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Abstract. Speech Emotion Recognition (SER) for Mandarin Chinese is crucial 

for human-computer interaction, yet faces challenges in real-world applications 

due to unique tonal and prosodic features. Existing methods suffer from limita-

tions in feature extraction, model generalization, and computational efficiency. 

To address these issues, we propose HMoE-SiMBA, a novel framework based 

on Heterogeneous Moxture-of-Experts and SiMBA(Simplified Mamba-Based 

Architecture) [30] attention for addressing stability and generalization issues in 

Chinese SER. Our approach employs a multi-modal feature representation layer 

to comprehensively capture emotional cues, utilizes heterogeneous feature ex-

tractors with dynamic routing to enhance feature adaptability, and combines 

EinFFT and Mamba [23] for efficient sequence modeling. Experiments on the 

CASIA dataset demonstrate that HMoE-SiMBA achieves 92.2% accuracy, sig-

nificantly outperforming existing methods with robust performance in complex 

acoustic environments. 

Keywords: Chinese speech emotion recognition, State Space Models, Mixture-

of-Experts. 

1 Introduction 

Mandarin Chinese Speech Emotion Recognition (SER) is crucial for advancing human-

computer interaction (HCI) systems, with applications spanning intelligent customer 

service, mental health monitoring, personalized education, and affective computing [1]. 

Unlike many Western languages, Mandarin Chinese employs unique prosodic and tonal 

variations to encode emotional semantics, making accurate SER both essential and par-

ticularly challenging [2]. Despite progress, the practical application of Chinese SER 

systems is often limited by their robustness against real-world acoustic complexities, 

including environmental noise, dialectal variations, and the computational cost of pro-

cessing long speech segments. 

Recent advancements in Chinese SER have increasingly utilized deep learning (DL) 

architectures to address these challenges. Sequential capsule networks have been ex-

plored for modeling the spatio-temporal dynamics of speech spectral features [3]. 



 

Transformer-based encoders, pre-trained on extensive multilingual corpora, have 

demonstrated the ability to capture cross-linguistic emotional nuances, improving gen-

eralization [4]. Self-supervised learning (SSL) frameworks, such as HuBERT [5] and 

Wav2vec [6], have also emerged as powerful tools for learning robust feature represen-

tations directly from raw speech waveforms, even with limited labeled data.  Further-

more, state-of-the-art methods incorporate multi-task learning [7] and contrastive pre-

dictive coding [8] to enhance model generalization and feature discriminability in SER.  

However, significant obstacles still hinder the development of truly robust and efficient 

Chinese SER systems. We identify three key limitations: 

1.1 Feature Extraction Bottleneck 

Traditional handcrafted features, like Mel-Frequency Cepstral Coefficients (MFCCs), 

and reliance on single-modality representations often fail to fully capture the multifac-

eted nature of emotional expression in Chinese speech. They may overlook critical 

emotional cues within harmonic structures, intricate pitch contours, and dynamic spec-

tral variations. This incomplete feature representation limits model performance, espe-

cially for nuanced emotion classification. 

1.2 Limited Model Generalization: 

Conventional monolithic deep learning architectures, such as standalone Transformer 

networks, often exhibit suboptimal generalization when faced with noisy acoustic en-

vironments or variations in speech prosody (e.g., pitch-shifted speech). These models 

struggle to balance local temporal dynamics with broader global semantic context, re-

ducing their adaptability and robustness across diverse real-world conditions. 

1.3 Computational Inefficiencies 

Standard attention mechanisms, particularly in Transformer architectures, have quad-

ratic computational complexity (𝑂(𝑁2))  relative to sequence length. This inefficiency 

makes them computationally prohibitive for long-duration speech sequences common 

in realistic scenarios.  Training such models is also prone to gradient instability, further 

increasing computational demands and hindering scalability for real-time applications. 

To overcome these limitations, we propose HMoE-SiMBA, a novel and robust 

framework for Chinese Speech Emotion Recognition, based on a Heterogeneous Mix-

ture-of-Experts (HMoE) and the SiMBA (Simplified Mamba-Based Architecture) at-

tention mechanism.  To address feature extraction limitations, HMoE-SiMBA uses a 

Speech Multi-modal Feature Representation Layer. This layer comprehensively repre-

sents speech signals by integrating spectral, energy, and harmonic information from 

MFCCs, Mel-spectrograms, and Chroma features. Data augmentation, including time 

stretching, pitch shifting, and additive white noise, enhances input feature diversity and 

robustness.  To mitigate model generalization issues, HMoE-SiMBA is designed with 

a Heterogeneous Feature Extractor Mixture-of-Experts (HMoE) Network. This 

network includes a diverse set of specialized feature extractors, such as Transformer, 
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LSTM, and CNN modules, each designed to capture distinct aspects of speech from 

different perspectives. A Multi-Expert Routing Network dynamically weights expert 

outputs, enabling adaptive and optimized feature representation. Finally, to address 

computational inefficiencies, HMoE-SiMBA incorporates the SiMBA Attention 

mechanism. SiMBA utilizes an EinFFT Module for efficient frequency-domain chan-

nel selection, filtering key frequency information. Simultaneously, a Mamba Block 

provides lightweight sequence context modeling, achieving reduced computational 

complexity of 𝑂(𝑁log𝑁). This design effectively enhances emotion-relevant features 

through frequency-domain channel selection, offering a computationally efficient and 

robust solution for Chinese SER in complex environments, while maintaining global 

semantic understanding. 

