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Abstract. The attention mechanism exhibits remarkable capability in processing 

sequential data; however, its computational complexity scales quadratically with 

sequence length, resulting in significant resource demands. Numerous studies 

have achieved substantial success in leveraging sparse matrices to reduce the 

computational burden of dot-product operations, thereby improving both the 

computational efficiency and accuracy of models. Nevertheless, the question re-

mains: can we further optimize these computations? In this paper, we introduce 

a novel approach based on function projection, integrating a restructured word 

embedding technique with the attention mechanism to alleviate computational 

overhead. We first validate the theoretical efficacy of designing word embedding 

using parametric equations and demonstrate the effectiveness of our proposed 

embedding method. Subsequently, we conduct experiments across a variety of 

basis functions, illustrating that our approach affords greater flexibility in param-

eter selection while effectively reducing computational costs. Compared to state-

of-the-art attention-based models, our method achieves an average reduction of 

60% in parameter count, 75% in FLOPs, and 63.4% in inference time under spe-

cific parameters. 

Keywords: Attention, Parametric Equations, Fourier Series, Function Projec-

tion. 

1 Introduction 

Since the introduction of the attention mechanism, its effectiveness has been demon-

strated on multiple levels and has continued to play a crucial role in the development 

of subsequent mainstream models [1]. It has been widely applied in both computer vi-

sion [2] and NLP [3]. Additionally, it has achieved outstanding results in emerging 

fields such as graphs [4] and reinforcement learning [5]. The widespread adoption of 

models such as GPT [6][7] further demonstrates the strong representational power of 

the attention mechanism. 

Since the introduction of the attention mechanism, computational power stacking has 

become a core paradigm in machine learning. However, the computational complexity 

of attention mechanisms increases exponentially when handling long sequences, 

prompting researchers to explore methods that can reduce attention computation while 

improving model performance. Sparse attention [8] is a mainstream  

 



 

 

 

 

 

 

 

 

 

 

Fig. 1. We replaced matrix projection with function projection, where a projection function with 

only two parameters can provide sufficiently complex linear transformations. 

solution, and some researchers have also introduced additional mechanisms to optimize 

the algorithm [9-15]. 

However, we believe that computational optimization for the attention mechanism 

can be further improved. LM-Steer [16] pointed out that attention should be focused on 

vectors, and we argue that the concept of "continuity" provides a valuable perspective. 

Differential equations [17], and PINNs [18] have already demonstrated the strong ca-

pability of models in solving problems with continuity (non-classification and non-gen-

eration tasks). However, such models perform poorly on traditional classification prob-

lems because solving differential equations inherently introduces a time component, 

which is irrelevant to classification tasks. 

When analyzing the process of the attention mechanism, the concept of time can be 

meaningfully introduced. Therefore, we propose a time-based attention mechanism and 

a time-aware word embedding method, leveraging Fourier series and parametric equa-

tions to reduce the computational cost of attention mechanisms. The overall structure 

of our method is illustrated in Figure 1. Our approach replaces traditional matrix pro-

jections with function projections. 

Our contributions are as follows: 

1.We propose a novel word embedding approach designed to enhance the training 

efficiency of deep networks. 

2.Our method enables faster computation of contextual influences on vectors, im-

proving efficiency in attention-based models. 

3.We conducted experiments with various basis functions to extend the applicability 

of our method. 
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2 Related Work 

2.1 Sparse Attention 

Sparse Attention [19] reduce computational complexity by introducing sparse attention 

patterns, making the Transformer more efficient for long sequences. Blockwise Atten-

tion [20] divides the sequence into multiple blocks and computes attention within or 

between blocks, reducing computational costs and improving parallelism. Linformer 

