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Abstract. Underwater images often suffer from color distortion and low contrast 

due to complex degradation factors, severely limiting their utility in many fields, 

such as marine exploration. Although existing methods predominantly focus on 

establishing a deterministic mapping from the degraded images to the enhanced 

images, they frequently overlook underwater environmental diversity in water 

types and lighting conditions. Some studies have noticed this problem, but the 

proposed methods often cause overcorrection of image colors and low contrast. 

To address these limitations, we propose the MPNet, a novel deep learning net-

work capable of restoring color details and improving contrast in underwater im-

ages. Specifically, our approach introduces a novel framework centered around a 

Probabilistic Adaptive Style Transfer (PAST) module that integrates depthwise 

separable convolutions for probabilistic enhancement to achieve more general-

ized color correction and contrast enhancement. Furthermore, a Multiscale Color-

Texture Compensation (MCTC) module is developed through texture-color feed-

back utilizing parameter-shared SE-Res blocks and cross-layer fusion to mitigate 

detail loss and color bias in deep networks. Extensive experiments on the UIEB 

and the EUVP datasets demonstrate improvements in superiority over other ad-

vanced methods. Qualitative and visual results confirm its ability to effectively 

restore the color texture details and enhance contrast. 

Keywords: Underwater Image Enhancement, Color Correction, Contrast En-

hancement, Conditional Variational Autoencoder 

1 Introduction 

Underwater Image Enhancement (UIE) plays a pivotal role in marine exploration and 

robotics, where high-quality visual interpretation is paramount. However, aquatic en-

vironments introduce complex degradation through wavelength-selective attenuation, 

scattering effects, and non-uniform illumination, resulting in color distortion, low con-

trast, and haze artifacts [1]. These distortions severely impair vision systems, necessi-

tating advanced enhancement techniques to restore perceptual fidelity. 

Conventional UIE methods primarily include non-physical enhancement operators 

and physical model inversion strategies. Early non-physical methods employed pixel-



level transformation, such as histogram-based techniques (HE/CLAHE [2]) and reti-

nex-based methods [3]. While computationally efficient, these methods often produce 

artifacts or over-enhancement under non-uniform lighting or severe turbidity due to 

oversimplified assumptions [4]. Physical model-based approaches, particularly those 

implementing an underwater image formation model [5], attempt to reconstruct images 

by inverting degradation processes through physical principles. However, accurate pa-

rameter estimation remains challenging in complex environments, and their rigid math-

ematical formulations struggle to adapt to diverse optical conditions. 

Deep learning has revolutionized UIE through data-driven degradation modeling. 

Early CNN architectures like WaterNet [1] established the superiority of end-to-end 

learning over traditional methods. Subsequent innovations include the introduction of 

frequency-domain processing, such as the wavelet-based dual-stream framework of [6] 

for frequency-separated reconstruction for color correction and detail enhancement, the 

introduction of physical priors, such as those of GUPDM [7] to improve model gener-

alization, and the adoption of large-kernel convolution, such as the architecture of UIR-

PolyKernel [8] enabling efficient global context modeling. Transformer-based models 

further enhanced long-range dependency modeling, such as Spectroformer [9], which 

combines spatial and frequency domain features to preserve detail. To address data 

scarcity, semi-supervised frameworks like Semi-UIR [10] and contrastive learning ap-

proaches like HCLR [11] have reduced reliance on paired training data. 

Despite these advances, current approaches primarily attempt a deterministic map-

ping from the degraded images to enhanced images, which contradict the fundamental 

reality of underwater environmental diversity in water types and lighting conditions - a 

critical gap given the ambiguous ground truth in standard benchmarks like UIEB [1], 

which selects reference images from the results of multiple methods. In response to this 

challenge, SCNet [12] introduced a whitening module to learn desensitized features of 

the water type, and PUIE [13] pioneered the incorporation of probabilistic modeling 

into UIE, achieving robust enhancement by learning enhancement distributions rather 

than deterministic output. However, images generated by existing methods may exhibit 

overcorrection characterized by unnatural whitening and inadequate contrast levels, 

which significantly impair color-fidelity restoration in practical applications. 