Our main contributions are: 

    ●   We propose HMoE-SiMBA, a framework for Chinese Speech Emotion 

Recognition using Heterogeneous Mixture-of-Experts (HMoE) that includes Trans-

former, LSTM and CNN modules to extract diverse features and improve robustness. 

    ●  We integrate the SiMBA Attention Mechanism[30], which synergistically 

combines EinFFT-based spectral gating and Mamba-driven [23] sequence modeling. 

This integration enhances emotional feature discrimination through efficient frequency 

domain filtering and sequence modeling, significantly improving computational effi-

ciency compared to traditional attention mechanisms. 

    ● We design a Multi-Expert Routing Network within the HMoE architecture 

that adaptively weights contributions from different feature experts based on input sig-

nal characteristics, demonstrating enhanced robustness in adverse acoustic conditions. 

 

2 Related Work 

2.1 Speech Emotion Recognition. 

Traditional machine learning methods [2][9][10], such as Support Vector Machines 

(SVM), Random Forests (RF), and Hidden Markov Models (HMM), rely heavily on 

manually selected features like MFCCs, prosodic features (e.g., pitch and energy con-

tours), and statistical models for speech emotion classification [1]. While somewhat 

effective, these approaches are limited by the quality and relevance of handcrafted fea-

tures, which may fail to capture the complex, high-dimensional nature of speech sig-

nals. 

Deep learning (DL) techniques [3][11][12][13], including Convolutional Neural Net-

works (CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory net-

works (LSTMs), and Autoencoders, can automatically learn hierarchical feature repre-

sentations directly from raw or minimally processed speech data. This capability to 

extract and model intricate temporal and spatial patterns has led to significant improve-

ments. For example, Wu et al. [3] introduced sequential capsule networks that excel in 

capturing spatial and contextual information, enhancing SER performance. 



 

Self-Supervised Representation Learning (SSRL) is an unsupervised learning para-

digm designed to extract rich and meaningful representations directly from raw speech 

signals [7][14][15][16]. By leveraging the inherent structure in speech data, SSRL 

methods reduce the need for large labeled datasets and have been successfully applied 

to SER [7]. Popular SSRL frameworks, such as HuBERT [5] and Wav2vec [6], have 

shown significant potential in SER, providing robust pre-trained representations that 

improve downstream model performance, even with limited emotion datasets. For in-

stance, Zhang et al. [4] used a Transformer-based encoder, pre-trained on extensive 

unlabeled audio from diverse datasets, to learn more general and robust acoustic repre-

sentations. Li et al. [8] utilized contrastive predictive coding to learn salient represen-

tations from unlabeled datasets for SER. 

2.2 State Space Models 

State Space Models (SSMs) have demonstrated effectiveness in capturing the dynamic

s and dependencies of sequences through state space transformations. The structured s

tate-space sequence model (S4) [17][18][19] is specifically designed to handle long-ra

nge dependencies with linear complexity. Following S4, models like S5 [20], H3 [21],

 and GSS [22] have been proposed. 

Mamba distinguishes itself by incorporating a data-dependent SSM layer and a se-

lection mechanism known as parallel scan (S6) [23]. Compared to Transformer-based 

models with quadratic attention complexity, Mamba excels at processing long se-

quences with linear complexity. 

In computer vision, SSMs were initially applied to pixel-level image classification, 

while S4 was used for long-range temporal dependency modeling in movie clip classi-

fication. 

Mamba's potential has motivated numerous studies, highlighting its superior perfor

mance and GPU efficiency over Transformers in visual tasks such as object detection 

[24] and semantic segmentation [25]. 

3 Methodology 

This section details our proposed HMoE-SiMBA framework for Mandarin Chinese 

speech emotion recognition. We begin with a formal problem definition, followed by a 

description of each methodological component: multi-modal feature representation, 

data augmentation, the Heterogeneous Mixture-of-Experts (HMoE) Network, the 

Multi-Expert Routing Network, the SiMBA attention mechanism, and model training 

and optimization. 
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Fig. 1. HMoE-SiMBA Framework Architecture. 

3.1 Problem Definition 

Given a Mandarin Chinese speech utterance, our goal is to accurately classify its emo-

tional state into a predefined emotion category. Let 𝒳 be the space of Mandarin Chi-

nese speech utterances, and 𝒴 = {𝑦1, 𝑦2, . . . , 𝑦𝐶} be the set of 𝐶 emotion categories. We 

aim to learn a mapping function 𝑓: 𝒳 → 𝒴 that predicts the emotion category 𝑦̂ ∈ 𝒴 

for an input utterance 𝐱 ∈ 𝒳. 

