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Abstract. With the development of deep learning, infrared small target detection 

methods have yielded promising results benefiting from the powerful feature ex-

traction capability of deep neural networks. However, these methods with large 

numbers of parameters are often impractical due to hardware limitations, while 

existing lightweight models tend to be unstable as they struggle to effectively 

capture small targets. To cope with these challenges, we propose a novel light 

but mighty network (Limi-Net), which maintains lightweight while having a sta-

ble ability to capture small targets. First, since the targets are rare in infrared 

images, we propose an Infrared Target Simulator that generates pseudo targets 

for data augmentation, helping the model to better learn and recognize small tar-

gets. Then a Lightweight Stable Encoder is designed to guarantee reliable feature 

extraction from diverse receptive fields to improve the discrimination of small 

targets and reduce memory consumption. In addition, we introduce a Coarse-to-

fine Hybrid Upsampling Decoder that combines a dual upsampling fusion 

method and a coarse to fine alignment mechanism to integrate multi-scale fea-

tures while preserving critical information. Extensive experiments demonstrate 

that Limi-Net achieves state-of-the-art (SOTA) performance while maintaining a 

lightweight architecture, making it well-suited for practical deployment. Our 

code is available at https://github.com/Arrosw/LimiNet. 

Keywords: Infrared small target, Deep learning, Lightweight, Coarse to fine 

training. 

1 Introduction 

Infrared small target detection (IRSTD) is critical in various fields such as maritime 

surveillance, remote sensing, and military defense that require real-time and precise 

response [14, 15]. In these situations, the infrared small target detector often needs to 

be deployed on edge devices. Therefore, it is particularly important to develop a high-

precision detector with lightweight architecture. 

https://github.com/Arrosw/LimiNet


 

Fig. 1. Comparison of mean MIoU, FPS and model size on the IRSTD-1k [12] dataset and 

NUDT-SIRST [6] dataset. The size of circle corresponds to the number of various model pa-

rameters. Frames Per Second (FPS) presents the real-time respond of model, which is measured 

on an RTX 4090 24 GB GPU. 

Infrared sensors excel in low-visibility environments and capture solely thermal ra-

diation signals, which unlike human visual system, making it difficult to maintain de-

tails of small targets. To detect infrared small targets, numerous methods have been 

proposed. Early research on infrared small target detection focused mainly on tradi-

tional image processing methods based on human prior knowledge, including filtering- 

based [1], local-contrast-based [2], and low-rank-based methods [3]. However, these 

traditional methods rely on manually designed features, which means poor generaliza-

tion and sensitivity to the scene.  

In recent years, with the development of deep learning, especially the powerful fea-

ture extraction capability presented by Convolutional neural networks (CNNs), more 

and more research on infrared small target detection has focused on CNN-based infra-

red small target detection methods, which can automatically learn intrinsic features 

from the infrared image in a data-driven manner, making them more robust to various 

scenarios. Recent studies have shown that it is more effective to treat infrared small 

target detection as a semantic segmentation task and use U-Net [5] shaped models to 

process it [4-8]. However, despite their effectiveness, these methods are often compu-

tationally expensive and memory-intensive, which limits their practical deployment in 

real-time or resource-constrained applications. As a result, researchers pay more atten-

tion to the lightweight of the network [9-10]. Nevertheless, due to limited feature ex-

traction capabilities, these lightweight models still struggle to accurately detect small 

targets. 
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To address these limitations, we aim to construct a lightweight infrared small target 

detector with both high-precision and real-time response. In this paper, a novel light 

but mighty network (Limi-Net) is proposed. First, based on the characteristics of infra-

red small targets, we propose an Infrared Target Simulator that generates pseudo targets 

for data augmentation, helping the model to learn better and recognize small targets. 

Given that the instability of initial feature extraction in lightweight architectures will 

lead to small targets hard to recognize, we explore it in depth and design a Lightweight 

Stable Encoder that contains a Stability-Enhanced Stem (SES) module and four Light-

weight Multi-branch Bottleneck (LMB) modules. Specially, the SES module guaran-

tees initial stable feature extraction and improves the discrimination of small targets. 