To address these challenges, this paper proposes a novel UIE framework character-

ized by a Probabilistic Adaptive Style Transfer (PAST) module and a Multiscale Color-

Texture Compensation (MCTC) module, named "MPNet". The PAST module inte-

grates depthwise separable convolutions, which can capture the local and cross-channel 

information of the image to realize local and global color correction and contrast en-

hancement for probabilistic enhancement to address the generalization limitations of 

deterministic methods in complex underwater degradations. Additionally, the MCTC 

module is developed through texture-color feedback utilizing three parameter-shared 

SE-Res blocks and multiscale cross-layer fusion, effectively mitigating detail loss and 

color bias in deep networks and preserving more raw information for the PAST module 

to realize the restoration of color and texture details. Extensive experiments demon-

strate our superiority over other advanced methods and the ability to effectively restore 

both global and local color and texture details and enhance contrast, confirming en-

hanced robustness and generalization in diverse underwater conditions. 
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Fig. 1. The overall architecture of the proposed MPNet. The LVC module establishes probabil-

istic mappings between feature representations and parameter distributions. The PAST module 

achieves probabilistic adaptive style transfer by the feature map from PRB and the parameters 

sampling from either the prior distribution (during testing) of PRB or posterior distribution (dur-

ing training) of POB to realize color correction and contrast enhancement. In the MCTC module, 

outputs from three parameter-shared SE-Res Blocks undergo dimensional alignment, which in-

cludes max pooling and SE-Res Block, before being summed with the corresponding upsampled 

features at three different scales (denoted as (a), (b), and (c) in the figure), enabling multiscale 

oringnal information feedback, which is useful for color and texture restoration of images. 

2 Methodology 

2.1 Preliminary Work 

UIE primarily addresses two critical challenges: color bias and low contrast. While 

maintaining content fidelity, effective UIE requires simultaneous color correction and 

contrast enhancement, which can be realized by style transfer methodologies. Tradi-

tional deterministic approaches often lack flexibility in handling degradation diversity. 

Probabilistic style transfer offers a novel approach to image enhancement by modeling 

parameter probability distributions, moving beyond the limitations of fixed parameters. 

To model the inherent uncertainty in UIE, this study incorporates a latent variable 𝑧 

to capture stochastic variations, drawing inspiration from probabilistic modeling ap-

proaches in image restoration [13]. Instead of deterministic transformation, the en-

hancement process is formulated through conditional probability: 

 𝑝( 𝑦 ∣∣ 𝑥 ) ≈ 𝔼𝑧∼𝑝( 𝑧∣𝑥 )[𝑝( 𝑦 ∣∣ 𝑧, 𝑥 )] (1) 



where 𝑝( 𝑧 ∣ 𝑥 ) denotes the distribution of the latent variable 𝑧 given the input image 

𝑥, and 𝑝( 𝑦 ∣∣ 𝑧, 𝑥 ) represents the conditional probability of the enhanced image 𝑦 given 

𝑥  and 𝑧. The expectation 𝔼𝑧∼𝑝( 𝑧∣𝑥 )  can be approximated by Maximum Probability 

(MP) selecting the highest probability sample for stable results, or Monte Carlo (MC) 

averaging sample likelihoods for diverse results, referring to PUIE [13]. 

Based on this assumption, we construct our model, the MPNet. The proposed method 

consists of several key components. These will be explained in detail later. 

2.2 Feature Extraction 

Fig. 1 illustrates the proposed MPNet architecture, which employs three parallel pro-

cessing branches (dual U-Net-based [14] branch and the MCTC module) with distinct 

functional objectives. 

