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Abstract. In Online Continual Learning (OCL), all samples arrive sequentially 

and are seen only once, posing a challenge in balancing the learning of new tasks 

with the retention of old task knowledge. Traditional methods often ignore the 

protection of previously learned knowledge while learning new tasks, leading to 

catastrophic forgetting. On the other hand, some methods focus on minimizing 

the forgetting of previous knowledge, which hinders the model’s ability to effec-

tively learn new knowledge. To address the balance between learning new tasks 

and preserving old knowledge, we propose a new framework—Prototype-based 

Bilevel Knowledge Distillation (PBKD). By incorporating hierarchical proto-

types and bilevel distillation mechanisms, PBKD enhances the model's ability to 

distinguish between classes through personalized feature representations and dy-

namically adjusts the knowledge transfer between teacher and student models. 

This approach allows for the effective retention of old task knowledge while im-

proving the model’s capacity to learn new tasks. Extensive experimental results 

demonstrate that PBKD achieves a more favorable combination of accuracy and 

forgetting rate on three benchmark datasets, validating its effectiveness in ad-

dressing the knowledge learning and forgetting issue in OCL. 
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1 Introduction 

With the rise of deep learning, continual learning (CL) [27] has become essential for 

adapting models to dynamic tasks. While offline CL [4,12,33] consolidates knowledge 

through past data, online continual learning (OCL) prohibits data storage, leading to 

catastrophic forgetting in large-scale models like GPT [3,1]. The key challenge in OCL 

is balancing new task learning with prior knowledge retention.  

Replay-based methods [24,6,21] store past samples but overlook intra-class varia-

tions, leading to shortcut learning. Prototype-based approaches [17,28] capture class 

features but rely on a single prototype, limiting expressiveness. Knowledge distillation 

[7] transfers knowledge via a static teacher, failing to adapt to new tasks. While intra-

layer distillation [29] improves feature learning, it treats all layers equally, ignoring 

their varying representational capacities. 



 

We propose Prototype-based Bilevel Knowledge Distillation (PBKD), introducing 

hierarchical prototypes for fine-grained feature learning and reducing intra-class vari-

ance. PBKD integrates intra-model and inter-model distillation: intra-model enhances 

new task learning, while inter-model preserves past knowledge. Unlike fixed-weight 

approaches, PBKD adaptively weights layers based on their learning contributions, 

achieving a balance between knowledge retention and adaptation. 

Contributions We propose PBKD, a framework integrating intra-model and inter-

model distillation to balance learning and forgetting in OCL. We introduce hierarchical 

prototypes, enabling each layer to capture fine-grained class features and mitigate 

shortcut learning. We conduct extensive experiments on benchmark datasets, demon-

strating that PBKD outperforms state-of-the-art methods across different settings. 

2 Related Work 

2.1 Continual Learning (CL) 

Continual learning updates models incrementally, enabling adaptation to streaming 

data. Solutions include regularization, dynamic networks, and replay-based methods. 

Regularization constrains parameters [14] or leverages past exemplars [20]. Dynamic 

networks expand model capacity [30,25], while replay-based methods [5,13] store sam-

ples for simultaneous learning and review. 

2.2 Prototype Learning in CL 

Prototypes, as class representations, facilitate classification and zero-shot inference. 

iCaRL [23] aligns features with prototypes, while SCR [21] employs prototype classi-

fiers. OnPro [28] balances prototypes to reduce shortcut learning, and PPE [17] stores 

class features to mitigate forgetting. However, single-class prototypes fail to capture 

intra-class variations, limiting adaptability. 

2.3 Knowledge Distillation in CL 

Knowledge distillation transfers knowledge to reduce forgetting. LwF [18] pioneered 

distillation in CL, while DMC [31] trains expert models for knowledge retention. COIL 

[32] enhances alignment via bidirectional distillation. MOSE [29] distills from early to 

later layers but lacks explicit forgetting mitigation. MKD [22] updates teachers dynam-

ically, reducing interference but without optimizing new task learning. 
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3 Proposed Methods  

3.1 Problem Definition 

In line with the widely accepted setup in online continual learning (OCL) tasks [6], we 

define  tasks  on each dataset, where each task corresponds to a dis-

tinct set of categories , such that the union of all categories across tasks covers the 

entire category space, i.e., , and the categories in different tasks are disjoint, 

i.e., for any . This setup is standard in the OCL paradigm and aims 

to evaluate the model’s ability to resist catastrophic forgetting when learning sequential 

tasks.  