LMB modules fuse features from different receptive fields while reducing memory con-

sumption. To further enhance cross-level feature representation and accuracy detection, 

we introduce a Coarse-to-fine Hybrid Upsampling Decoder, which contains a Hybrid 

Upsampling fusion (HUF) module that exploits dual upsampling to integrate cross-

layer features and a Coarse-to-fine Multi-scale Head to capture multi-scale targets. The 

performance comparison shown in Fig. 1 and the experimental results demonstrate that 

Limi-Net achieves state-of-the-art (SOTA) performance while maintaining lightweight. 

2 Related Work 

Early investigations in this field mainly relied on traditional image processing tech-

niques that incorporate human insights to separate small targets from cluttered back-

grounds. Common approaches include filtering-based [1], local-contrast-based [2], and 

low-rank-based methods [3]. Although these techniques can yield satisfactory results 

under certain conditions, their reliance on hand-crafted features often restricts their 

adaptability to more diverse and complex scenarios. 

With the rapid advancement of deep learning, an increasing number of studies have 

focused on applying deep learning techniques to infrared small target detection, partic-

ularly the convolutional neural networks (CNNs). CNN-based methods can automati-

cally learn intrinsic representations from infrared images in a data-driven manner, im-

proving their robustness across diverse scenarios. Recent research suggests that formu-

lating infrared small target detection as a semantic segmentation task is more effective 

[4], leading to the adoption of U-Net shaped architectures [5]. For instance, DNA-Net 

[6] integrates a dense nested interaction module into the U-Net framework to mitigate 

the issue of small target loss. UIU-Net [7] enhances multi-scale representation learning 

by embedding a small U-Net within a larger U-Net backbone. ALCL-Net [8] uses at-

tention-based local contrast learning to intrinsic features of infrared small targets. While 

these models achieve promising detection performance, their complex architectures re-

sult in high computational and memory demands, making them impractical for real-

time applications due to hardware constraints. 

To address this issue, recent efforts have shifted towards designing lightweight net-

works. LW-IRST-Net [9] achieves computational efficiency by combining standard 

convolutions, depth-wise separable convolutions, dilated convolutions, and asymmetric 

convolution modules, forming an optimized encoding-decoding structure. Similarly, 



LR-Net [10] refines ALCL-Net by simplifying its architecture, thereby balancing de-

tection accuracy and computational efficiency for real-world deployment. However, 

these lightweight models still struggle to accurately detect small targets due to limited 

feature extraction capabilities. 

3 Method 

3.1 Overall Architecture 

 

Fig. 2. The architecture of Limi-Net. Dashed lines indicate use only in the training phase, and 

×k in the FastUp module means upsampling k times. (a) FastUp Module. (b) Segment Head. 

To meet the requirements of high accuracy, real-time response, and lightweight design 

in infrared small target detection, we propose a novel Light but Mighty Network (Limi-

Net). The overall architecture of Limi-Net consists of three main components: the In-

frared Target Simulator (ITS), the Lightweight Stable Encoder, and the Coarse-to-Fine 

Hybrid Upsampling Decoder, as illustrated in Fig. 2. 

Firstly, the ITS is employed to generate pseudo labels that enhance the training pro-

cess by generating pseudo targets. Next, the Lightweight Stable Encoder is designed to 

perform efficient and stable feature extraction while maintaining a lightweight struc-

ture. Finally, the Coarse-to-Fine Hybrid Upsampling Decoder is responsible for accu-

rate target segmentation by progressively integrating multi-scale features. The detailed 

designs of each module are described in the following subsections. 