[21] compresses the attention matrix into a fixed size using low-rank projection, reduc-

ing both computation and memory requirements, making the Transformer more suitable 

for long sequences. Reformer [22] approximates self-attention using locality-sensitive 

hashing (LSH) and incorporates reversible residual networks, significantly lowering the 

computational and storage overhead of the Transformer. Ring Attention [23] computes 

attention based on a ring structure, focusing only on local and partial global infor-

mation, enhancing the model’s capability for long-sequence modeling while reducing 

computational cost. Longformer[24] combines local windowed attention with global 

attention mechanisms, improving the Transformer’s ability to process long texts while 

maintaining computational efficiency. Adaptive Attention Span [25] dynamically ad-

justs the attention window size, allowing the model to flexibly select the attention range 

based on requirements, thereby improving both computational efficiency and expres-

sive capacity. 

in recent years, methods such as Agent Attention [26] and Multimodal Attention 

Bottlenecks [27] have continued to advance the development of attention mechanisms. 

NSA integrates multiple sparse matrix methods and employs gated units to achieve a 

more efficient sparse attention mechanism. However, traditional methods cannot avoid 

the substantial computational load brought by matrix projection, with most of the com-

putational loss concentrated in this part. We address this by proposing a new projection 

mechanism to comprehensively alleviate the pressure in this area. 

 

2.2 KV Cache 

In optimizing attention, the KV cache method has achieved remarkable results in recent 

years [28]. Minicache analyzes the redundancy in KV cache usage for large models 

[29]. Keyformer reduces KV cache storage through key token selection [30], while 

KVquant integrates quantization concepts to enable ultra-long-context inference in 

large models [31]. "KV cache is 1 bit per channel" [32] introduces coupled quantization 

for KV cache as an alternative to channel-based caching methods. It is important to 

note that KV cache methods also pose new challenges for hardware, and the combina-

tion of GQA [33] and NSA provides an efficient solution. The core idea of the KV 

cache method is to reduce the number of matrix projection operations, but it still cannot 

avoid the computational overhead caused by the remaining projection operations. 

 

2.3 Continuity in Machine Learning 

Fourier series has been widely applied in the field of machine learning. In its early 

stages, Fourier transform was primarily used for feature extraction. Over time, it has 



 

been increasingly integrated with machine learning techniques. Several notable studies 

have demonstrated its effectiveness. Some researchers integrates Fourier series with 

positional encoding to enhance spatial representations [34], and incorporates Fourier 

series into PINNs, improving their ability to solve multi-scale partial differential equa-

tions [35]. Some researchers applies Fourier series to quantum machine learning, lev-

eraging its expressive power [36], and integrates Fourier series into MLPs, enabling 

efficient time series forecasting [37]. AFGAN replaces conventional adversarial sam-

ples with Fourier-based features, enhancing generative model performance [38]. 

In machine learning, the relationship with differential equations is often explored in 

the context of solving partial differential equations (PDEs). However, some researchers 

argue that differential equations and machine learning are deeply interconnected. 

ODEnet [42] bridges differential equations with neural networks, providing a strong 

theoretical foundation and improved interpretability for neural architectures. Some re-

searchers discusses modeling high-dimensional nonlinear functions using continuous 

dynamical systems [44]. Some suggests that many efficient convolutional neural net-

works can be interpreted as differential equations [45]. PolyNet [46] enhances the ex-

pressive power of neural modules by introducing the PolyInception module. Neural 

ODEs [47] demonstrates that the macro-architecture of FractalNet can be understood 

through the well-known Runge-Kutta method in numerical analysis. FFJORD [48] fur-

ther explores the role of differential equations in flow-based models. These research 

directions and findings indicate that differential equations can be effectively integrated 

with deep neural networks. Their mathematical and theoretical foundations provide val-

uable insights for constructing more robust and interpretable machine learning systems, 

this provides a theoretical basis for our approach. 

3 Method 

Our method is divided into three parts: Section 3.1 introduces the concept of parametric 

equations and their mathematical significance; Section 3.2 presents our reconstructed 

word embedding method, which serves as a prerequisite for our attention mechanism; 

Section 3.3 explains how our attention mechanism is constructed. 

