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Abstract. This paper introduces Dynamic Encoding Selection (DES), a novel 

framework for temporal knowledge graph reasoning that adaptively fuses repre-

sentations from state space models and large language models(LLMs). While re-

cent advancements in sequence modeling have improved temporal pattern recog-

nition, they often lack the semantic understanding necessary for comprehensive 

reasoning. Similarly, large language models possess rich semantic knowledge but 

struggle with structured temporal dependencies. Our approach leverages the 

complementary strengths of both paradigms—employing Mamba's state space 

architecture to efficiently capture sequential patterns with linear complexity, 

while utilizing LLMs' pre-trained knowledge for semantic understanding. The 

key innovation lies in our adaptive fusion mechanism, which dynamically selects 

between sequential, or fused representations for each query based on contextual 

factors such as entity connectivity, and query characteristics. This adaptive ap-

proach not only enhances prediction accuracy but also provides interpretable in-

sights into temporal knowledge graph reasoning. 

Keywords: Adaptive Representation Fusion, Dynamic Encoding Selection. 

1 Introduction 

Temporal knowledge graph reasoning has emerged as a critical capability for under-

standing and predicting evolving relationships in dynamic real-world data. Unlike static 

knowledge graphs, temporal knowledge graphs incorporate time as an essential dimen-

sion, capturing how facts and relationships change over different time periods. Despite 

significant advances in this domain, traditional approaches often struggle with captur-

ing complex temporal dependencies, particularly when handling long-range interac-

tions across irregular time intervals and diverse event types. This limitation signifi-

cantly impacts performance on prediction tasks involving evolving multi-hop relation-

ships and temporally distant but causally connected events. 

Recent advances in sequence modeling have introduced the Mamba architecture [1], 

which offers unprecedented capabilities for handling long-range sequential patterns 

with linear computational complexity through its state space model design. Mamba 

represents a significant breakthrough in sequence modeling, employing selective state 

space models (SSMs) that combine the expressivity of recurrent architectures with the 



parallelizability of transformers. Unlike conventional transformer-based approaches 

that suffer from quadratic complexity with sequence length, Mamba provides an effi-

cient mechanism for modeling temporal dependencies across varying time scales with 

linear complexity, making it particularly well-suited for temporal knowledge graph rea-

soning tasks where efficiently processing sequences of historical facts is essential. 

However, while Mamba excels at capturing sequential patterns and long-range depend-

encies in temporal data, it lacks the rich semantic understanding inherent in LLMs. 

These LLMs have demonstrated remarkable capabilities in comprehending contextual 

relationships, conceptual similarities between entities and relations, and vast amounts 

of world knowledge that can be leveraged for reasoning tasks. LLMs can interpret the 

semantic meaning behind entity and relation descriptions, potentially identifying im-

plicit connections not apparent from structural patterns alone. This semantic under-

standing is particularly valuable when dealing with sparse regions of knowledge graphs 

or newly introduced entities with limited historical information. 

The fusion of Mamba's efficient sequential modeling with LLMs' semantic compre-

hension presents a compelling opportunity to address the multi-faceted challenges of 

temporal knowledge graph completion. Prior approaches have typically relied either on 

pure embedding-based methods [2–7] that struggle with interpretability or rule-based 

systems [8, 9] that lack flexibility. More recently, transformer-based architectures [10] 

have been applied to this domain, but they face inherent limitations in processing long 

sequences due to their quadratic complexity.  

Unlike these existing methods, our proposal leverages the complementary strengths 

of both Mamba and LLM architectures. We introduce a novel Gumbel-Softmax mech-

anism to dynamically determine whether to prioritize sequential patterns from Mamba, 

or to utilize a fusion of both Mamba and LLM representations. This adaptive approach 

ensures that the model can flexibly emphasize the most informative representation 

based on the specific characteristics of each query, rather than applying a fixed fusion 

strategy across all scenarios. The selection mechanism operates in a fully differentiable 

manner, allowing end-to-end training while maintaining the ability to make discrete 

pathway choices during inference. 

Overall, the main contributions of this paper are as follows: 

1. We leverage the complementary strengths of Mamba's efficient sequential model-

ing and LLMs' semantic understanding to address the complex challenges in temporal 

knowledge graph reasoning. 

2. We propose Dynamic Encoding Selection (DES), a novel framework that adap-

tively fuses representations based on contextual factors, enabling more accurate and 

interpretable predictions. 

3. We conduct extensive experiments across multiple benchmark datasets that 

demonstrate significant performance improvements over state-of-the-art methods, with 

detailed analyses revealing how DES intelligently selects appropriate representations 

for different temporal reasoning scenarios. 
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2 Related Work 

Temporal Knowledge Graph reasoning involves predicting missing elements within 

time-evolving knowledge graphs. Research in this domain has primarily concentrated 

on developing time-sensitive latent representations for entities and relations. These em-

bedding-based approaches incorporate temporal dimensions and evaluate quadruple 

plausibility through specialized scoring functions. 