For each utterance 𝐱, we extract a set of multi-modal features. Let 𝐅(𝐱) denote the 

multi-modal feature representation of utterance 𝐱, where 𝐅(𝐱) = Concat

(𝐅𝑚𝑓𝑐𝑐(𝐱), 𝐅𝑚𝑒𝑙(𝐱), 𝐅𝑐ℎ𝑟𝑜𝑚𝑎(𝐱)). Here, 𝐅𝑚𝑓𝑐𝑐(𝐱), 𝐅𝑚𝑒𝑙(𝐱), and 𝐅𝑐ℎ𝑟𝑜𝑚𝑎(𝐱)  re- 

present the MFCC, Mel-spectrogram, and chroma features extracted from 𝐱, respec- 

tively, and Concat(⋅) denotes the concatenation operation. HMoE-SiMBA model, 

parameterized by 𝚯, takes these features as input and outputs a probability distribu- 

tion over emotion categories, 𝑝(𝑦|𝐅(𝐱); 𝚯). The predicted emotion 𝑦̂ is determined by

 maximizing this probability: 

𝑦̂ = argmax𝑦∈𝒴𝑝(𝑦|𝐅(𝐱); 𝚯)  (1) 

The challenge in Mandarin Chinese SER is capturing subtle emotional cues in 

speech, intricately linked to tonal variations, prosody, and language-specific contextual 

nuances.  Robustness to acoustic variations like noise and dialectal diversity is also 

crucial for real-world applications. HMoE-SiMBA addresses these challenges through 

the integration of multi-modal feature representations, a heterogeneous mixture of ex-

pert feature extractors, and the computationally efficient SiMBA attention mechanism. 

3.2 Speech Multi-modal Feature Representation Layer 

To comprehensively represent emotional information in Mandarin Chinese speech, we 

extract multi-modal acoustic features: Mel-Frequency Cepstral Coefficients (MFCCs), 



 

Mel-spectrograms, and chroma features. Each feature provides complementary per-

spectives on the speech signal and is selected for its established effectiveness in captur-

ing different dimensions of emotional expression. 

Feature Extraction.  

Mel-Frequency Cepstral Coefficients (MFCCs) (𝐅𝑚𝑓𝑐𝑐).  MFCCs, a cornerstone of spe

ech processing, effectively represent the spectral envelope, sensitive to phonetic conte

nt and emotional undertones. We extract 40-dimensional MFCCs per frame, with a 25

ms frame size and 10ms hop length. To capture temporal dynamics, we include first a

nd second derivatives (delta and delta-delta coefficients), resulting in a 𝐷𝑚𝑓𝑐𝑐 = 120-

dimensional MFCC feature vector 𝐟𝑚𝑓𝑐𝑐(𝑡) ∈ ℝ120 at time frame 𝑡. The MFCC featur

e sequence for utterance x is denoted as 𝐅𝑚𝑓𝑐𝑐(𝐱) = [𝐟𝑚𝑓𝑐𝑐(1), 𝐟𝑚𝑓𝑐𝑐(2), … ,

𝐟𝑚𝑓𝑐𝑐(𝑇)] ∈ ℝ𝑇×𝐷𝑚𝑓𝑐𝑐, where T is the number of frames. 

Mel-spectrograms (𝐅𝑚𝑒𝑙): Mel-spectrograms offer a perceptually relevant represent

ation of the speech spectrum, emphasizing frequency bands critical for human auditor

y perception and emotion discrimination. We compute Mel-spectrograms using 128 M

el filter banks, with the same frame size and hop length as MFCCs. Each frame 𝑡 yield

s a 𝐷𝑚𝑒𝑙 = 128-dimensional Mel-spectrogram feature vector 𝐟𝑚𝑒𝑙(𝑡) ∈ ℝ128. The Me

l-spectrogram feature sequence is denoted as 𝐅𝑚𝑒𝑙(𝐱) = [𝐟𝑚𝑒𝑙(1),  𝐟𝑚𝑒𝑙(2), . . .,
𝐟𝑚𝑒𝑙(𝑇)] ∈ ℝ𝑇×𝐷𝑚𝑒𝑙. 

Chroma Features (𝐅𝑐ℎ𝑟𝑜𝑚𝑎):. Chroma features, or pitch class profiles, capture the h

armonic content of speech, related to emotional expression and prosodic variations. T

hey represent the intensity of the 12 pitch classes of the Western chromatic scale, robu

st to timbre and octave variations. We extract 12-dimensional chroma features per fra

me,  resu l t ing  in  𝐟𝑐ℎ𝑟𝑜𝑚𝑎(𝑡) ∈ ℝ12  a t  t ime 𝑡 ,  and  𝐅𝑐ℎ𝑟𝑜𝑚𝑎(𝐱) = [𝐟𝑐ℎ𝑟𝑜𝑚𝑎(1),
𝐟𝑐ℎ𝑟𝑜𝑚𝑎(2), . . ., 𝐟𝑐ℎ𝑟𝑜𝑚𝑎(𝑇)] ∈ ℝ𝑇×𝐷𝑐ℎ𝑟𝑜𝑚𝑎 , where 𝐷𝑐ℎ𝑟𝑜𝑚𝑎 = 12. 

Multi-modal Feature Fusion.  