 

3.1 Preview 

Parametric equations are a mathematical approach used to represent curves or surfaces 

through parameterized variables. Compared to traditional explicit or implicit functions, 

parametric equations offer significant advantages in describing complex curves, motion 

trajectories, and high-dimensional geometric structures. 
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Fig. 2. The color of a single pixel corresponding to its value in a space defined by three normal 

functions. 

In a two-dimensional space, if there exists a parameter t ∈ I(where I is some inter-

val), a planar curve can be expressed as: 

 

 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡)  (1) 

 

This curve is then defined by the parametric equations (𝑥, 𝑦)  =  (𝑓(𝑡), 𝑔(𝑡)), where 𝑡 

is referred to as the parameter. To meet the value requirements of the subsequent word 

embedding section, the function must be periodic, related to Equations 5 and 6. The 

choice of function is flexible, and in our experimental section, we used Fourier series 

as a component of the parametric equation for word embedding. This representation 

effectively captures the dynamic properties of the curve, such as motion trajectory and 

directional information. 

The concept of parametric equations allows us to associate the notion of time with 

vectors. For a vector 𝑥,..., 𝑦, its elements can be interpreted as the values of 𝑛 equations 

evaluated at a given time 𝑡. We propose that these 𝑛 equations can take various forms, 

including discrete equations, Fourier series, or differential equations, as illustrated in 

Fig 2. 

Our theory originates from the RGB color space, where the underlying principle is 

a two-dimensional function of wavelength and transmittance. Under different observa-

tional methods, the RGB model consistently relies on three functions, each representing 

the transmittance at a specific wavelength. In computer science, these three functions 

are abstracted as approximately normal distributions and reconstructed as a two-dimen-

sional function of output and channel values. Despite this transformation, the funda-

mental characteristics remain intact, enabling highly effective performance in image 

computation. 

We first demonstrate the general applicability of the RGB logic in the field of image 

processing. The experimental setup and results can be found in Section 4.1. Our ap-

proach involves modifying the three underlying functions that govern RGB representa-

tion through various algorithms. We then evaluate whether the modified images can 



 

still be accurately recognized by machine learning models when compared to the orig-

inal images. To achieve this, we employ the color transformation matrix method, which 

allows us to systematically alter the RGB functions while preserving the structural in-

tegrity of the image: 

 

 

[
 
 
 
 𝑅’

𝐺’

𝐵’]
 
 
 
 

=[
0.5 ⋯ 0.2
⋮ ⋱ ⋮

0.3 ⋯ 0.8
] [

𝑅
𝐺
𝐵
] 

 

(2) 

 

This computational logic modifies the three functions in the RGB space. When chosen 

appropriately, the color transformation matrix functions similarly to a convolution ker-

nel, potentially leading to a slight improvement in model accuracy. Its differential equa-

tion form is given by: 

 

 
𝑑

𝑑𝑡
[

𝑅(𝑡)
𝐺(𝑡)

𝐵(𝑡)
] = 𝑀 ∙ [

𝑅(𝑡)
𝐺(𝑡)

𝐵(𝑡)
] 

 

(3) 

 

where 𝑀 is the transformation matrix that governs the evolution of the RGB functions 

over time. This equation describes the dynamical evolution of a three-dimensional state 

variable. The nature of the solution depends on the eigenvalues of the transformation 

matrix 𝑀. 

For rigor, we explored more complex oscillatory behaviors by using higher-dimen-

sional matrices or introducing damping and coupling terms. Specifically, we considered 

Damped oscillations, Forced oscillations, Coupled oscillatory systems. From this, we 

infer that not only can colors be represented by parametric equations, but any form of 

data can fundamentally be expressed in this way. For complex systems, we can extend 

the number of parametric equations or increase the complexity of individual functions 

to achieve a more accurate representation. 