Many methodologies extend traditional static knowledge graph models. For instance, 

TTransE [11] builds upon the TransE framework [12], while ChronoR [13] enhances 

RotatE [14] by representing timestamps as vector translations that function similarly to 

relations, positioning fact heads in proximity to their corresponding tails. TComplEx 

and TNTComplEx [15] expand on ComplEx [16] through fourth-order tensor decom-

position of temporal knowledge graphs. Similarly, BoxTE [17] incorporates timestamp 

embeddings into the BoxE [18] architecture. These approaches typically associate tem-

poral information directly with entities and relations based on static knowledge graph 

foundations. However, such time-independent techniques often fail to adequately cap-

ture the dynamic nature of evolving events. 

Other research streams have developed time-specific entity representations with spe-

cialized functions, including diachronic embedding functions [19], time-rotating func-

tions [20, 21], time-hyperplane functions [22–25], and non-linear embedding functions 

[26–30]. 

Despite these advancements, current approaches generally lack explicit utilization of 

multi-hop structural information and recent temporal facts to enhance prediction accu-

racy. Some work attempts to address this limitation—TeMP [31] employs message-

passing graph neural networks to derive structure-based entity representations at each 

timestamp, subsequently combining these representations across all timestamps using 

sequential encoders. 

While embedding-based methods demonstrate reasonable link prediction perfor-

mance, they suffer from limited interpretability. Addressing this concern, NeuSTIP [32] 

extracts temporal logic rules from temporal knowledge graphs to compute confidence 

scores for candidate answers in link and time interval prediction tasks. For example, 

LCGE [33] learns both time-sensitive and time-independent event representations 

while mining temporal rules to enhance explainability. 

3 Problem Formulation 

Within a temporal knowledge graph, each quadruple (𝑠, 𝑝, 𝑜, 𝑡) is made up of distinct 

event components: 𝑠 as the subject entity, 𝑝 as the predicate (relation), 𝑜 as the object 

entity, and 𝑡 as the timestamp. Our main goal is to identify the missing component in 

these incomplete quadruples. We are particularly focused on predicting absent entities 

in cases such as (𝑠, 𝑝, ? , 𝑡) or (? , 𝑝, 𝑜, 𝑡). 



4 Method 

 

Fig. 1. Overall framework of the DES. 

The method processes temporal knowledge graphs through a sophisticated multi-step 

approach. First, it retrieves and processes neighboring facts for each query entity, ap-

plying strategic attention masking. These ID-based representations are then trans-

formed into dense embeddings and processed through an MLP-Mixer to capture inter-

component dependencies. Next, a Mamba encoder models sequential relationships be-

tween events using state space models, which efficiently capture long-range dependen-

cies with linear computational complexity. The approach then leverages a language 

model to extract semantic embeddings from the input context. Finally, an adaptive fu-

sion mechanism dynamically integrates the sequential (Mamba) and semantic (LLM) 

representations using a Gumbel-Softmax selection strategy, allowing the model to op-

timally combine these complementary information sources for accurate event predic-

tion. The overall algorithm could be illustrated in Algorithm 1 and Fig. 1. 

4.1 Neighbor Information Processing 

For each entity in a query, we retrieve a comprehensive set of neighboring facts from 

the temporal knowledge graph to provide rich contextual information. This process is 

crucial for understanding the entity's relationships and temporal patterns. 

Neighbor Retrieval: Given an entity 𝑒𝑖 in a query, we define its neighborhood as the 

set of all quadruples in the knowledge graph that involve 𝑒𝑖 as either the subject or 

object: 

𝑁(𝑒𝑖) = {(𝑒𝑖 , 𝑟𝑗 , 𝑒𝑗, 𝑡𝑗) ∈ 𝒢} ∪ {(𝑒𝑘, 𝑟𝑘 , 𝑒𝑖 , 𝑡𝑘) ∈ 𝒢} 
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where 𝒢 represents the temporal knowledge graph. This bidirectional neighborhood 

captures all temporal interactions of the entity, providing a comprehensive view of its 

relationships. 

Neighbor Representation: Each neighboring fact is formally represented as a struc-

tured triplet of IDs—comprising the entity ID (𝑒𝑗, identifying the neighboring entity), 

the relation ID (𝑟𝑗, denoting the connection between entities), and the time ID (𝑡𝑗, mark-

ing the interaction’s timestamp). To handle the variable number of neighbors across 

entities, we define a maximum context size 𝑀 and use attention masking strategies to 

focus only on valid neighbors. These IDs are stored in a context tensor 𝐶𝑖 ∈ 𝑅𝑁𝑖×3 for 

each entity 𝑒𝑖, where 𝑁𝑖 is the number of neighbors. 