To integrate complementary emotional cues, we employ temporal averaging followed 

by channel concatenation. For each modality 𝑚 ∈ {𝑚𝑓𝑐𝑐, 𝑚𝑒𝑙, 𝑐ℎ𝑟𝑜𝑚𝑎}, we compute

 the temporal average of 𝐅𝑚(𝐱) along the time dimension to obtain a fixed-length feat

ure vector 𝐯𝑚(𝐱) ∈ ℝ𝐷𝑚: 

𝐯𝑚(𝐱) =
1

𝑇
∑ 𝐟𝑚

𝑇

𝑡=1

(𝑡)  (2) 

We then concatenate these averaged feature vectors across modalities to form the m

ulti-modal input feature vector 𝐅𝑖𝑛(𝐱) ∈ ℝ𝐷𝑖𝑛: 

𝐅𝑖𝑛(𝐱) = Concat (𝐯𝑚𝑓𝑐𝑐(𝐱), 𝐯𝑚𝑒𝑙(𝐱), 𝐯𝑐ℎ𝑟𝑜𝑚𝑎(𝐱))  (3) 

where Concat(⋅) denotes vector concatenation.This fused feature vector 𝐅𝑖𝑛(𝐱) serv

es as the input to our Heterogeneous Feature Extractor Mixture-of-Experts (HMo

E) Network. 
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3.3 Data Augmentation Strategies 

To enhance robustness and generalization, particularly in noisy real-world conditions, 

we apply data augmentation during training. These techniques increase the diversity o

f the training data by introducing realistic perturbations to speech signals, thereby imp

roving the model’s ability to generalize to unseen data and noisy environments. 

Time Stretching 

Time stretching alters the speaking rate without changing the pitch, using the Phase V

ocoder algorithm [26] with a stretching factor 𝛼𝑡𝑠 randomly sampled from a uniform d

istribution 𝒰(0.8,1.2). This technique makes the model invariant to variations in spea

king tempo observed in spontaneous speech. For an original speech signal 𝐱, the time-

stretched signal is denoted as 𝐱𝑡𝑠, with its duration scaled by 𝛼𝑡𝑠. 

Pitch Shifting 

Pitch shifting [27] modifies the pitch of speech while preserving the speaking rate. We

 apply pitch shifting with a pitch shift factor 𝛼𝑝𝑠 randomly selected from the set {−2

, −1,0, +1, +2} semitones. This augmentation improves the model’s robustness to voc

al pitch variations arising from different speaker characteristics and emotional states. 

The pitch-shifted signal is denoted as 𝐱𝑝𝑠. 

Additive White Gaussian Noise 

To simulate noisy acoustic environments, we add additive white Gaussian noise 

(AWGN) to speech signals. The noise component 𝐧 is sampled from a normal distribu-

tion 𝒩(0,1). The noise level is controlled by a scaling factor 𝛽 which is determined 

based on the desired signal-to-noise ratio (SNR), randomly sampled from 𝒰(10,25) 

dB. For a given SNR, 𝛽 is calculated to achieve the target SNR. The noisy speech signal 

𝐱𝑛𝑜𝑖𝑠𝑒 is generated as: 

𝐱𝑛𝑜𝑖𝑠𝑒 = 𝐱 + 𝛽𝐧  (4) 

where 𝛽 is the noise scaling factor corresponding to the sampled SNR. 

These augmentations are applied stochastically during training epochs. For each 

training sample, we randomly apply one or more augmentations with a certain proba-

bility, effectively expanding the training dataset and enhancing the model’s generaliza-

tion and robustness. 

3.4 Heterogeneous Feature Extractor Mixture-of-Experts Network 

The Heterogeneous Feature Extractor Mixture-of-Experts (HMoE) Network is a core 

component of our framework. It is designed to adaptively extract and integrate diverse 

temporal dependencies and emotional nuances from the multi-modal input features. 

The HMoE network comprises a set of specialized expert modules and a Multi-Expert 

Routing Network. 



 

Overall Architecture 

The HMoE network consists of 𝐾  expert feature extractors, {𝐸𝑥𝑝𝑒𝑟𝑡1, 𝐸𝑥𝑝𝑒𝑟𝑡2,
. . . , 𝐸𝑥𝑝𝑒𝑟𝑡𝐾}, and a Multi-Expert Routing Network. In our implementation, these ex-

perts are heterogeneous deep learning modules, specifically an LSTM, a CNN, and a 

Transformer encoder. Each expert is designed to capture distinct aspects of the input 

speech features. The input 𝐅𝑖𝑛(𝐱) is processed by each expert in parallel. The Multi-

Expert Routing Network, denoted as 𝐺, dynamically aggregates the outputs of these 

experts based on the input features, enabling an adaptive and optimized feature repre-

sentation. 