Each task’s data is denoted as , where  is the -th image and \(y_i\) 

its label. In accordance with the online learning paradigm, each sample is presented to 

the model exactly once, and no sample is revisited. To mitigate forgetting of previously 

learned tasks, we adopt a fixed-size replay buffer [5,2], which is a common strategy in 

OCL research. After learning task , a subset of its samples is stored in the buffer. 

When learning task , the model is trained on both the new samples  and the 

buffered samples  from previous tasks. This combination helps to retain knowledge 

of earlier tasks while allowing the model to learn new tasks. 

Table 1. Accuracy of Different Layers on All CIFAR-100 Tasks After the Final Task. 

Layer T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 

L1 26.6 17.5 32.4 20.7 29.1 33.9 35.4 33.4 43.4 53.3 

L2 26.8 19.1 33.1 23.9 31.4 35.6 39.5 40.1 48.5 62.1 

L3 22.7 16.8 31.0 21.8 27.2 37.6 37.5 42.5 51.1 71.6 

L4 22.7 12.9 29.9 18.4 26.2 34.7 36.3 44.9 49.9 77.9 

- The best results within four layers are bolded and the second-best results are under-

lined. 

3.2 Weighted Intra-model Distillation 

Most online continual learning tasks use ResNet or ViT as the backbone network. In 

this paper, we adopt ResNet18, which consists of four hierarchical structures 

, each containing BasicBlocks. These BasicBlocks include two 3×3 

convolutional layers, batch normalization, and ReLU activation, and are connected 

through identity mapping. Given an input  at stage , hierarchical features are ex-

tracted sequentially as , where . 

We recognize that shallow layers typically focus on low-level features such as edges, 

while deeper layers focus on high-level features such as object parts. This motivates us 



to introduce the necessity of a distillation loss to transfer knowledge from shallow lay-

ers to deep layers. Therefore, we define the intra-model distillation loss, which distills 

knowledge from the first three layers (shallow layers) into the fourth layer (the deepest 

layer). Specifically, we define distillation weights  for each teacher 

module, and introduce the hierarchical distillation loss: 

  (1) 

where  represents the classification logits of the -th teacher module, repre-

sents the classification logits of the student module, and  denotes the  dis-

tance. The weights  are calculated based on the training loss  for each layer: 

  (2) 

 

The weights  allow dynamic adjustment of the contribution of each teacher mod-

ule, enabling the student to selectively absorb the most valuable knowledge while re-

ducing interference from redundant or irrelevant information. 

 Tab. 1 shows that shallow layers have higher accuracy in early tasks, indicating that 

shallow layers are less prone to forgetting previously learned knowledge than deep lay-

ers. This is consistent with the fact that shallow layers primarily focus on simpler fea-

tures, which are easier to retain. Therefore, during inference, we combine the prediction 

outputs from all four layers, with each layer contributing based on the knowledge it has 

learned. 

During testing, we compute the weighting coefficient  for each layer based on the 

entropy of its prediction, representing the layer's contribution to the final prediction: 

  (3) 

where  denotes the entropy of the -th layer output , which measures the 

certainty of the layer’s prediction. A lower entropy indicates a more certain prediction, 

and the weight becomes larger. 
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Fig. 1. Illustration of our proposed PBKD framework. In task  a batch of images is combined 

with buffer-sampled and augmented images as the model's input. The distillation process includes 

intra-model distillation, where the student model’s fourth layer logits are aligned with the first 

three teacher layers' features(frozen during distillation), and inter-model distillation, where the 

feature tensors from each student layer are aligned with the corresponding teacher layer(frozen 

during distillation). Each layer’s feature output constructs its own prototype for prototype learn-

ing to enhance the model's learning ability. 

Finally, the final class is computed by weighting the output of each layer  with the 

features  from the replayed samples based on their L2 distance: 

  (4) 

where  is the class label,  is the feature representation of the replayed sample , 

and  is the L2 distance between the -th layer’s output and the replayed 

sample’s feature. Through this weighted distance computation, we can effectively com-

bine the information from shallow and deep layers, and leverage the knowledge from 

replayed samples to enhance the final performance of the model. 

 

3.3 Inter-model Distillation 

Intra-model distillation effectively enhances the learning ability of the current task by 

continuously distilling knowledge during training, but it overlooks the forgetting of 

knowledge from previous tasks, resulting in suboptimal performance on older tasks. 

Fixed-teacher distillation, while providing stable knowledge guidance, is rigid and un-

able to adapt to the dynamic changes of new tasks. Inspired by [22], we propose a dy-

namically adaptive teacher model. 