 

3.2 Time-Aware Word Embedding 

Researchers often refine vector representations or apply further transformations to im-

prove performance. The method of word embedding fundamentally determines how the 

attention mechanism operates. Current embedding approaches convert data into vec-

tors, which is an inherent characteristic that cannot be altered. However, as described 

in Section 3.1, we propose embedding vectors as the values of a parametric equation at 

a specific time point. 

 

Once word vectors enter the model, they pass through layers such as attention mech-

anisms, where they undergo dot products, scalar multiplications, and accumulations—
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which collectively contribute to computational overhead. Our goal is to simplify the 

entire computational process into a single unified logic. 

 

Fig. 3. Word embedding space constructed by parametric equations 

For example, consider determining the meaning of the word "mole". The model an-

alyzes contextual information to infer whether "mole" refers to an animal, a chemical 

unit, or another meaning. Initially, the word is represented by an embedding vector 𝐸1, 

which, after complex computations, results in a fixed set of output vectors (𝐸2, 𝐸3, . . . ). 

Instead of treating 𝐸1 as a standalone vector, we reinterpret it as a set of parametric 

equations  (𝑓1, 𝑓2, . . . , 𝑓𝑛)  evaluated at time 𝑡1, as illustrated in Fig 3a. When 𝑓1 reaches 

its maximum, the vector possibly represents 𝐸1 . When 𝑓2 reaches its maximum, the 

vector possibly represents 𝐸2. Collectively, the n parametric equations define the pa-

rameter space of the word "mole". 

Thus, when constructing word embedding, we introduce a vector transformation rule 

on top of the existing vector space. By employing parametric equations, we impose 

constraints on the possible transformations of vectors, thereby preventing unnecessary 

computations in later stages. Each vector can be represented as: 

 

 𝐸𝑛
⃗⃗ ⃗⃗ 

= [𝑓1
𝑛(𝑡), 𝑓2

𝑛(𝑡), . . . , 𝑓𝑑
𝑛(𝑡)] 

(4) 

 

𝑛 represents the vector identifier, and 𝑑 denotes the number of dimensions, which cor-

responds to the number of parametric equations. In the RGB color space, a set of three 

well-defined functions forming a parametric equation can represent 16,777,216 differ-

ent colors. Clearly, this number is more than sufficient for capturing the semantics of a 

word. However, the directionality of representation is limited. Therefore, in NLP tasks, 

a higher-dimensional space is essential to accurately capture the diverse characteristics 

of word vectors. 

After completing the original word embedding task, we collect all vectors that follow 

the same transformation rules and assign each word a new space, which we refer to as 

the "temporal space." The domain of this space is defined as [0,2𝜋], and each vector is 

evenly distributed within this domain, as shown in Fig 3b. To fit these data points, we 

use Fourier series as the fitting function. In principle, there are countless possible ways 

to fit the functions within the parametric equations. We could even employ random 

methods, nonlinear functions, or discrete functions. However, all selected functions 

must be periodic, and the data points at both ends must be adjusted to ensure periodicity, 

this condition is a prerequisite for T-attention. 



 

The advantage of designing word embeddings in this way is that traditional word 

embedding methods assign a unique vector to each word. However, in reality, any vec-

tor can be obtained through a linear transformation of other vectors. For example, a 

word's base form, past tense, and adjective form often exhibit high similarity, and the 

transformation process between them is fixed. This suggests that a special set of vectors 

can belong to the same system, represented as a parametric equation. By expressing 

vectors in the form 𝑣 = 𝑓(𝑡), we capture the intrinsic relationships between word var-

iations while reducing redundant computations. 