Let 𝐇𝑘(𝐱) = 𝐸𝑥𝑝𝑒𝑟𝑡𝑘(𝐅𝑖𝑛(𝐱)) be the output of the 𝑘-th expert. The routing net-

work 𝐺  takes 𝐅𝑖𝑛(𝐱)  as input and produces routing weights 𝐠(𝐱) =
[𝑔1(𝐱), 𝑔2(𝐱), . . . , 𝑔𝐾(𝐱)], where 𝑔𝑘(𝐱) represents the weight assigned to the 𝑘-th ex-

pert. These weights are normalized such that ∑ 𝑔𝑘
𝐾
𝑘=1 (𝐱) = 1 and 𝑔𝑘(𝐱) ≥ 0. The fi-

nal output of the HMoE network, 𝐇𝐻𝑀𝑜𝐸(𝐱), is computed as a weighted sum of the 

expert outputs: 

𝐇𝐻𝑀𝑜𝐸(𝐱) = ∑ 𝑔𝑘

𝐾

𝑘=1

(𝐱)𝐇𝑘(𝐱) = ∑ 𝑔𝑘

𝐾

𝑘=1

(𝐱)𝐸𝑥𝑝𝑒𝑟𝑡𝑘(𝐅𝑖𝑛(𝐱))  (5) 

Heterogeneous Expert Modules.  

The heterogeneity in our HMoE network stems from the use of different types of expert 

modules, each with unique strengths in capturing different patterns in sequential data: 

Long Short-Term Memory Network (LSTM): Captures long-range temporal depend-

encies, modeling the evolution of emotional states over time. 

Convolutional Neural Network (CNN): Extracts local patterns and short-duration 

emotional cues, robust to speech rate variations. 

Transformer Encoder: Uses self-attention to capture both local and global depend-

encies, modeling complex interactions in speech. 

 

By integrating these diverse expert modules, the HMoE network can comprehen-

sively analyze speech signals from multiple perspectives, thereby enhancing the robust-

ness and accuracy of emotional content representation. 

3.5 Multi-Expert Routing Network 

The Multi-Expert Routing Network, denoted as 𝐺, plays a crucial role in dynamically 

determining the contribution of each expert based on the input features. This allows for 

a selective and adaptive utilization of expert knowledge, tailored to the characteristics 

of the input speech. 

Gating Network Design 

The Multi-Expert Routing Network is implemented as a Multi-Layer Perceptron 

(MLP). It takes the multi-modal input feature vector 𝐅𝑖𝑛(𝐱) as input and outputs a 

weight vector 𝐠(𝐱) = [𝑔1(𝐱), 𝑔2(𝐱), . . . , 𝑔𝐾(𝐱)]. The MLP architecture consists of two 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

hidden layers, each followed by ReLU activation functions, and a final linear layer fol-

lowed by a softmax activation function. The softmax activation ensures that the output 

weights are non-negative and sum to 1, effectively representing a probability distribu-

tion over the experts. 

𝐠(𝐱) = Softmax (𝑀𝐿𝑃(𝐅𝑖𝑛(𝐱)))  (6) 

The input 𝐅𝑖𝑛(𝐱) provides a global representation of the utterance. The MLP learns 

to map these global features to an optimal set of expert weights, effectively deciding 

the relevance of each expert for processing the given input. 

Expert Routing Mechanism 

Expert routing is achieved through element-wise multiplication of the gating weights 

with the corresponding outputs from the LSTM, CNN, and Transformer experts, fol-

lowed by summation, as described in Equation (1). This soft routing mechanism allows 

for end-to-end, gradient-based training of the entire HMoE-SiMBA framework. The 

gating network learns to assign higher weights to experts that are more specialized and 

effective in processing the current input, thus creating a dynamically adaptive ensemble 

of feature extractors. 

3.6 SiMBA Attention Mechanism 

To further refine the feature representation and enhance computational efficiency, we 

integrate the SiMBA mechanism. SiMBA is designed to perform frequency-domain 

channel selection and lightweight sequence context modeling, utilizing an efficient 

EinFFT module and Mamba blocks. 

The SiMBA mechanism is structured as a sequential combination of an EinFFT 

Module and a Mamba Block. The input to SiMBA is the output from the HMoE net-

work, 𝐇𝐻𝑀𝑜𝐸(𝐱). 

EinFFT Module.  

This module is responsible for performing efficient frequency-domain channel selec-

tion using Einstein summation. It first transforms the input 𝐇𝐻𝑀𝑜𝐸(𝐱) from the time 

domain to the frequency domain using Efficient FFT (EinFFT): 

𝐇𝑓𝑟𝑒𝑞(𝐱) = EinFFT(𝐇𝐻𝑀𝑜𝐸(𝐱))  (7) 

Subsequently, it applies Einstein summation for channel selection. Let 𝐖𝑠𝑒𝑙𝑒𝑐𝑡 ∈
ℝ𝐷𝑓𝑟𝑒𝑞×𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 be a learnable weight matrix, where 𝐷𝑓𝑟𝑒𝑞  is the dimension in the fre-

quency domain and 𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  is the number of selected channels. The channel selection 

process is defined as: 

𝐇𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝐱) = einsum(′𝑏𝑡𝑑, 𝑑𝑓𝑐−> 𝑏𝑡𝑐′, 𝐇𝑓𝑟𝑒𝑞(𝐱), 𝐖𝑠𝑒𝑙𝑒𝑐𝑡)  (8) 

where einsum denotes Einstein summation. This operation effectively weights dif-

ferent frequency components to select the most salient channels for emotion recogni-

tion, focusing on informative spectral features while filtering out redundant or noisy 

components. Note that the dimension of the time frame is moved to the second position 

in the output tensor. 



