging to meet the re-

quirements of precise pest and disease control. The detailed experimental results are 

shown in Table 3. 

Table 3. Comparison of pest and disease detection performance across different models 

Network Precision/% Recall/% mAP50/% FPS 

Faster R-CNN 56.89 87.65 84.3 23.94 

SSD 84.37 67.83 79.4 119.72 

YOLOv5 95.6 92.0 98.4 333.87 

YOLOv8 94.8 89.8 97.8 275.78 

Improved YOLOv8 96.6 91.8 98.2 250.48 
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Fig. 9. Comparison of parameter bar chart and scatter plot for different network models 

YOLOv5 achieved balanced performance with high precision (95.6%), recall 

(92.0%), and mAP@50 (98.4%) but struggled under overexposure and occlusion. The 

standard YOLOv8 improved both speed (275.78 FPS) and precision (94.8%), offering 

certain advantages in multi-scale pest and disease detection. However, it still encoun-

tered missed detections when dealing with small-scale pest and disease regions and 

complex textured backgrounds. The improved YOLOv8 achieved high precision 

(96.6%), mAP@50 (98.2%), and recall (91.8%). The Swin Transformer enhanced 

feature extraction in complex backgrounds, while the SE attention module strength-

ened small and low-contrast pest detection, reducing missed cases. BiFPN optimized 

bidirectional multi-scale fusion, improving detection of both large and small pests. 

Additionally, the model maintained high accuracy with an inference speed of 250.48 

FPS, enabling real-time detection and large-scale agricultural deployment. Some de-

tection results of the improved YOLOv8 model are shown in Figure 10. 

 

Fig. 10. Detection results of the improved YOLOv8 model  

4.3. Ablation Experiment and Result 

To evaluate the specific contributions of each module to the model’s performance, an 

ablation study was conducted. The Swin Transformer, SE attention module, and 



BiFPN were individually removed or retained to analyze their individual and com-

bined effects on model performance, as shown in Table 4 and Figure 11. Furthermore, 

to assess the impact of each module on feature extraction, Grad-CAM was used to 

generate heatmaps that visualize the attention regions of different model configura-

tions.This offers a more intuitive basis for analysis, as shown in Figure 12. 

Table 4. Ablation experiment results 

Network Precision/% Recall/% mAP50 mAP50-95 FPS 

Yolov8 94.8 89.8 97.8 97.8 275.78 

Improved YOLOv8 96.6 91.8 98.2 98.2 250.48 

SEA 94.1 92.6 98.2 98.2 285.51 

BiFPN 95.9 93.4 98.6 98.5 242.19 

Swin Transformer 94.3 93.0 98.2 98.2 318.46 

SEA+BinFPN 95.7 92.8 98.4 98.4 267.71 

SEA+SwinTransformer 94.7 92.5 97.8 97.8 290.87 

BiFPN+SwinTransformer 95.6 92.0 98.1 98.0 277.00 

After introducing the SE attention module alone, the recall rate increased to 92.6%, 

and mAP@50 reached 98.2%, indicating its significant effect in enhancing 

small-scale pest and disease feature representation. The heatmap visualization showed 

that the model's attention was more concentrated on the core regions of pests and 

diseases. However, it also exhibited over-activation in some non-pest areas, leading to 

a slight decrease in precision. 

 

Fig. 11. Comparison of detection performance across different network models 

After incorporating BiFPN, the model's precision increased to 95.9%, and 

mAP@50 reached 98.6%. The heatmap visualization showed a stronger response in 

boundary disease regions and small target areas, indicating that BiFPN enhanced 

multi-scale feature interactions. This improvement was particularly beneficial for pest 
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and disease detection in complex backgrounds and scenarios with significant varia-

tions in target scale. 

 

Fig. 12. Heatmap of pest and disease detection generated by the Grad-CAM 

The introduction of the Swin Transformer increased the recall rate to 93.0% and 

achieved the fastest inference speed (318.46 FPS). It excelled in large-scale disease 

detection and global feature extraction but struggled with small targets. 

When different modules were combined, the SE+BiFPN combination achieved a 

balanced performance in terms of accuracy (95.7%), mAP@50 (98.4%), and bounda-

ry detection. The SE+Swin Transformer combination enhanced the model's global 

recognition capability but slightly suppressed small target detection. The 

BiFPN+Swin Transformer combination effectively integrated multi-scale perception 

with global awareness.The improved YOLOv8, incorporating all three components, 

optimized various evaluation metrics, including accuracy (96.6%), recall (91.8%), and 

mAP@50 (98.2%). Heatmaps further indicated that the model could precisely focus 

on pest and disease regions with clear boundary delineation, making it well-suited for 

early detection of plant diseases and pests in complex environments, small-scale pest 

identification, and precise detection of targets across different scales. 

5. Conclusions 

To tackle challenges in crop pest and disease detection, such as feature extraction 

difficulties, missed small-scale cases, and inadequate multi-scale fusion, this study 

proposed an improved YOLOv8-based model. It integrated Swin Transformer for 

global feature extraction, the SE attention module for better small-scale detection, and 



BiFPN for optimized multi-scale fusion. In detecting 23 pest and disease categories, 

the model achieved 96.6% accuracy, 91.8% recall, and 98.2% mAP@50, outper-

forming traditional models. 

Experiments showed that the model excelled in real-time detection, even in chal-

lenging conditions like rain or overexposure, making it a reliable solution for 

large-scale monitoring. Future research will explore lightweight architectures, such as 

Depthwise Separable Convolution, to reduce computational costs, and advanced at-

tention mechanisms, like Global-Local Adaptive Attention, to further enhance detec-

tion in complex environments. 
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