Attention Masking Strategies: 

1. Uniform Sampling: During training, we employ uniform sampling to select neigh-

bors when the number of neighbors exceeds the maximum context size: 

𝐌𝐬𝐚𝐦𝐩𝐥𝐞 = UniformSample(𝐂𝐢, 𝑀) 

where 𝑀𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛  is a binary mask where 1 indicates a retained neighbor and 0 indi-

cates a discarded one. This sampling strategy ensures that our model can handle entities 

with varying neighborhood sizes and prevents bias toward entities with more connec-

tions. 

2. Ground Truth Masking: During training, we mask out the ground truth facts from 

the neighborhood to prevent information leakage: 

𝐌𝐠𝐭 = 𝐼[(𝑒𝑗 ≠ 𝑒𝑔𝑡) ∨ (𝑟𝑗 ≠ 𝑟𝑔𝑡) ∨ (𝑡𝑗 ≠ 𝑡𝑔𝑡)] 

where 𝑒𝑔𝑡, 𝑟𝑔𝑡, and 𝑡𝑔𝑡 are the ground truth entity, relation, and time respectively. This 

ensures that our model learns to make predictions without directly accessing the an-

swer. 

3. Random Context Dropout: To improve model robustness, we randomly mask out 

some neighboring facts during training: 

𝐌𝐝𝐫𝐨𝐩𝐨𝐮𝐭 = Bernoulli(1 − 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡) 

where 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡 is the context dropout probability. The final attention mask combines 

both sampling, ground truth masking and random dropout: 

𝐌𝐚𝐭𝐭𝐞𝐧𝐭𝐢𝐨𝐧 = 𝐌𝐬𝐚𝐦𝐩𝐥𝐞 ∧ 𝐌𝐝𝐫𝐨𝐩𝐨𝐮𝐭 ∧ 𝐌𝐠𝐭 

This strategy forces the model to make predictions with incomplete context, improving 

its generalization to real-world scenarios where complete information may not be avail-

able. 



4.2 Event Encoding 

After retrieving and processing the neighboring facts, we transform the ID-based rep-

resentations into dense embeddings: 

𝐄𝐞𝐧𝐭𝐢𝐭𝐲 = Embed𝑒𝑛𝑡𝑖𝑡𝑦(𝐂𝐢[: ,0]) 

𝐄𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧 = Embed𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝐂𝐢[: ,1]) 

𝐄𝐭𝐢𝐦𝐞 = Embed𝑡𝑖𝑚𝑒(𝐂𝐢[: ,2]) 

where 𝐸𝑒𝑛𝑡𝑖𝑡𝑦 ∈ 𝑅𝑁𝑖×𝑑, 𝐸𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ∈ 𝑅𝑁𝑖×𝑑, 𝐸𝑡𝑖𝑚𝑒 ∈ 𝑅𝑁𝑖×𝑑. 

These embeddings are subsequently concatenated to form the initial representation 

of each neighboring fact: 

𝐗𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐬 = Stack([𝐄𝐞𝐧𝐭𝐢𝐭𝐲, 𝐄𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧, 𝐄𝐭𝐢𝐦𝐞]) 

where 𝑋𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ∈ 𝑅𝑁𝑖×3×𝑑. 

The query fact undergoes analogous embedding and is prepended to the sequence of 

neighboring facts: 

𝐗𝐪𝐮𝐞𝐫𝐲 = Stack([𝐞𝐬, 𝐞𝐩, 𝐞𝐭]) 

𝐗(𝟎) = Concat([𝐗𝐪𝐮𝐞𝐫𝐲, 𝐗𝐧𝐞𝐢𝐠𝐡𝐛𝐨𝐫𝐬]) 

where 𝑋𝑞𝑢𝑒𝑟𝑦 ∈ 𝑅1×3×𝑑, 𝑋(0) ∈ 𝑅(𝑁𝑖+1)×3×𝑑. 

This composite representation serves as input to our MLP-Mixer module, which pro-

cesses the contextual information to generate entity-aware representations. Through 

this comprehensive neighbor information processing, our model effectively harnesses 

the rich structural and temporal context inherent in temporal knowledge graphs, thereby 

facilitating more precise predictions for missing facts. 

To effectively capture inter-component dependencies within events, we employ an 

MLP-Mixer architecture, inspired by [34], to transform the embeddings of event com-

ponents into a unified event representation. Specifically, for each event 𝐸𝑖 ∈ 𝑅3×𝑑 in 

𝑋(0)(query or neighboring fact), it is represented as: 

𝐄𝐢 = [𝐞𝐬; 𝐞𝐩; 𝐞𝐭] + 𝐄𝐩𝐨𝐬 

where 𝑒𝑠, 𝑒𝑝, and 𝑒𝑡 denote the embeddings for entity, relation, and time respectively, 

while 𝐸𝑝𝑜𝑠 represents the role embedding to distinguish between different component 

types (subject entity, relation, object entity, and timestamp). 