Backbone: The feature extraction backbone consists of dual structurally similar U-

Net-based Conditional Variational Autoencoder (CVAE) [15] networks. We modified 

the U-Net architecture by integrating SE-Res Block [16] and AHA attention module 

[11] to enhance channel dependency modeling and spatial feature localization, which 

are critical to the effective latent variables extraction. The Prior Branch (PRB) pro-

cesses input images, and the Posterior Branch (POB) operates on target images. The 

feature maps extracted from PRB/POB are subsequently fed into the LVC module, 

which will be covered in the next section, to construct the prior distributions 𝒩∗
pr

 and 

posterior distributions 𝒩∗
po

 for the style transfer parameters. During training, both 

branches operate concurrently, with the style transfer parameters sampled from 𝒩∗
po

 to 

enable target-guided feature adaptation through the PAST module, which will be cov-

ered in the next section. We optimize the network by minimizing the Kullback-Leibler 

(KL) divergence between 𝒩∗
pr

 and 𝒩∗
po

, effectively aligning the input image's style 

representation with that of the target image. During testing, only PRB remains active, 

where style transfer parameters are sampled from learned 𝒩∗
pr

 and applied through the 

PAST module. Both phases employ identical processing pipelines for style-transformed 

features to generate final enhanced images, achieving reference-guided enhancement 

in training while maintaining input image-only processing during deployment. 

MCTC Module: To address the common issue of color and texture degradation in 

deep neural networks, particularly the loss of chromatic fidelity in enhanced output, we 

develop the Multiscale Color-Texture Compensation (MCTC) module containing three 

sequentially connected parameter-shared SE-Res blocks, a residual connection, and two 

alignment structures. Each SE-Res block output undergoes dimensional alignment, en-

suring compatibility with corresponding upsampling stages in PRB/POB before being 

progressively fused through multiscale feature additions with corresponding stages, 

while the final MCTC module output is summed with the backbone's result. Instead of 

just adding the input to the output of the backbone, the residual structure of the SE-Res 

Block can preserve useful original texture and color information, while the Squeeze-

and-Excitation structure can filter out useless information through channel attention, 

and parameter sharing design can enhance feature representation without huge compu-

tational costs. The hierarchical fusion mechanism establishes persistent texture and 

color feedback across different network depths, providing more abundant information  
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Fig. 2. The architecture of the PAST module. 

for the feature extraction stage and image reconstruction stage, effectively alleviating 

the information loss caused by repeated downsampling-reconstruction processes. 

In summary, via multiscale color-texture compensated parallel feature extraction, 

the network generates rich feature essential for probabilistic style transfer. 

2.3 Probabilistic Style Transfer 

PAST Module: The PAdaIN module proposed by PUIE [13] combines probability the-

ory with Adaptive Instance Normalization to achieve style transfer through statistical 

alignment. Although this approach demonstrates effectiveness in adapting global style, 

its exclusive reliance on global statistical properties (mean and standard) introduces 

inherent limitations. Specifically, PAdaIN's neglect of capturing localized spatial struc-

tures results in compromised preservation of structural details during UIE, manifesting 

as both local and global perceptible contrast degradation in processed output. 

To overcome these limitations, inspired by AdaConv [17], we propose the PAST 

module, extending adaptive normalization through depthwise separable convolution. 

As shown in Fig. 2, our architecture operates through two complementary operations: 

 PAST(𝑥) = 𝑣 ⊙ [(𝑢 ⊛
𝑥−𝜇𝑥

𝜎𝑥
) + 𝑠] + 𝑥 (2) 

where the depthwise convolution operation ⊛ with kernel 𝑢 ∈ ℝ𝑐out×(𝑐out/𝑛𝑔)×𝑘ℎ×𝑘𝑤  

performs local spatial adaptation by applying 𝑘ℎ × 𝑘𝑤 filters independently to each in-

put channel. Subsequent pointwise convolution ⊙ with kernel 𝑣 ∈ ℝ𝑐out×(𝑐out/𝑛𝑔)×1×1 

and bias 𝑠 ∈ ℝ𝑐out enables learning cross-channel correlation through linear combina-

tions. The residual connection preserves the details of original feature and allow pro-

gressive refinement. We parameterize 𝑢, 𝑣, 𝑠 through extracted Gaussian distributions: 