3.2 Infrared target simulator 

Infrared small targets are generally rare in images, occupy minimal space, and often 

blend into noisy backgrounds. As a result, negative samples dominate in the training 
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phase, and it becomes difficult for the model to learn meaningful target features. To 

address this, an infrared target simulator (ITS) is employed to generate pseudo labels 

that enrich the training set. Guided by typical infrared target characteristics [19] that 

bright centers with gradually dimmer peripheries and shapes are mostly round or irreg-

ular polygons, ITS places random points, circles, and polygons on the image to simulate 

real targets. Each pseudo target is randomly assigned a shape, size, and position, whose 

intensity is determined by the local background and must be brighter than the average 

of the surrounding points to ensure visibility. This integration of synthetic examples 

alleviates the low signal-to-noise ratio problem, allowing the model to learn robust rep-

resentations for small infrared targets. 

3.3 Lightweight Stable Encoder 

 

Fig. 3. Framework of main modules of lightweight stable feature encoder. (a) Stability-En-

hanced Stem (SES). (b) Efficient Channel Attention (ECA). (c) Lightweight Multi-branch Bot-

tleneck (LMB). 

Infrared small targets typically exhibit low contrast, making them prone to omission 

during early processing stages. Once lost in the background, these small targets will be 

hard to detect. To prevent these subtle features from being lost or misclassified as noise, 

we propose a Stability-Enhanced Stem (SES) module to extract stable initial features, 

as illustrated in Fig. 3(a). Rather than employing a depth-wise separable convolution 

paired with batch normalization, a standard convolution combined with group normal-

ization is adopted at the beginning of SES. This design choice yields richer and more 

reliable feature representations while maintaining stable gradients, especially when 

training with the small batch sizes preferred in infrared target detection (large batch 

size might lead to a very low signal-to-noise ratio in the training phase). A depth-wise 

separable convolution, supplemented by an Efficient Channel Attention module (ECA, 

depicted in Fig. 3(b)) [11], is then used to enhance cross-channel interactions while 

increasing the number of channels to 8.  

To further broaden the receptive field and integrate global contextual information, a 

Lightweight Multi-Branch Bottleneck (LMB) module is introduced. As shown in Fig. 

3(c), LMB uses parallel branches that apply depth-wise separable convolutions with 

different kernel sizes to capture features from various receptive fields and down-



sampling. Through a bottleneck structure, LMB reduces the number of channels before 

concatenating and fusing the branch outputs, thus controlling the parameter count. 

Here, we also use the ECA module to achieve feature interaction. Given that the number 

of feature channels tends to increase with the depth of the model to extract complex 

features, but infrared small target detection does not require extensive semantic com-

plexity, there will be unnecessary redundancy in the deeper layers. Therefore, we 

choose a narrower model architectural design over wider alternatives, stacking four 

LMB modules with output channels set to 8, 16, 32, and 32 respectively. 

3.4 Coarse-to-fine Hybrid Upsampling Decoder 

 

Fig. 4. Structure of Hybrid Upsampling Fusion module. (a) Hybrid Upsampling Fusion (HUF) 

module. (b) FastUP module. (c) Segment Head.  

A critical challenge in infrared small target detection networks is maintaining the in-

tegrity of target information during feature reconstruction and upsampling stages. 

Therefore, to solve this problem, we propose a Coarse-to-fine Hybrid Upsampling De-

coder as follows. 

 

Hybrid Upsampling Fusion. As shown in Fig. 4(a), the hybrid upsampling fusion 

(HUF) module is designed to blend multi-scale information through a dual-stream up-

sampling approach. The first stream applies depth-separable transposed convolution 

(DSTC) to capture intricate details, while the second stream employs bilinear interpo-

lation to retain feature integrity and reduce checkerboard artifacts. It fuses the output 

with features from the LMB module, which curtails the risk of losing small targets dur-

ing the integration process. The result is a balanced representation that preserves subtle 

cues from lower layers and contextual information from deeper layers, improving over-

all detection performance. 