The MLP-Mixer processes these embeddings through two complementary mixing 

operations: 

𝐄𝐢
𝐜𝐡𝐚𝐧𝐧𝐞𝐥 = 𝐄𝐢 + 𝑊2𝜎(𝑊1 ⋅ 𝑁𝑜𝑟𝑚(𝐄𝐢)) 

𝐄𝐢
𝐩𝐚𝐭𝐜𝐡

= 𝐄𝐢
𝐜𝐡𝐚𝐧𝐧𝐞𝐥 + 𝑊4𝜎 (𝑊3 ⋅ 𝑁𝑜𝑟𝑚(𝐄𝐢

𝐜𝐡𝐚𝐧𝐧𝐞𝐥)) 
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The channel MLP operates along the feature dimension (columns), mapping each 

feature from 𝑅3 to 𝑅3 to capture correlations between identical features across different 

components. The patch MLP operates along the component dimension (rows), mapping 

each component from 𝑅𝑑 to 𝑅𝑑 to model interactions between distinct features within 

each component. The final representation of the event is derived via MLP-Pooling: 

𝐄𝐢
𝐞𝐯𝐞𝐧𝐭 = 𝑊5 ⋅ 𝑁𝑜𝑟𝑚(𝐄𝐢

𝐩𝐚𝐭𝐜𝐡
) 

This methodology enables comprehensive modeling of event characteristics by cap-

turing intricate dependencies between different components of the input. 𝑋(1) ∈

𝑅(𝑁𝑖+1)×𝑑 comprises the event embeddings {𝐸1
𝑒𝑣𝑒𝑛𝑡 , ..., 𝐸𝑁𝑖+1

𝑒𝑣𝑒𝑛𝑡}, serving as the initial 

input for the subsequent sequence modeling module. 

4.3 Sequence Modeling 

We present a comprehensive formulation of event sequence processing through the 

Mamba encoder, which employs selective state space models to capture temporal rela-

tionships. Beginning with input event embeddings 𝑋(𝐿−1) ∈ 𝑅𝑁×𝑑  (where 𝑁  is se-

quence length and 𝑑 is embedding dimension), the encoder transforms these represen-

tations through a sequence of operations that can be summarized as: 

𝐗𝐋 = 𝑀𝑎𝑚𝑏𝑎𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐗(𝐋−𝟏)) 

The processing pipeline initiates with RMS Normalization of the input embeddings, 

creating a normalized representation that stabilizes training: 

𝐇𝐧𝐨𝐫𝐦 = 𝑅𝑀𝑆𝑁𝑜𝑟𝑚(𝐗𝐋−𝟏) 

where 𝑯𝒏𝒐𝒓𝒎 ∈ 𝑅𝑁×𝑑. 

Following normalization, the architecture bifurcates into parallel processing paths. 

The first path applies a linear projection followed by convolution and non-linear acti-

vation to extract local patterns: 

𝐇𝐥𝐢𝐧𝐞𝐚𝐫𝟏 = 𝐖𝟏𝐇𝐧𝐨𝐫𝐦 + 𝐛𝟏 

𝐇𝐜𝐨𝐧𝐯 = 𝐶𝑜𝑛𝑣(𝐇𝐥𝐢𝐧𝐞𝐚𝐫𝟏) 

𝐇𝐒𝐢𝐋𝐔𝟏 = 𝑆𝑖𝐿𝑈(𝐇𝐜𝐨𝐧𝐯) 

where 𝐶𝑜𝑛𝑣 is the convolution operation and 𝑆𝑖𝐿𝑈 is the activation function. 

This activated representation then passes through the SSM, which captures long-

range dependencies through its recurrent structure: 

𝐇𝐒𝐒𝐌 = SSM(𝐇𝐒𝐢𝐋𝐔𝟏) 

Concurrently, the second path applies an independent linear transformation and ac-

tivation function to the normalized input, providing a complementary representation: 

𝐇𝐥𝐢𝐧𝐞𝐚𝐫𝟐 = 𝐖𝟐𝐇𝐧𝐨𝐫𝐦 + 𝐛𝟐 



𝐇𝐒𝐢𝐋𝐔𝟐 = 𝑆𝑖𝐿𝑈(𝐇𝐥𝐢𝐧𝐞𝐚𝐫𝟐) 

The outputs from both paths undergo element-wise multiplication, creating a gating 

mechanism that adaptively controls information flow between the temporal and con-

textual features: 

𝐇× = 𝐇𝐒𝐒𝐌 ⊙ 𝐇𝐒𝐢𝐋𝐔𝟐 

This multiplicative interaction is projected to the output space through a final linear 

transformation: 

𝐇𝐟𝐢𝐧𝐚𝐥 = 𝐖𝟑𝐇× + 𝐛𝟑 

The process culminates with a residual connection that combines the transformed 

features with the original input, promoting gradient flow and representation stability: 

𝐗𝐋 = 𝐗𝐋−𝟏 + 𝐇𝐟𝐢𝐧𝐚𝐥 

This entire processing block is applied 𝐿 times in succession, with each iteration pro-

gressively refining the temporal representations and enhancing the model's capacity to 

capture intricate sequential patterns across diverse time scales. 