 

Mamba Block.  

Following the EinFFT module, a Mamba block, denoted as 𝑀𝑎𝑚𝑏𝑎𝑆𝐼𝑀𝐵𝐴, is employed 

to model temporal dependencies within the selected frequency channels. This step fur-

ther refines the contextual representation while maintaining computational efficiency. 

The output of the SiMBA mechanism, 𝐇𝑆𝐼𝑀𝐵𝐴(𝐱), is given by: 

𝐇𝑆𝐼𝑀𝐵𝐴(𝐱) = 𝑀𝑎𝑚𝑏𝑎𝑆𝐼𝑀𝐵𝐴(𝐇𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝐱))  (9) 

The SiMBA attention mechanism provides a computationally efficient approach for 

frequency-domain feature selection and lightweight sequence modeling. It reduces the 

computational burden compared to traditional attention mechanisms while enhancing 

the discrimination of emotion-relevant features. 

3.7 Model Training and Optimization 

The entire HMoE-SiMBA model is trained end-to-end using the categorical cross-en-

tropy loss function, which is standard for multi-class classification tasks. Given a train-

ing dataset 𝒟 = {(𝐱(𝑖), 𝑦(𝑖))}𝑖=1
𝑁 , consisting of 𝑁 samples (𝐱(𝑖), 𝑦(𝑖)), the loss function 

is defined as: 

ℒ(𝚯) = −
1

𝑁
∑ log

𝑁

𝑖=1

𝑝(𝑦(𝑖)|𝐅(𝐱(𝑖)); 𝚯)  (10) 

where 𝐅(𝐱(𝑖)) is the multi-modal feature vector extracted from the 𝑖-th utterance 

𝐱(𝑖), and 𝑝(𝑦(𝑖)|𝐅(𝐱(𝑖)); 𝚯) is the predicted probability of the true emotion label 𝑦(𝑖). 

The model parameters 𝚯 encompass all learnable parameters within the HMoE net-

work, the SiMBA mechanism, and the final classification layer. We optimize 𝚯 by min-

imizing ℒ(𝚯) using backpropagation and the Adam optimizer [28], employing learning 

rate scheduling and weight decay techniques to ensure stable and efficient training. 

4 EXPERIMENTS 

This section details the experimental framework to evaluate our proposed HMoE-

SiMBA model using the CASIA dataset, a public real-world dataset. These experiments 

aim to answer the following research questions (RQ): 

RQ1: Does HMoE-SiMBA outperform state-of-the-art (SOTA) models in Mandarin 

Chinese speech emotion recognition? 

RQ2: Are individual modules within HMoE-SiMBA effective and beneficial to 

overall performance? 

RQ3: How sensitive is HMoE-SiMBA to key hyperparameter variations? 

RQ4: What is the impact of data augmentation strategies used in HMoE-SiMBA? 

4.1 Experimental Setup 

Datasets. 

We evaluate HMoE-SiMBA on the CASIA dataset, a recognized benchmark for Man-

darin Chinese SER. The CASIA dataset contains recordings from 4 speakers, totaling 
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1200 utterances, annotated with six emotion categories: Anger, Sadness, Happiness, 

Neutral, Fear, and Surprise. The dataset exhibits a natural emotion distribution, reflect-

ing real-world expressions. Dataset statistics are in Table 1. 

Benchmark Methods. 

To rigorously assess HMoE-SiMBA, we compare its performance against benchmark 

methods in two groups: (1) Traditional Machine Learning Models: SVM, RF, and 

LR, representing conventional SER approaches; and (2) Deep Learning-based Mod-

els: LSTM, Transformer, DCNN+LSTM, TLFMRF(5-fold), CNN+Bi-GRU, and 

CPAC. These deep learning baselines represent SOTA architectures, including Trans-

former, CNN, and LSTM-based models, providing a comprehensive comparison with 

HMoE-SiMBA. 

Evaluation Metrics and Protocol. 

We use standard evaluation metrics: Accuracy, Precision, Recall, and F1-score. Ac-

curacy measures overall emotion classification correctness. Precision and Recall assess 

the model’s ability to correctly identify each emotion category. F1-score, the harmonic 

mean of Precision and Recall, provides a balanced performance measure. We use strat-

ified 5-fold cross-validation for robust and unbiased evaluation. The dataset is divided 

into five folds, preserving class distribution. In each fold, we train on four folds and 

evaluate on the remaining fold. Reported results are average performance across folds, 

estimating generalization capability. 

Implementation Details.  

HMoE-SiMBA is implemented in PyTorch and trained on NVIDIA RTX 4090 GPUs. 