Specifically, we utilize a copy of the original model as the teacher model to store the 

parameters of the student model from previous tasks. The teacher model is updated 

dynamically using an Exponential Moving Average (EMA). Let the teacher model's 

parameters for task  be  and the student model's parameters for task  be . 

The update rule is as follows: 

  (5) 

where  is a hyperparameter that controls the trade-off between stability 

and plasticity. A larger value of  allows the teacher model to adapt more quickly to 

the current task, while a smaller value of  helps preserve knowledge from previous 

tasks. This EMA-based dynamic update mechanism allows the teacher model to adjust 

dynamically to new tasks while ensuring that parameters from previous tasks are not 

drastically altered, achieving a balance between stability and plasticity. 

Based on this, we define the inter-model distillation loss, which aims to guide the 

student model using the teacher model, thereby reducing the forgetting of previous 

tasks. The loss function is defined as: 

  (6) 

where  denotes the set of training samples in the Task t,  and  represent 

the feature representations of sample  output by the student and teacher models, re-

spectively, and  denotes the  distance between features. 

3.4 Hierarchical Feature Prototypes 

Prototype Definition Previous methods compute contrastive loss using samples from 

both the current task and the replay buffer to enhance inter-class separation. However, 

feature distributions within the same class often exhibit high variability, and some sam-

ples may contain noise or irrelevant information, leading the model to focus on non-

essential details and impeding learning. 

To address this, following [17,28], we introduce prototypes as global feature repre-

sentations for each class. By aggregating features from all samples of the same class, 

prototypes capture representative characteristics while reducing noise and bias. The 

prototype for a given class  is defined as: 

  (7) 
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where  is the number of samples in class , and  denotes the feature repre-

sentation of sample . Prototypes stabilize intra-class clustering while improving in-

ter-class separability, enhancing overall feature discrimination. 

Hierarchical Prototype Modeling We define personalized prototypes at each model 

layer to capture hierarchical feature differences. By constructing layer-specific class 

prototypes, we leverage low-level semantic details from shallow layers alongside high-

level semantics from deeper layers, improving class discriminability.  

Class prototypes are computed using both new task samples and replay buffer sam-

ples. According to Eq. 7, the layer-wise class prototypes are defined as:  

  (8) 

  (9) 

where  and  are the sample counts for class  in the new task and class 

 in the replay buffer, respectively.  and  represent their features 

at layer . The sets  and  denote the class categories in the new task and 

replay buffer. 

To further enhance representation quality, we design a contrastive loss to encourage 

intra-class consistency and inter-class separation. The prototype loss for new task sam-

ples and replay buffer samples is given by: 

  (10) 

  (11) 

where  and  are sets of class prototypes and their augmented views, respec-

tively. Similarly,  and  denote buffer prototypes and their augmented versions. 

The temperature parameter  controls the sharpness of the similarity distribution. The 



hierarchical prototype loss is computed by summing the new sample and buffer losses 

for each layer: 

  (12) 

 

Fig. 2. The average accuracy of six methods (PBKD, MOSE, MKD, PCR, GSA, and 

OCM) on CIFAR-100 and MiniImageNet with a memory size of 1000 after each task. 

Finally, to integrate multi-layer feature information, the total prototype loss is ob-

tained by weighting and summing across layers: 

  (13) 

where  balances the contributions of different layers. 

3.5 Overall Model Framework 

The overall framework is illustrated in Fig. 1. Following [21], we adopt cross-entropy 

loss and contrastive loss as the base loss . Instead of relying solely on the final 

layer’s output, we integrate features from all four layers into the NCM (Nearest Class 

Mean) module for classification, enhancing accuracy. To improve feature discrimina-

tion, we introduce layer-specific prototypes and optimize class separation via . 

Additionally, intra-layer knowledge distillation  consolidates classification 

advantages across layers into the final layer, while inter-layer knowledge distillation 

 mitigates forgetting by constraining parameter shifts using a teacher model. 

The final loss function is:   
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  (14) 

4 Experiment  

4.1 Experimental Setup 

Datasets. We test our method on three benchmark datasets: CIFAR-100 [15], 

MiniImagenet [26], and TinyImagenet [16]. CIFAR-100 and MiniImagenet each has 

100 classes, while TinyImagenet has 200 classes. Following [8], we divide CIFAR-100 

and MiniImagenet into 10 tasks, with 10 classes per task. The buffer size is set to 

500/1000/2000. For TinyImagenet, we divide it into 20 tasks, with 10 classes per task, 

and the buffer size is set to 1000/2000/4000. 

Comparison methods. We compare our work with nine OCL methods (ER [6], SCR 

[21], DVC [9], SSD [8], GSA [11], PCR [19], OCM [10], MOSE [29], MKD [22]), all 

of which are replay-based methods. 