We extract the final position of the sequence as 𝑋𝑀𝑎𝑚𝑏𝑎 to serve as the comprehen-

sive sequence representation. 

4.4 Semantic Understanding by LLM 

We use the specific prompt “The context quadruplets are as follows: {context} The 

query is: {query}. You must generate the prediction without any explanation.” to in-

clude the query event and its neighbors into LLM to exploit the semantic understanding 

to promote event prediction. Then we extract the hidden state 𝑋𝐿𝐿𝑀  corresponding to 

the final token of the input prompt to represent the semantic embedding. The “final 

token” refers to the last token in the input sequence before the model begins generating 

a response. At this position, the hidden state has processed the entire context and query 

information, making it an ideal representation that encapsulates the complete semantic 

understanding of the input. This approach leverages the inherent semantic understand-

ing capabilities of LLM to capture the contextual relationships between events. 

Furthermore, this method allows us to benefit from the LLM's pre-trained knowledge 

without requiring extensive fine-tuning for specific event prediction scenarios. The 

structured prompt format ensures consistent representation of the event context, while 

the extraction of hidden states provides a standardized approach to obtaining semantic 

embeddings that can be readily integrated into existing prediction frameworks. 

4.5 Dynamic Encoding Selection 

Fusion Block: Given semantic embeddings 𝑋𝐿𝐿𝑀 ∈ 𝑅𝑑2  and sequence embeddings 

𝑋𝑀𝑎𝑚𝑏𝑎 ∈ 𝑅𝑑, the fusion process proceeds through the following sequence of opera-

tions: 
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First, the semantic embeddings are projected to match the dimensionality of the se-

quence space: 

𝑋𝐿𝐿𝑀
′ = 𝑊𝑡𝑟𝑎𝑛𝑠𝑋𝐿𝐿𝑀 

where 𝑊𝑡𝑟𝑎𝑛𝑠 ∈ 𝑅𝑑×𝑑2 is the transformation matrix of the linear projection. 

Concurrently, the sequence embeddings undergo an alignment transformation: 

𝑋𝑀𝑎𝑚𝑏𝑎
′ = 𝑊𝑎𝑙𝑖𝑔𝑛𝑋𝑀𝑎𝑚𝑏𝑎 

where 𝑊𝑎𝑙𝑖𝑔𝑛 ∈ 𝑅𝑑×𝑑 represents the alignment matrix. 

The transformed representations are concatenated along the feature dimension: 

𝑋𝑐𝑜𝑛𝑐𝑎𝑡 = [𝑋𝑀𝑎𝑚𝑏𝑎
′ ; 𝑋𝐿𝐿𝑀

′ ] ∈ 𝑅2𝑑 

This concatenated representation is then processed through a non-linear transfor-

mation using a bottleneck architecture: 

𝑋𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑊𝑓𝑢𝑠𝑒2 (𝜎(𝑊𝑓𝑢𝑠𝑒1𝑋𝑐𝑜𝑛𝑐𝑎𝑡)) 

where 𝑊𝑓𝑢𝑠𝑒1 ∈ 𝑅10𝑑×2𝑑 , 𝑊𝑓𝑢𝑠𝑒2 ∈ 𝑅𝑑×10𝑑 , and σ denotes the SiLU activation func-

tion. 

The resulting 𝑋𝑓𝑢𝑠𝑖𝑜𝑛  representation effectively captures the complementary infor-

mation from both modalities, enabling the model to leverage linguistic semantics and 

sequence dynamics simultaneously. 

Adaptive Selection Block: We propose an adaptive fusion mechanism that dynami-

cally selects either sequential event representations from Mamba, semantic representa-

tions from the LLM, or hybrid representations combining both sequential and semantic 

information. 

This sophisticated approach enables the model to adaptively balance and synthesize 

complementary information streams for optimal predictive performance. 

Given the two candidate representations: 

• 𝑋𝑀𝑎𝑚𝑏𝑎 ∈ 𝑅𝐵×𝑑: The Mamba-encoded sequential representation 

• 𝑋𝑓𝑢𝑠𝑖𝑜𝑛 ∈ 𝑅𝐵×𝑑: The fused representation combining both modalities 

where 𝐵 is the batch size and 𝑑 is the embedding dimension, we formulate our fusion 

mechanism as follows: 

First, we compute the cosine similarity between these representations to generate 

selection logits: 