 

Coarse-to-fine Multi-scale Head. Relying solely on the final layer’s output for seg-

mentation can overlook details for accurately identifying small infrared targets. Instead, 

inspired by Feature Pyramid Networks (FPN) [13], we integrate a multi-scale segmen-

tation head that draws on features from various layers. For aligning multi-scale features 

without lots of computational overhead, we propose a FastUp module (see Fig. 4(b)) to 

rapidly upsample low-scale features from the HUF module, which uses a combination 
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of radical bilinear interpolation and depth-separable convolution. These features are 

then concatenated with the final output to help detection, ensuring that subtle details 

captured in earlier layers are preserved. To better differentiate small targets from a sim-

ilar background, a coarse-to-fine strategy (C2F) is adopted, which is encouraged by 

[17]. Outputs from each HUF module are taken into independent segment heads (see 

Fig. 4(c)) to conduct soft supervision learning (only during the training phase) by label 

smoothing technology [16], tempering the confidence of shallower features. The 

smoothing factor decreases with network depth, and the final prediction is not set 

smooth. This gradual refinement process helps avoid premature decisions, resulting in 

a segmentation output that evolves from a broad initial assessment to a precise, fine-

grained prediction. 

3.5 Model Optimization 

To enhance the detection of subtle infrared targets, we employ a composite loss func-

tion combined with a coarse-to-fine training scheme. At each scale, we introduce a soft 

binary cross entropy (SoftBCE) loss by leveraging label smoothing that decreases as 

the network deepens to achieve coarse-to-fine training. Given the pixel label 𝑦𝑖 (0 for 

background and 1 for target) and smoothing factor 𝛼, the smoothed label 𝑦𝑖
′ is defined 

as:  

 𝑦𝑖
′ = 𝛼1−𝑦𝑖(1 − 𝛼)𝑦𝑖 (1) 

Based on it, the SoftBCE loss is formulated as: 

 𝐿𝑆𝑜𝑓𝑡𝐵𝐶𝐸(𝑝, 𝑦, 𝛼) = −
1

𝑁
∑ 𝑦𝑖

′ ln(σ(𝑝𝑖)) + (1 − 𝑦𝑖
′) ln(1 − σ(𝑝𝑖))𝑁

𝑖=1  (2) 

Where  𝑝𝑖  denotes the predicted probability that the point belongs to the target, 𝜎(·) 

denotes the Sigmoid function. We then incorporate Dice loss [18] to maintain a balance 

between foreground and background coverage which as follows: 

 𝐿𝐷𝑖𝑐𝑒(𝑝, 𝑦) = 1 −
2 ∑ 𝜎(𝑝𝑖)y𝑖

𝑁
𝑖=1 +𝜀

∑ 𝜎(𝑝𝑖)𝑁
𝑖=1 +∑ y𝑖

𝑁
𝑖=1 +𝜀

 (3) 

where 𝜀 is a small constant to prevent division by zero. Finally, following the coarse-

to-fine training strategy, we combine these loss terms across multiple scales, resulting 

in the overall loss, which is formulated as:  

 𝐿𝐶2𝐹(𝑝, 𝑦, 𝛼) = ∑ 𝜔𝑠 (𝜆𝑠𝑐𝑒𝐿𝑆𝑜𝑓𝑡𝐵𝐶𝐸(𝑝𝑖 , 𝑦𝑖 , 𝛼𝑠) + 𝜆𝑑𝑖𝑐𝑒𝐿𝐷𝑖𝑐𝑒(𝑝𝑖 , 𝑦𝑖))𝑆
𝑠=1  (4) 

Where 𝜔𝑠 represents the weight assigned to each scale 𝑠, and there are S scales.  𝜆𝑠𝑐𝑒  

and  𝜆𝑑𝑖𝑐𝑒  control the contributions of 𝐿𝑆𝑜𝑓𝑡𝐵𝐶𝐸  and 𝐿𝐷𝑖𝑐𝑒 , respectively. This hierar-

chical optimization progressively refines the model’s predictions, ensuring both accu-

rate localization and robust generalization. 