Implementation details. Following the backbone setup of recent works such as MOSE 

and MKD, we use Full ResNet18 as the baseline model for all methods and apply data 

augmentation techniques to process the samples, including RandomColorGrayLayer 

(with probability 0.25), RandomResizedCropLayer (with a scale range of 0.3 to 1.0 and 

size matching the input dimensions), and RandomFlip. We fix the incoming batch size 

 for all baselines, and the buffer batch size is set to 64. The parameter  in the 

EMA function Eq. 5 is set to 0.1. Additionally, we use the Adam optimizer with a 

learning rate of .For the memory buffer, we utilize a random sampling 

strategy with a fixed memory size. Specifically, during training, we randomly sample 

a fixed number of previously seen examples from the buffer to mix with new incoming 

data. 

Evaluation metrics. We evaluate the learning capability and forgetting degree of all 

models using the Final Average Accuracy and the Final Forgetting Rate. Final Average 

Accuracy refers to the average accuracy of the model in classifying all test samples 

from each category after completing the final task. The formula can be expressed as: 

  (15) 

where  is the accuracy of the model on task  after learning  tasks. 

The Forgetting Rate measures how much the model forgets about previously learned 

tasks after learning a new task. Specifically, the forgetting rate  can be expressed 

as: 



  (16) 

 

Fig. 3. Comparison of MOSE and PBKD on different datasets (CIFAR-100, 

MiniImageNet, and TinyImageNet) in terms of average accuracy (higher is better) and 

average forgetting rate (lower is better). 

The Final Forgetting Rate is given by: 

  (17) 

These two metrics enable fair comparisons in class-incremental settings by evaluat-

ing the model's overall performance across all tasks. Final Average Accuracy reflects 

how well the model retains knowledge, while Final Forgetting Rate measures its re-

sistance to forgetting. Both are computed under consistent settings and task splits, en-

suring objective and comparable results across methods. 

4.2 Experimental Results and Analysis 

The performance of the final average accuracy. The comparison between PBKD and 

other methods on the average accuracy of different memory buffer sizes across three 

benchmark datasets is shown in Tab. 2. The results demonstrate that PBKD outperforms 

most of others in most dataset settings, which is due to our weighted hierarchical 

knowledge distillation method that improves the model's learning capability. 

Moreover, our method also maintains good performance with small sample buffers. 

For example, in the MiniImageNet dataset, as the memory buffer size decreases from 

2000 to 500, the average accuracy of MKD drops sharply from 33.9% to 21.2%,  
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Table 2. The Average Accuracy (higher is better) of different methods on various datasets with 

different buffer size. 

whereas PBKD only decreases from 42.4% to 27.1%. This is because PBKD cus-

tomizes personalized prototype for each layer's feature, enabling the model to effec-

tively retain various types of knowledge and remember important inter-class features 

even with a small number of cached samples.Fig. 2 shows the task-wise average accu-

racy of several models on CIFAR-100 and MiniImageNet, in which the curve of PBKD 

is much smoother, illustrating its promising performance. 

On the MiniImageNet dataset, when the memory size is 2000, PBKD performs 

slightly worse than MOSE. We speculate that this may be because MOSE is better able 

to leverage more class information with a larger memory size, while PBKD, with a 

limited number of prototypes, may not fully capture the complex class features. This 

suggests that PBKD might require further optimization of prototype representation 

when larger memory sizes are used. 

The performance of the final average forgetting rate. As the forgetting rate is cal-

culated based on the learning rate at each stage, comparing forgetting rates can be mis-

leading if the learning rate is too low during each phase. This work aims to reduce the 

forgetting rate while maintaining learning accuracy. Therefore, we tested PBKD and 

the SOTA method MOSE on CIFAR-100, TinyImagenet, and MiniImagenet datasets 

with memory sizes of 1000, 1000, and 2000, respectively, and evaluated their accuracy 

and forgetting rate , as shown in Fig. 3. The results show that PBKD not only improves 

accuracy but also reduces the forgetting rate. This is because, compared to MOSE, 

PBKD incorporates dynamic teacher distillation between models and hierarchical pro-

totypes, which significantly mitigates forgetting of prior knowledge. 