𝐬 = cos(𝑋𝑀𝑎𝑚𝑏𝑎 ,  𝑋𝑓𝑢𝑠𝑖𝑜𝑛) =
𝑋𝑀𝑎𝑚𝑏𝑎 ⋅ 𝑋𝑓𝑢𝑠𝑖𝑜𝑛

||𝑋𝑀𝑎𝑚𝑏𝑎|| ⋅ ||𝑋𝑓𝑢𝑠𝑖𝑜𝑛||
 

We then construct a bidirectional logit vector by concatenating 𝑠 and its negation: 

𝐥 = [𝐬, −𝐬] ∈ 𝑅𝐵×2 



The Gumbel-Softmax sampling procedure is applied to introduce beneficial stochas-

ticity while maintaining differentiability: 

𝐠 = − log(− log(𝐮)) ,  𝐮 ∼ Uniform(0,1) 

𝒑 = softmax (
𝒍 + 𝒈

𝜏
) 

where τ is the temperature parameter controlling the sharpness of the distribution. 

For discrete selection during forward propagation, we employ the straight-through 

estimator: 

𝒚hard = onehot(arg max(𝒑)) 

𝐲̂ = 𝐲hard − 𝐩. 𝑑𝑒𝑡𝑎𝑐ℎ() + 𝐩 

The adaptive fusion is then performed using: 

𝐳 = 𝐲:,0̂ ⋅ 𝑋𝑀𝑎𝑚𝑏𝑎 + 𝐲:,1̂ ⋅ 𝑋𝑓𝑢𝑠𝑖𝑜𝑛 

The differentiable nature of Gumbel-Softmax ensures that gradients flow through all 

pathways during training, facilitating effective learning of the selection policy. 

The proposed mechanism enables dynamic switching between Mamba's sequential 

dynamics and a fused representation incorporating both LLM-derived semantic infor-

mation and Mamba's processing outputs. 

4.6 Training and Optimization 

We compute similarities between this representation and candidate entities: 

𝑝(𝑒𝑔𝑡|𝑞) = Softmax(Sim(𝐳, ℰ)) 

where Sim calculates similarity scores, 𝑞 is the predicted entity with the highest score, 

and 𝑝(𝑒𝑔𝑡|𝑞) represents the likelihood of 𝑞 being the target entity 𝑒𝑔𝑡. 

To enhance temporal understanding, we implement timestamp recovery by replacing 

query event timestamps with [MASK] tokens or random alternatives. The model then 

predicts the correct timestamp: 

𝑝(𝜏𝑔𝑡|𝑞) = Softmax(Sim(𝐳, 𝒯)) 

where 𝑝(τ𝑔𝑡|𝑞) indicates the probability of predicted timestamp matching the ground 

truth τ𝑔𝑡. 

Training utilizes cross-entropy loss for both tasks: 

ℒ = − ∑ log (𝑝(𝑒𝑔𝑡|𝑞)) + 𝜆 log (𝑝(𝜏𝑔𝑡|𝑞))
(𝑠,𝑝,𝑜,𝜏)∈𝒢

 

where (𝑠, 𝑝, 𝑜, τ) represents historical training events and λ weights the timestamp pre-

diction task. 
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Algorithm 1 Dynamic Encoding Selection: Adaptive Mamba and LLM Fusion for 

Temporal Knowledge Graph Reasoning 

Require: 

Knowledge Graph 𝒢, Query 𝑞 = (𝑠, 𝑞, ? , 𝑡) 

Maximum context size 𝑀, Context dropout probability 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡  

Ensure: Entity prediction 𝑒𝑜̂ 

function 𝑀𝑎𝑖𝑛𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑞, 𝒢, 𝑀, 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡) 

𝐶𝑖 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝐼𝑛𝑓𝑜𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔(𝑒𝑠, 𝒢, 𝑀, 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡)           ▷ Retrieve and mask 

neighbors 

𝑋(1) ← 𝐸𝑣𝑒𝑛𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔{𝐶𝑖, 𝑞}                             ▷ Encode event via MLP-Mixer 

    𝑋𝑀𝑎𝑚𝑏𝑎 ← 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔{𝑋(1) }       ▷ Encode event sequence with 

Mamba 

𝑋𝐿𝐿𝑀 ← 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔{𝑞, 𝐶𝑖}         ▷ Extract semantic information 

𝑋𝑓𝑢𝑠𝑖𝑜𝑛 ← 𝐹𝑢𝑠𝑖𝑜𝑛𝐵𝑙𝑜𝑐𝑘{𝑋𝑀𝑎𝑚𝑏𝑎 , 𝑋𝐿𝐿𝑀}              ▷ Create fusion representation 

𝑧 ← 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛{𝑋𝑀𝑎𝑚𝑏𝑎 , 𝑋𝑓𝑢𝑠𝑖𝑜𝑛}  ▷ Apply Gumbel-Softmax selec-

tion 

   𝑒𝑜̂ ← arg max
𝑒∈ℰ

Sim (𝑧, 𝑒)                                      ▷ Select highest similarity entity 

   Return 𝑒𝑜̂ 

end function 

𝑒𝑜̂ ← 𝑀𝑎𝑖𝑛𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒{𝑞, 𝒢, 𝑀, 𝑝𝑑𝑟𝑜𝑝𝑜𝑢𝑡} 

Return 𝑒𝑜̂ 

 

5 Experiments 

Table 1. Statistics of the Experimental Datasets. 