4 Experiments 

4.1 Datasets and Metrics 

Datasets. Our experiments are conducted on two public datasets: IRSTD-1k [12] and 

NUDT-SIRST [6]. The IRSD-1k dataset comprises 1001 images with a resolution of 

512×512 and has been divided into training and testing splits with a ratio of 8:2 in 

previous works. The NUDT-SIRST dataset contains 1327 images with a resolution of 

256×256, which we randomly divide into training and testing splits using the same 8:2 

ratio. For both datasets, we reserve 20 percent of the training set as our validation da-

taset and select the best-performing model on the validation set for evaluation on the 

test sets. 

 

Evaluation metrics. To evaluate the performance of our method, we employ both 

pixel-level and target-level metrics. For pixel-level evaluation, we use Mean Intersec-

tion over Union (mIoU), Normalized Intersection over Union (nIoU), and False Alarm 

Rate (𝐹𝑎) to assess segmentation accuracy and false detections. Additionally, we use 

the Probability of Detection (𝑃𝑑) to quantify target-level performance. 

For multi-class settings, mIoU is defined as follows: 

 𝑚𝐼𝑜𝑈 =
1

𝑘+1
∑

𝑇𝑃𝑖

𝐹𝑁𝑖+𝐹𝑃𝑖+𝑇𝑃𝑖

𝑘
𝑖=0  (5) 

where 𝑇𝑃𝑖  , 𝐹𝑁𝑖  and 𝐹𝑃𝑖  denote the true positive, false negative, and false positive 

counts for the 𝑖-th class, respectively.  

The normalized IoU (nIoU) is given by 

 𝑛𝐼𝑜𝑈 =
∑ 𝑚𝑖𝑛(𝑃𝑟𝑒𝑑𝑖 ,𝐿𝑎𝑏𝑒𝑙𝑖)𝑁

𝑖=1

∑ 𝑚𝑎𝑥(𝑃𝑟𝑒𝑑𝑖,𝐿𝑎𝑏𝑒𝑙𝑖)𝑁
𝑖=1

 (6) 

where 𝑃𝑟𝑒𝑑𝑖  and 𝐿𝑎𝑏𝑒𝑙𝑖 represent the predicted and ground truth regions for pixel 𝑖. 
The false alarm rate (𝐹𝑎), which measures the proportion of falsely detected pixels 

relative to the total number of pixels, is defined as: 

 𝐹𝑎 =
𝑃𝑓𝑎𝑙𝑠𝑒

𝑃𝑎𝑙𝑙
 (7) 

Where 𝑃𝑓𝑎𝑙𝑠𝑒  is the number of false positive pixels and 𝑃𝑎𝑙𝑙  is the number of all pixels 

in the image. 

The probability of detection (𝑃𝑑), which measures the ratio of correctly predicted 

targets to the total number of targets, is formulated as: 

 𝑃𝑑 =
𝑁𝑝𝑟𝑒𝑑

𝑁𝑎𝑙𝑙
 (8) 

where 𝑁𝑝𝑟𝑒𝑑 is the number of correctly predicted targets and 𝑁𝑎𝑙𝑙  is the number of all 

targets. 
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4.2 Implementation Details 

All experiments are conducted using PyTorch 2.3.0 and Python 3.12 on Ubuntu 20.04, 

with CUDA 12.1, on an RTX 4090 24GB GPU. Models were trained for 300 epochs 

with a fixed random seed. We employed the AdamW optimizer with an initial learning 

rate of 5e-3. To facilitate convergence, we implemented a warm-up strategy with 30 

iterations, the starting factor and the ending factor are 0.05 and 1, respectively. We 

incorporated Cosine Annealing for learning rate decay with a period of 10 and a mini-

mum learning rate of 5e-4. The batch size was set to 10 during training and 1 during 

testing.  

 We set the 𝐿𝑆𝑜𝑓𝑡𝐵𝐶𝐸  and 𝐿𝐷𝑖𝑐𝑒  to 0.6 and 0.4, respectively. For the coarse to fine 

training strategy, the label smoothing factors (𝛼) are set to 0.1, 0.05, 0.01, 0.001 for 

upsampling 8x, 4x, 2x, and no upsampling respectively. The loss weight 𝜔𝑠 were as-

signed to 2000−α. For the final output, label smoothing was not applied to maintain the 

sharpness and precision of the predictions. 