 

𝑢 = Γ𝑢(𝑧𝑢) 𝑧𝑢 ∼ 𝒩𝑓
pr

(𝜇𝑓(𝐱), 𝜎𝑓
2(𝐱))

𝑣 = Γ𝑣(𝑧𝑣) 𝑧𝑣 ∼ 𝒩𝑝
pr

(𝜇𝑝(𝐱), 𝜎𝑝
2(𝐱))

𝑠 = Γ𝑠(𝑧𝑠) 𝑧𝑠 ∼ 𝒩𝑏
pr

(𝜇𝑏(𝐱), 𝜎𝑏
2(𝐱))

 or 

𝑧𝑢 ∼ 𝒩𝑓
po

(𝜇𝑓(𝐱, 𝐲), 𝜎𝑓
2(𝐱, 𝐲))

𝑧𝑣 ∼ 𝒩𝑝
po

(𝜇𝑝(𝐱, 𝐲), 𝜎𝑝
2(𝐱, 𝐲))

𝑧𝑠 ∼ 𝒩𝑏
po

(𝜇𝑏(𝐱, 𝐲), 𝜎𝑏
2(𝐱, 𝐲))

 (3) 



 

Fig. 3. The architecture of the LVC Module. 

where Γ∗ are 1×1 convolutions mapping sampled 𝑧∗ to parameters 𝑢, 𝑣, 𝑠 to align the 

parameter dimensions required for depthwise separable convolutions. 𝒩∗
pr

 and 𝒩∗
po

 are 

prior distributions conditioned on input 𝐱 during training and testing and posterior dis-

tributions conditioned on input 𝐱 and target 𝐲 during only training, respectively. 

LVC Module: To estimate these parameter distributions 𝒩𝑓, 𝒩𝑝, 𝒩𝑏  which are re-

quired for the PAST module, we construct the LVC module as illustrated in Fig. 3. For 

an input feature map 𝑥 ∈ ℝ𝐶×𝐻×𝑊, we first perform a spatial average pool along the 

dimensions of height 𝐻 and width 𝑊 to obtain channel statistics 𝑥 ∈ ℝ𝐶. These statis-

tics are then projected through a fully connected layer to generate the latent variable: 

 𝑍 = FC(𝑥), 𝑍 ∈ ℝ𝐶×2𝑧×𝑘ℎ×𝑘𝑤  (4) 

The factor 2𝑧 in the latent dimension accounts for the separate estimation of mean (𝜇) 

and variance (𝜎2) parameters for each distribution. Three parallel prediction heads sub-

sequently transform 𝑍 into the parameters of our target distributions: 

 

𝒩𝑓(𝜇𝑓 , 𝜎𝑓
2) = Conv𝑓(𝑍)

𝒩𝑝(𝜇𝑝, 𝜎𝑝
2) = Conv𝑝(𝑍)

𝒩𝑏(𝜇𝑏 , 𝜎𝑏
2) = Conv𝑏(𝑍)

 (5) 

This design enables efficient learning of degradation patterns while maintaining spatial 

awareness through the preserved 𝑘ℎ × 𝑘𝑤  dimensions. By operating on compressed 

channel statistics rather than raw spatial features, the LVC module captures global im-

age characteristics essential for modeling parameter distributions of the PAST module 

and simultaneously imposes no strict size restrictions on the input images. 

In summary, this design enables simultaneous global statistical and local structural 

alignment. Compared to PAdaIN's global normalization, PAST's spatial-adaptive fil-

tering better preserves underwater image details and enhances contrast through both 

localized and globalized style transfer operations and residual connection. 