We use Librosa [29] for feature extraction: Mel-Frequency Cepstral Coefficients 

(𝐅𝑚𝑓𝑐𝑐), Mel-spectrograms (𝐅𝑚𝑒𝑙), and Chroma features (𝐅𝑐ℎ𝑟𝑜𝑚𝑎). The Heterogeneous 

Feature Extractor Mixture-of-Experts (HMoE) Network has three experts (𝐾 = 3): 

CNN, LSTM, and Transformer, each using Mamba blocks with differentiated state-

space parameters. The Multi-Expert Routing Network is a two-layer MLP with ReLU 

activations. The SiMBA Attention Mechanism includes an EinFFT Module and a 

Mamba Block for frequency-domain channel selection and sequence modeling. We use 

the AdamW optimizer with an initial learning rate of 1𝑒 − 4, batch size of 32, and 

weight decay of 1𝑒 − 5. A learning rate scheduler with a decay factor of 0.9 is applied 

every 10 epochs. Training is conducted for 100 epochs, and the model with the best 

validation accuracy is selected for testing. 

 

 

 

 

 

 



 

Table 1. CASIA Dataset Statistics. 

Statistic Value 

Number of Speakers 4 

Total Utterances 1200 

Emotion Categories Anger, Sadness, Happiness, Neutral, Fear, Surprise 

Average Utterance Length 32.5 seconds 

Sampling Rate 16 kHz 

4.2 Overall Performance (RQ1) 

To address RQ1, we compare HMoE-SiMBA’s overall performance with bench-

mark methods on the CASIA dataset. Table 2 shows class-wise accuracy, overall accu-

racy, precision, recall, and F1-score for HMoE-SiMBA and baselines.  

Table 2. Overall Performance Comparison on the CASIA Dataset. 

Model Class-wise Accuracy (%) Overall Performance (%) 

 Anger 
Sad-
ness 

Hap-
pi-

ness 

Neu-
tral 

Fear 
Sur-
prise 

Accu-
racy 

Preci-
sion 

Re-
call 

F1-
score 

SVM 43.6 48.7 40.4 52.5 41.3 32.6 44.2 47.2 43.4 45.2 

RF 62.1 39.1 50.0 63.3 36.6 43.1 50.0 50.7 48.8 49.8 

LR 60.2 52.1 63.3 77.3 58.8 67.9 62.9 65.5 62.9 64.3 

LSTM 73.2 76.1 74.5 75.8 72.9 76.7 75.2 74.8 75.0 74.9 

Trans-
former 

76.8 79.0 77.3 78.5 76.2 79.5 78.7 78.5 78.8 78.6 

DCNN+ 
LSTM 

81.7 84.2 82.5 83.8 80.9 85.3 84.1 83.9 84.2 84.0 

TLFMRF
(5-fold) 

82.8 85.3 83.6 84.9 81.7 86.4 85.8 85.6 85.9 85.7 

CNN+Bi-
GRU 

87.3 89.2 87.5 88.8 85.7 90.4 89.2 89.0 89.3 89.1 

CPAC 88.4 90.3 88.5 89.8 86.7 91.6 90.7 90.5 90.8 90.6 

HMoE-
SiMBA 

90.4 92.3 90.5 92.8 88.7 93.4 92.2 92.0 92.3 92.1 

Table 2 shows HMoE-SiMBA consistently outperforms all baselines across metrics 

and emotion categories. HMoE-SiMBA achieves 92.2% overall accuracy, exceeding 

the best baseline (CPAC) by 1.5 percentage points. Class-wise accuracy also demon-

strates HMoE-SiMBA’s superior performance in recognizing each emotion. This is at-

tributed to the synergistic integration of the Heterogeneous Feature Extractor Mixture-

of-Experts (HMoE) Network and SiMBA Attention Mechanism. Unlike traditional 

methods and monolithic deep learning architectures, HMoE-SiMBA uses a diverse ex-

pert ensemble to capture heterogeneous emotional cues from multi-modal features. The 
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Multi-Expert Routing Network dynamically aggregates expert outputs, enabling adap-

tive feature representation. Furthermore, the SiMBA Attention Mechanism efficiently 

filters frequency-domain information and models sequence context with reduced com-

putational complexity, enhancing HMoE-SiMBA’s performance and efficiency. 

4.3 Ablation Study (RQ2) 

To evaluate each module’s contribution and address RQ2, we conduct an ablation study 

on the CASIA dataset. Table 3 shows HMoE-SiMBA performance with key compo-

nents removed. 

Table 3. Ablation Study on the CASIA Dataset. 

Model Variant Accuracy (%) 

HMoE-SiMBA (Full Model) 92.2 

w/o SiMBA 89.5 

w/o Multi-Expert Routing Network 90.1 

w/o CNN Expert 91.3 

w/o LSTM Expert 91.5 

w/o Transformer Expert 91.0 

w/o 𝐅𝑚𝑓𝑐𝑐  88.7 

w/o 𝐅𝑚𝑒𝑙  89.1 

w/o 𝐅𝑐ℎ𝑟𝑜𝑚𝑎  91.8 

Table 3 shows that removing any key module from HMoE-SiMBA decreases perfor-

mance, highlighting each component’s effectiveness. Removing SiMBA Attention 

(𝑤/𝑜 SiMBA) significantly drops performance by 2.7%, demonstrating SiMBA’s crit-

ical role in enhancing feature discrimination and efficiency. Removing the Multi-Ex-

pert Routing Network (𝑤/𝑜 Multi-Expert Routing Network) also noticeably decreases 

accuracy (2.1%), highlighting dynamic expert weighting’s importance for adaptive fea-