Dataset |ℰ| |ℛ| |𝒯| Time 𝑁train 𝑁valid 𝑁test 

ICEWS14 7,128 230 365 24 hours 72,826 8,941 8,963 

YAGO11k 10,623 10 73 1 year 16,406 2,050 2,051 

Wikidata12 12,554 24 84 1 year 32,497 4,062 4,062 

This section outlines the datasets, implementation details, and experimental results 

to validate the efficacy of our proposed framework.  

5.1 Datasets and Evaluation Criteria 

Following established practices in prior work [23, 25, 29, 35], we evaluate our frame-

work on three benchmark datasets: ICEWS14, YAGO11k, and Wikidata12k. 

ICEWS14 is derived from the Integrated Crisis Early Warning System [36], comprising 

temporally annotated news events from 2014. YAGO11k and Wikidata12k are curated 

subsets of YAGO3 [37] and Wikidata [38], respectively, both featuring timestamped 

facts to ensure temporal generalizability. Each dataset is partitioned into training, vali-

dation, and test sets. Table 1 encapsulates their statistical properties, including temporal 



granularity. Performance is quantified using Mean Reciprocal Rank (MRR), the aver-

age reciprocal rank of the correct entity among predicted candidates, and Hits@k, the 

percentage of instances where the true entity appears within the top 𝑘 ranked predic-

tions. 

5.2 Baseline Methods 

We classify temporal knowledge graph reasoning techniques into five categories: 

•  Time-Independent Methods: These models incorporate timestamps as direct em-

beddings, treating them as translational offsets between entities, such as TimePlex 

[2]. 

• Time-Rotating Function Methods: Temporal embeddings are derived by rotating 

time-independent entity representations. Examples: TeRo [20], RotateQVS [21]. 

• Time-Hyperplane Function Methods: Entities and relations are projected onto 

temporally defined hyperplanes to maintain contextual coherence. Examples: TGe-

omE [24], TeLM [23], HyIE [25]. 

• Non-Linear Function Methods: These methods model the embeddings of entities, 

relations, and timestamps in their specific spaces and introduce neural networks 

(e.g., convolutional neural networks, graph neural networks, Transformer) to facili-

tate the information exchange and capture semantics. The representative studies are 

QDN [29], SANe [28], T-GAP [27], ECEformer [35]. 

• Rule-Based Methods: Leverage logical rules for inferring missing links, enhancing 

interpretability. Examples: NeuSTIP [32], LCGE [33]. 

5.3 Implementation Details 

For model implementation convenience, we leveraged the LibKGE framework¹, which 

offers comprehensive implementations of training protocols, hyperparameter tuning 

methods, and evaluation metrics compatible with various models. We implemented 

DES using PyTorch, with the Mamba component adapted from the official State Space 

Models repository1. For LLM integration, we utilized the LLaMA-7B as pretrained 

transformer model. All experiments were conducted on NVIDIA A100 GPUs with 

40GB memory. This approach ensures our results are reproducible and facilitates equi-

table comparisons with alternative approaches. We standardized the dimensionality of 

all input embeddings at 256, encompassing entities, relations, and temporal markers. 

The feed-forward neural network layers maintain a consistent hidden width of 1024 

units across all modules. 

 
1 https://github.com/state-spaces/mamba 
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5.4 Experiment Results 

Table 2. Comparison of various models on the YAGO11K, Wikidata12k and ICEWS14 da-

tasets. The best results are highlighted in bold. 

Model YAGO11k Wikidata12k ICEWS14 
MRR Hits@1 Hits@3 Hits@5 MRR Hits@1 Hits@3 Hit@5 MRR Hits@1 Hits@3 Hits@5 

TimePlex 23.64 16.92 - 36.71 33.35 22.78 - 53.20 60.40 51.50 - 77.11 

TeRo 18.70 12.10 19.70 31.90 29.90 19.80 32.90 50.70 56.20 46.80 62.10 73.20 

RotateQVS 18.90 12.40 19.90 32.30 - - - - 59.10 50.70 64.20 75.40 

TeLM 19.10 12.90 19.40 32.10 33.20 23.10 36.00 54.20 62.50 54.50 67.30 77.40 

TGeomE 19.50 13.00 19.60 32.60 33.30 23.20 36.20 54.60 62.90 54.60 68.00 78.00 

HyIE 19.10 12.50 20.10 32.60 30.10 19.70 32.80 50.60 63.10 56.30 68.70 78.60 

QDN 19.80 13.10 20.10 32.80 - - - - 64.30 56.70 68.80 78.40 

SANe 25.00 18.00 26.60 40.10 43.20 33.10 48.30 64.00 63.80 55.80 68.80 78.20 

T-GAP - - - - - - - - 61.00 50.90 67.70 79.00 

ECEformer 25.63 19.48 26.88 37.84 47.81 41.35 49.96 60.35 71.70 67.31 73.60 80.30 