2.4 Loss Function 

Our loss function combines two components derived from the CVAE framework: 
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As shown in Equation (3), during training, PRB and POB generate parameter distri-

butions 𝒩∗
pr

 and 𝒩∗
po

, respectively, and we minimize the KL divergence between them: 

 ℒKL = ∑ 𝐷KL𝑘∈𝑓,𝑝,𝑏 (𝒩𝑘
pr(𝐱) ∥ 𝒩𝑘

po(𝐱, 𝐲)) (6) 

The reconstruction loss combines three constraints: 

 ℒR = ℒMAE + 𝜆ℒVGG16 + 𝛽ℒMS-SSIM (7) 

where ℒMAE is the mean absolute error loss, ℒVGG16 is the perceptual loss based on the 

VGG16 [18] network, ℒMS-SSIM is the multiscale structural similarity [19] loss, and 𝜆 

and 𝛽 is the weight. So the total loss function of the MPNet is: 

 ℒtotal = ℒKL + 𝛾ℒR (8) 

where 𝛾 is the weight. 

3 Experiments 

3.1 Experimental Settings 

We evaluated our method on two benchmark datasets: UIEB [1] and EUVP [20]. The 

UIEB dataset comprises 950 real-world underwater images, including 890 images with 

high-quality reference results generated through rigorous comparisons and 60 challeng-

ing unpaired samples. We randomly split the paired images into 800 training and 90 

test samples. The EUVP dataset contains over 20,000 paired and unpaired underwater 

images captured under diverse conditions. We adopted its EUVP-I subset, consisting 

of 3,300 training and 400 test image pairs with varying distortion levels, which provides 

a standardized evaluation for underwater enhancement algorithms. 

For quantitative evaluation, we employ both reference-based metrics (PSNR and 

SSIM) and non-reference metrics (UIQM [21] and UCIQE [22]). Our implementation 

uses PyTorch on a NVIDIA RTX 4060TI GPU. We preprocess images by resizing them 

to 256×256 pixels and applying data augmentation through random cropping, horizon-

tal flipping, and rotation. The network is trained for 500 epochs using Adam optimizer 

(initial learning rate 1e-4, batch size 4) with loss weights 𝜆 = 1, 𝛽 = 1, and 𝛾 = 5. The 

kernel size 𝑘ℎ & 𝑘𝑤  of the PAST module are set to 5, and the latent dimension 𝑧 is set 

to 128. In this section, we use MP estimation to generate stable results for comparison. 

3.2 Comparisons with Other UIE Methods 

We compare our proposed method with several advanced UIE approaches, spanning 

traditional methods (SMBL [23], MLLE [4], HLRP [24]) and deep learning methods 

(WaterNet [1], PhyNN [25], UWNet [26], SCNet [12], PUIE [13], FAPlus [27], DAUT 

[28], SFGNet [29]). As shown in Table 1, our method achieves outstanding perfor-

mance with the highest PSNR and SSIM on both datasets while maintaining  



 

Fig. 4. Visual comparison of experimental results on the UIEB dataset. 

 

Fig. 5. Visual comparison of experimental results on the EUVP-I dataset. 

competitive UIQM scores. The visual results on the UIEB dataset in Fig. 4 and on the 

EUVP-I dataset in Fig. 5 demonstrate that the proposed method achieves effective color 

calibration while preserving good contrast characteristics and maintaining enhanced 

color fidelity, thus ensuring images remain free from chromatic aberrations without 

compromising visual saturation. We conducted further experiments on a challenging 

image with severe color cast and low definition, as shown in Fig. 6. The experimental 

results show that our proposed method can effectively restore both the global and local 

color texture details and enhance contrast to the maximum extent. 

3.3 Ablation Studies 

To validate the effectiveness of each component in our proposed method, we performed 

ablation experiments on the UIEB dataset. The results are shown in Table 2. We start 

with a basic model and gradually add different components of our method, such as the 

PAST module, the MCTC module, etc. The results show that each component contrib-

utes to the overall performance. We further investigate the role of the MCTC module 

and the PAST module. As shown in Fig. 7, the MCTC module is helpful for image  
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Fig. 6. A more detailed comparison on a selected challenging image. From both the macroscopic 

contrast and local magnification, it is evident that our proposed method retains the richest details 

and most accurate colors, without artifacts in SCNet and DAUT and incorrect color and low 

contrast in other methods. Furthermore, we analyzed the RGB histogram comparison between 

each enhanced image and the ground truth (GT) image. The results show that our proposed 

method has the highest histogram similarity to the GT image.  