 

Data CIFAR100 MiniImageNet TinyImageNet 

Buffer 500 1000 2000 500 1000 2000 1000 2000 4000 

ER 16.8 24.5 32.4 11.0 15.2 22.0 5.1 6.3 9.2 

SCR 13.3 19.2 29.0 10.1 17.2 24.6 6.5 12.5 18.0 

DVC 16.5 25.0 25.3 13.0 17.9 21.2 9.2 10.9 8.9 

GSA 21.1 27.9 34.8 14.8 18.5 23.2 10.4 15.2 18.2 

OCM 22.2 29.2 36.1 12.0 17.8 20.8 11.0 15.7 20.2 

PCR 23.7 31.5 37.7 14.2 22.8 29.4 14.4 19.1 25.0 

SSD 22.9 28.2 32.6 18.4 23.6 26.2 14.3 17.1 18.0 

MOSE 26.1 35.9 45.7 24.9 32.6 43.1 17.3 24.3 28.4 

MKD 26.3 34.5 43.4 21.2 27.3 33.9 20.7 26.2 32.5 

PBKD 29.2 38.8 47.6 27.1 35.3 42.4 20.4 27.5 35.0 



Table 3. Ablation study of different components on CIFAR-100 datasets. 

Method     CIFAR100 

Baseline - - - - 31.5 

  - - - 35.1 

   - - 35.7 

    - 36.5 

PBKD     38.8 

- “-” and “ ” represent without or with this component. 

Table 4. Impact of adaptive weighting in intra-layer distillation. 

Method Accuracy (%) 

w/o weighted distillation 38.3 

with adaptive weighting ( ) 38.8 

 

4.3 Ablation Study 

We conduct ablation experiments to analyze the effectiveness of each core component 

in our framework, including intra-layer distillation, inter-stage distillation, and proto-

type replay. 

Intra-model Effects. Compared with the baseline model trained only with , intro-

ducing intra-layer distillation enables deeper layers to absorb complementary 

knowledge from shallower layers. In this stage, we also apply the NCM (Nearest Class 

Mean) method to combine the outputs of different layers for inference. This method 

aggregates the logits from each layer, with adaptive weights determined by the loss 

during training. Compared with uniform weighting, the adaptive weighting based on 

normalized training loss brings better accuracy, as shown in Tab. 4. This indicates that 

guiding deeper layers with properly weighted signals leads to more effective feature 

transfer. 

Inter-model Effects. By aligning features and logits of different time stages, the model 

is encouraged to retain previously acquired knowledge. Experimental results in Tab. 3 

show that the introduction of this temporal distillation further improves the perfor-

mance, especially in later tasks where forgetting is more severe. 

Prototypes. We examine the role of prototype replay. By storing a small number of 

representative features and performing class-mean-based matching during inference, 

the model achieves more robust prediction. This strategy compensates for memory lim-

itations in continual learning and stabilizes feature distributions across tasks. As shown 
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in Tab. 3, this component further enhances accuracy, demonstrating its complementary 

benefit to the distillation modules. 

4.4 Sensitivity Analysis of Hyperparameters 

We conduct sensitivity analysis on three key hyperparameters: the EMA momentum 

factor  (Eq. 5), the contrastive temperature  (Eq. 10, 11), and the weight factor  

in Eq. 13. As shown in Fig. 4, PBKD performs best when  and , 

indicating good stability within reasonable ranges. 

 Furthermore, for the weight factor , we set  for the shallow layers 

( ) and  for the deeper layers ( ). This choice is based on the 

greater contribution of deeper layers during the learning process, and thus they are 

given higher weights to optimize model performance. 

 

Fig. 4. Sensitivity analysis on CIFAR-100: (Left) EMA momentum , (Middle) con-

trastive temperature , (Right) weight parameter . 

5 Conclusion 

In this paper, we propose the Prototype-based Bilevel Knowledge Distillation (PBKD) 

framework, aiming to address the problem of catastrophic forgetting in online continual 

learning (OCL). By combining hierarchical prototypes and dual distillation mecha-

nisms, our model is able to effectively retain old knowledge while learning new tasks. 

Extensive experimental results demonstrate that PBKD outperforms current state-of-

the-art methods on multiple benchmark datasets such as CIFAR-100, MiniImageNet, 

and TinyImageNet, exhibiting higher average accuracy and lower forgetting rates. By 

effectively integrating prototypes with bilevel knowledge distillation, PBKD provides 

a novel and effective solution for the OCL field, offering a new approach to balancing 

new task learning and old task forgetting. 

Moreover, PBKD demonstrates promising scalability. The lightweight hierarchical 

distillation structure and prototype-guided supervision enable it to extend naturally to 

longer task sequences and larger-scale models. The intra-model and inter-model distil-



lation mechanisms, along with teacher-guided knowledge transfer, remain effective re-

gardless of model depth or capacity, indicating strong potential for broader deployment 

in more complex continual learning scenarios. 
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