4.3 Performance Comparison 

To validate the effectiveness of Limi-Net, we conducted a comprehensive comparison 

with several leading methods. Our evaluation includes heavyweight models such as U-

Net [5], DNA-Net [6], UIU-Net [7], and ALCL-Net [8], as well as lightweight networks 

like LW-IRST-Net [9] and LR-Net [10]. 

 

Quantitative Comparison. The quantitative results of different methods are presented 

in Tab. 1, which summarizes the quantitative results across key metrics. 

Table 1. Comparison between the Limi-Net and state-of-the-art methods (↑ indicates higher is 

better, ↓indicates lower is better). Results for the metrics of mIoU (%), nIoU (%), 𝐹𝑎 (10−6), 

𝑃𝑑 (%), Parameters(M) and FLOPs(G) are presented. The best values are highlighted with bold, 

and the second are marked with underline. 

 IRSTD-1k NUDT-SIRST   

Method mIoU↑ nIoU↑ 𝐹𝑎↓ 𝑃𝑑↑ mIoU↑ nIoU↑ 𝐹𝑎↓ 𝑃𝑑↑ Params FLOPs 

U-Net 0.59 0.57 38.75 0.88 0.75 0.74 12.39 0.93 31.037 54.62 

DNA-Net 0.60 0.60 19.94 0.83 0.90 0.89 0.28 0.97 4.697 13.96 

UIU-Net 0.63 0.62 28.21 0.89 0.88 0.87 0.57 0.97 50.541 54.35 

ALCL-Net 0.61 0.61 19.31 0.88 0.89 0.89 3.41 0.98 5.668 6.70 

LW-IRST-Net 0.60 0.60 20.56 0.82 0.80 0.81 15.14 0.95 0.166 0.279 

LR-Net  0.56 0.53 36.41 0.84 0.78 0.79 6.20 0.98 0.020 0.055 

Limi-Net 0.63 0.61 17.57 0.84 0.89 0.89 4.65 0.98 0.016 0.136 

 

From the quantitative results, Limi-Net demonstrates superior performance compared 

to lightweight models while achieving competitive results with significantly larger 

models, and maintains the lowest parameters and the second lowest computation. Spe-

cifically, on the IRSTD-1k dataset, Limi-Net outperforms all other models in pixel-



level evaluation metrics with the highest mIoU and lowest 𝐹𝑎, except for the largest 

model, UIU-Net. On the NUDT-SIRST dataset, the performance of the lightweight 

models LW-IRST-Net and LR-Net deteriorates sharply, but Limi-Net still maintains 

superior performance, especially in the mIoU and nIoU metrics, demonstrating its ro-

bustness and efficiency. Limi-Net exhibits state-of-the-art performance with minimal 

computational complexity, achieving high accuracy and real-time response (as shown 

in Fig. 1). We observed that our model exhibits little slower inference on the RTX 4090 

compared to ALCL-Net, which attributed to insufficient utilization of the modern 

GPU's parallel computing capacity due to our model's compact size. However, the sig-

nificant reduction in model size and computational requirements makes our approach 

particularly advantageous for edge device deployment.  

  

Visual Comparison. To get an intuitively visual comparison, we select some repre-

sentative infrared small target images and the prediction mask from above models, as 

shown in Fig. 5. Limi-Net demonstrates more accurate target detection with fewer 

missed targets, particularly visible in rows XD219 and XD932, lower false detection 

such as in XD762 and XD319, and cleaner output with sharper boundaries and less 

background noise compared to methods like ALCL-Net, LR-Net, and LW-IRST-Net. 

Thus, Limi-Net can not only achieve high accuracy detection but also precisely segment 

out the boundaries of small targets. 

 

Fig. 5. Visual Comparison covering U-Net, DNA-Net, UIU-Net, ALCL-Net, LW-IRST-Net, 

LR-Net on the IRSTD-1K. Correctly detected targets are magnified and highlighted in red. Tar-

gets in blue and yellow denote missed detection and false detection, respectively. 