Table 1. Quantitative comparison on the UIEB and the EUVP-I datasets. 

Methods 
UIEB EUVP-I 

PSNR↑ SSIM↑ UIQM↑ UCIQE↑ PSNR↑ SSIM↑ UIQM↑ UCIQE↑ 

SMBL 16.647 0.764 2.050 0.631 16.083 0.651 2.195 0.617 

MLLE 17.207 0.739 1.991 0.617 16.233 0.608 2.519 0.583 

HLRP 16.519 0.718 2.463 0.667 15.217 0.562 2.499 0.628 

WaterNet 21.198 0.858 2.978 0.612 23.673 0.832 2.991 0.562 

PhyNN 18.386 0.802 2.785 0.594 23.583 0.814 2.983 0.553 

UWnet 17.453 0.794 2.773 0.553 22.485 0.815 2.960 0.532 

SCNet 20.775 0.877 2.987 0.586 24.535 0.822 3.042 0.556 

PUIE 21.460 0.896 2.965 0.603 24.381 0.809 3.015 0.557 

FAPlus 20.982 0.891 2.914 0.605 24.049 0.819 2.933 0.550 

DAUT 21.415 0.875 3.003 0.614 24.709 0.835 3.011 0.553 

SFGNet 19.103 0.850 2.698 0.607 24.372 0.835 2.967 0.562 

Ours 21.991 0.902 2.962 0.602 25.364 0.841 2.997 0.558 

↑ indicates that higher values correspond to better performance. The highest and sec-

ond-highest values are highlighted in red and blue, respectively. 



Table 2. Quantitative results of ablation study on the UIEB dataset. 

baseline 
attention 

+resblock 
MCTC PAST PSNR↑ SSIM↑ 

√ - - - 19.220 0.874 

√ √ - - 21.426 0.891 

√ √ - √ 21.819 0.900 

√ √ √ - 21.627 0.901 

√ √ √ √ 21.991 0.902 

 

Fig. 7. Visual comparison of ablation experimental results. For the generated results without the 

MCTC, image (a) has an obvious circle of artifacts at the blue blob and more noise. Image (c) 

has obvious color fault and noise around the water environment. For image (e), the color is over-

corrected, so the ground has lost its due color. However, images (b), (d), and (f) improve these 

problems and are closer to GT images, which illustrates the effect of the MCTC on the restoration 

of image texture details (such as artifacts, noise, etc.) and color. For the generated results without 

the PAST, the contrast of image (g) on the wall is low. Image (i) has a noticeable color shift in 

the shadows. For image (k), there is insufficient contrast in the whole image. However, images 

(h), (j), and (l) improve these problems and are closer to GT images, which illustrates the role of 

the PAST in improving local and global contrast of images and restoring image colors. 

texture detail restoration, noise suppression, and color correction, while the PAST mod-

ule is important for image local and global contrast enhancement and has the ability for 

color correction. This shows that the combination of the PAST module and the MCTC 

module is highly complementary. These ablation studies confirm that the combination 

of all components in our method is essential to achieve the best performance. 

↑ indicates that higher values correspond to better performance. The highest values 

are highlighted in bold. 
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4 Conclusion 

In this paper, we proposed the MPNet, a novel approach for probabilistic UIE. Our 

method effectively addresses the challenges of color and texture distortion and low 

contrast by developing a novel framework centered on the PAST module equipped with 

the MCTC module. Extensive experiments on multiple benchmark datasets demon-

strated that our method achieves superior performance in both quantitative metrics and 

visual quality compared to other advanced UIE techniques. Future work will focus on 

addressing the limitations of our method and exploring real-time applications of UIE. 
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