NeuSTIP 25.23 18.45 - 37.76 34.78 24.38 - 53.75 - - - - 

LCGE - - - - 42.90 30.40 49.50 67.70 66.70 58.80 71.40 81.50 

DES 29.79 23.15 31.56 42.86 48.14 41.38 50.36 61.33 68.35 60.88 72.46 81.10 

Table 2 presents the performance metrics of our proposed DES model compared with 

existing approaches across three benchmark datasets. The experimental results reveal 

DES's superior capability in handling diverse temporal knowledge graph characteristics 

across both Wikidata12k and YAGO11k datasets. On these benchmarks, DES demon-

strates comprehensive improvements over existing approaches, establishing new state-

of-the-art performance across all evaluation metrics. The model shows particularly 

strong advantages in complex temporal reasoning tasks, as evidenced by its superior 

performance in both precise entity ranking (Hits@1) and broader retrieval scenarios 

(Hits@3 and Hits@10). 

However, the margin of improvement on ICEWS14 is relatively more modest com-

pared to the substantial gains observed on YAGO11k and Wikidata12k. This suggests 

that temporal reasoning scenarios present unique challenges that require further meth-

odological refinement. 

5.5 Ablation Studies 

We conducted an ablation study to evaluate each component's contribution to our DES 

framework. Table 3 shows performance metrics when key components are progres-

sively removed. Removing the adaptive selection mechanism reduced MRR from 29.79 

to 28.17 (-1.62 points), with similar decreases in Hits metrics. This confirms the im-

portance of dynamically selecting appropriate representations based on query context. 

Further removing the fusion mechanism caused additional performance drops, with 

MRR falling to 26.79 (-3.00 points from full model). This demonstrates the value of 

combining complementary information from both sequential and semantic sources. The 

most significant decline occurred when removing the Mamba architecture, resulting in 

an MRR of only 25.67 (-4.12 points from full model). This highlights Mamba's critical 

role in efficiently capturing long-range temporal dependencies with linear complexity. 

These results confirm that each component—Mamba's sequential modeling, the fusion 

mechanism, and adaptive selection—contributes uniquely to DES's effectiveness. The 



full model's superior performance across all metrics validates our integrated approach 

for temporal knowledge graph reasoning. 

Table 3. Ablation study of DES on the YAGO11k dataset. 

Model Variant MRR Hits@1 Hits@3 Hits@10 

DES(Full) 29.79 23.15 31.56 42.86 

w/o Adaptive Selection 28.17 21.38 29.87 40.08 

w/o Adaptive Selection + 

Fusion 
26.79 20.20 28.31 39.56 

w/o Adaptive Selection + 

Fusion + Mamba 
25.67 18.78 27.50 37.85 

5.6 Further Analysis 

 

Fig. 2. Representation Selection Distribution Across Entity Connectivity Levels.  

To gain deeper insights into how our DES model dynamically selects between different 

representation types across various scenarios, we conducted a comprehensive analysis 

of the adaptive selection mechanism on the YAGO11k dataset. We examined how the 

model distributes its attention across the two representation pathways (Mamba-only 

and fusion representation) under different conditions and query types. 

Fig. 2 presents the representation selection distribution across different entity con-

nectivity levels. The results reveal a clear pattern: as entity connectivity increases, the 

model's selection strategy systematically shifts. With sparsely connected entities (<5 

neighboring facts), the model distributes attention equally between both pathways (50% 

each). However, as connectivity increases to highly connected entities (>100 neighbor-

ing facts), the model increasingly favors Mamba-only representations (56.8%) over fu-

sion representations (43.2%). 
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This shift suggests that for entities with rich contextual information, the sequential 

modeling capabilities of Mamba become increasingly valuable, while the fusion path-

way remains important but less dominant. This adaptive behavior highlights how our 

model dynamically leverages different representation types based on the structural 

characteristics of the knowledge graph, optimizing performance across varying connec-

tivity scenarios. 

6 Conclusion 

In this work, we presented a novel approach to temporal knowledge graph reasoning 

that harnesses the complementary strengths of Mamba's efficient sequential modeling 

and LLMs' semantic understanding. Our proposed Dynamic Encoding Selection frame-

work adaptively fuses representations from these two paradigms based on contextual 

factors such as temporal patterns and entity relationships, enabling more accurate and 

interpretable predictions in temporal knowledge graphs.  

The potential promising directions of future work include exploring more sophisti-

cated fusion mechanisms between sequence models and language models to better cap-

ture the nuanced interplay between temporal dynamics and semantic relationships. 
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