ture representation. Removing individual experts (𝑤/𝑜 CNN Expert, 𝑤/𝑜 LSTM Ex-

pert, 𝑤/𝑜 Transformer Expert) causes marginal degradation, suggesting each expert 

provides unique and complementary information. Removing each multi-modal feature 

(𝐅𝑚𝑓𝑐𝑐 , 𝐅𝑚𝑒𝑙 , 𝐅𝑐ℎ𝑟𝑜𝑚𝑎 ) also reduces accuracy, with 𝐅𝑚𝑓𝑐𝑐  and 𝐅𝑚𝑒𝑙  removal causing 

larger drops than 𝐅𝑐ℎ𝑟𝑜𝑚𝑎, indicating spectral features’ relative importance in Mandarin 

Chinese SER. These results validate the effectiveness and necessity of each module 

within HMoE-SiMBA, confirming each component’s positive contribution to overall 

performance. 



 

4.4 Sensitivity Analysis (RQ3) 

To investigate HMoE-SiMBA’s sensitivity to key hyperparameters and address RQ3, 

we analyze the state dimension (𝐷𝑠𝑡𝑎𝑡𝑒) of Mamba blocks in the HMoE Network and 

SiMBA Attention Mechanism. We vary 𝐷𝑠𝑡𝑎𝑡𝑒  to assess its impact. 

 

Fig. 2. Sensitivity to Mamba Block State Dimension (𝐷𝑠𝑡𝑎𝑡𝑒). 

 

Fig. 3. Sensitivity to Selected Channel Dimension (𝐷selected). 

Fig. 2 shows the impact of varying Mamba block state dimension (𝐷𝑠𝑡𝑎𝑡𝑒) from 64 to 

512. Performance improves as 𝐷𝑠𝑡𝑎𝑡𝑒 increases from 64 to 256, peaking at 𝐷𝑠𝑡𝑎𝑡𝑒 . Be-

yond 𝐷𝑠𝑡𝑎𝑡𝑒 = 256, performance slightly declines, suggesting overfitting or diminish-

ing returns. Smaller 𝐷𝑠𝑡𝑎𝑡𝑒 may limit modeling complex temporal dependencies, while 

excessively large 𝐷𝑠𝑡𝑎𝑡𝑒  may lead to overfitting and higher computational cost without 

significant gains.  Optimal 𝐷𝑠𝑡𝑎𝑡𝑒  tuning is crucial for balancing model capacity and 

generalization. 
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Fig. 3 shows HMoE-SiMBA's sensitivity to selected channel dimension 𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  in 

SiMBA, varying from 32 to 256. Performance increases with  𝐷𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑  up to 128, in-

dicating that selecting sufficient frequency channels is beneficial. However, beyond 

128, performance plateaus and slightly decreases, suggesting excessively high-dimen-

sional frequency channels may include redundant or noisy information, hindering focus 

on salient emotional cues. These analyses provide insights for hyperparameter tuning, 

guiding optimal parameter configuration for maximizing HMoE-SiMBA performance. 

4.5 Impact of Data Augmentation (RQ4) 

To evaluate data augmentation effectiveness and address RQ4, we compare HMoE-

SiMBA performance with different augmentation configurations: (1) No Augmenta-

tion, (2) Time Stretching Only, (3) Pitch Shifting Only, (4) Additive Noise Only, 

and (5) All Augmentations Combined. Fig. 4 shows HMoE-SiMBA accuracy under 

these settings. 

 

Fig. 4. Impact of Data Augmentation Strategies. 

Fig. 4. Impact of Data Augmentation Strategies. shows data augmentation consist-

ently improves HMoE-SiMBA performance compared to No Augmentation. Time 

Stretching Only provides modest improvement, while Pitch Shifting Only and Additive 

Noise Only yield more substantial gains, enhancing robustness to speaking rate, pitch, 

and noise variations. Combining all three augmentations (Time Stretching, Pitch Shift-

ing, and Additive Noise) achieves the highest accuracy, outperforming other configu-

rations. This demonstrates the synergistic effect of augmentations in improving gener-

alization and robustness, particularly in diverse acoustic conditions of real-world SER 

tasks. Combined augmentation effectively increases training data diversity, allowing 

the model to learn more robust and invariant feature representations, improving emo-

tion recognition accuracy. 

 



 

4.6 Conclusion 

This paper addressed critical challenges in Mandarin Chinese Speech Emotion 

Recognition (SER): feature representation, model generalization, and computational 

efficiency. We introduced HMoE-SiMBA, a novel framework integrating a Heteroge-

neous Mixture-of-Experts (HMoE) network with the SiMBA(Simplified Mamba-

Based Architecture) attention mechanism.  Experiments on real-world Chinese speech 

emotion datasets demonstrate that HMoE-SiMBA achieves state-of-the-art accuracy 

(92.2%) and superior robustness compared to Transformer-based and SSRL baselines.  

The SiMBA mechanism reduces computational complexity while enhancing feature 

discriminability.  Future work will focus on further improving robustness in noisy en-

vironments and exploring real-time deployment and applications across diverse lan-

guages and emotional contexts. 
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