4.4 Ablation Studies 

We provide experiments on the IRSTD-1k dataset to show the effectiveness of our 

method. The Performance verification of each component of the Limi-Net is shown in 

Table 2. Here, "Ours-w/o ITS” trains the model without the Infrared Target Simulator 

(ITS). "Ours-w/o SES” removes the Stability-Enhanced Stem (SES) module and uses 

depth-separable convolution with batch normalization instead. "Ours-w/o LMB” 
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replaces the multi-branch bottleneck (LMB) structure with residual blocks. "Ours-w/o 

HUF” removes the depth-separable transposed convolution and upsampling using bi-

linear interpolation upsampling with depth-separable convolution only. "Ours-w/o 

C2F” eliminates the coarse-to-fine strategy and uses a plain FPN structure. 

Table 2. Performance verification of each component of the Limi-Net on the IRSTD-1k da-

taset. 

Schemes 
Components Performance 

ITS SES LMB HUF C2F mIoU↑ nIoU↑ 𝐹𝑎↓ 𝑃𝑑↑ 

Ours-w/o ITS ✗ ✓ ✓ ✓ ✓ 0.60 0.59 31.26 0.82 

Ours-w/o SES ✓ ✗ ✓ ✓ ✓ 0.60 0.60 21.37 0.79 

Ours-w/o LMB ✓ ✓ ✗ ✓ ✓ 0.62 0.60 18.14 0.81 

Ours-w/o HUF ✓ ✓ ✓ ✗ ✓ 0.57 0.52 32.51 0.77 

Ours-w/o C2F ✓ ✓ ✓ ✓ ✗ 0.61 0.59 24.78 0.82 

Limi-Net  ✓ ✓ ✓ ✓ ✓ 0.63 0.61 17.57 0.84 

 

From break-down ablation experiments, we demonstrate that each component of Limi-

Net plays a role in infrared small target detection, and all of them assembled achieve 

the best results. Specifically, from Table 2, the Infrared Target Simulator (ITS) does 

assist the training of Limi-Net by generating diverse pseudo labels, which increases 

IoU metrics (mIoU from 0.60 to 0.63 and nIoU from 0.59 to 0.61) while significantly 

reducing the 𝐹𝑎 (31.26 to 17.57). By stabilizing feature extraction, Stability-Enhanced 

Stem (SES) makes the model obtain higher precision (𝑃𝑑 increases from 0.79 to 0.84) 

and IoU. To demonstrate the importance of the Multi-Branch Bottleneck (LMB), we 

replace the LMB modules with normal residual blocks, which leads to a dip in mIoU 

(0.63 to 0.62) and a notable rise in 𝐹𝑎 (to 18.14), indicating its effectiveness in multi-

scale feature fusion. Hybrid Upsampling Fusion (HUF) modules fuse multi-scale fea-

tures and curtail the risk of losing small targets during the integration process, as mIoU 

decreases to 0.57, nIoU drops to 0.52, and Fa dramatically increases to 32.51. Finally, 

compared to plain FPN structure (mIoU 0.61, Pd 0.82), Coarse-to-fine strategy (C2F) 

better differentiates small targets, confirming that C2F enhances overall detection. To-

gether, these findings demonstrate that each component is indispensable for achieving 

the best performance in Limi-Net. 

5 Conclusion 

In this work, we introduced Limi-Net, a novel lightweight network specifically tailored 

for infrared small target detection, which consists of the Lightweight Stable Encoder, 

the Coarse-to-fine Hybrid Upsampling Decoder, and the Infrared Target Simulator for 

data augmentation in the training phase. Our experimental results demonstrate that 

Limi-Net achieves state-of-the-art performance on infrared small target detection tasks, 

outperforming existing models in terms of both detection accuracy and computational 

efficiency. The lightweight design ensures that Limi-Net is suitable for real-time de-

ployment in practical resource-constrained environments. 
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