 

3.3 T-attention 

Under the concept of higher-dimensional parametric equations, vectors can represent 

more meanings. The final output value of a vector at the end of the model's processing 

is determined by time. After modifying the original attention mechanism, our revised 

formula is: 

 ∆𝑡

= 𝐴𝑡𝑡(
𝑓𝑞

𝑛(𝑡)𝑓𝑘
𝑛(𝑡)

√𝑑𝑘

)𝑓𝑣
𝑛(𝑡) 

s 

(5) 

 𝑝𝑟𝑒 = 𝑓𝑛(𝑡 + ∆𝑡) (6) 

 

Where 𝑓𝑞
𝑛 and others are functions after projection, used to replace the original 𝐾, 𝑄, 𝑉 

projection matrix. The parameter 𝑡 is related to the word embedding method mentioned 

earlier, where each word vector corresponds to a unique parameter t in the embedding 

function. ∆𝑡 represents the distance on the function between the original word vector 

and another word vector after attention. When the dimension of the function projection 

matrix is smaller than that of the input function, it manifests as a downsampling process. 

The above formula is used to calculate the time parameter 𝑡. Alternatively, we can 

directly compute the projection of the function to update word embeddings and train 

the word model: 

 
𝑓𝑛𝑒𝑤 = 𝐴𝑡𝑡(

𝑓𝑞
𝑛𝑓𝑘

𝑛

√𝑑𝑘

)𝑓𝑣
𝑛 (7) 

 

Thus, under this method, there is no need to update the large 𝐾, 𝑄, 𝑉 matrices. In-

stead, we only need to define the number of basis functions and update the basis func-

tions themselves. For a single basis function 𝑠𝑖𝑛(𝑛𝑥), there is only one trainable param-

eter, significantly reducing the computational complexity. 

Compared to traditional matrix projection, the time complexity of function projec-

tion depends on the choice of basis functions, and the computer requires additional time 

to compute these basis functions. However, our experiments in Table 4 demonstrate 

that this extra cost does not cause our method to lag behind traditional methods, except 

in cases with certain basis functions that are difficult to compute, where performance 

is suboptimal. 
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4 Experiment 

Color transformation and oscillatory systems. The underlying RGB logic in image 

processing is often implicit in machine learning, making it necessary to formally estab-

lish its presence and demonstrate that modifying it can yield positive effects. The values 

given in Equation (2) represent just one randomized instance, and we have tested vari-

ous color transformation matrices to validate that such transformations do not nega-

tively impact the final results. 

Moreover, the color transformation matrix empirically confirms the existence of the 

RGB color space and demonstrates that this space can be represented as a parametric 

equation and transformed into a vector form. It is important to note that we do not 

perform transformations on individual pixels but rather apply global color transfor-

mations to the entire image. This bears similarity to convolution kernel computations, 

as both operate over structured spatial information. Thus, although color transformation 

matrices can enhance image recognition performance, the selection of transformation 

values should be constrained within a reasonable range rather than being overly flexi-

ble. We conducted experiments on the CIFAR-10 dataset, and the results are presented 

in Table 1. 

From the table data, we can observe that methods applying color transformations to 

the entire image generally do not affect the quality of the image in model training, and 

in most cases, they lead to an improvement in metrics. Our experiments were conducted 

on a lightweight model (1500 parameters). The reason for not using the standard ResNet 

model was to test the logical similarities between pure convolution and our method. 

This experiment aimed to validate the theoretical foundation (The information of an 

image can be obtained by sampling a set of parametric equations, and similarly, 

text can be processed in the same way. However, the parametric equations under-

lying text require further exploration.) and is unrelated to subsequent experiments. 

However, the transformations provided by the color transformation matrix are lim-

ited, as their dynamic changes are globally monotonic. Therefore, we further experi-

mented with the effects of damped oscillations, forced oscillations, and coupled oscil-

lations on the data. Among these, forced oscillations allowed for more parameter ad-

justments. As shown in Table 2, the model maintained good performance under various 

oscillation types and parameter influences. The above systems are all linear. To explore 

further, we tested the effects of nonlinear systems, such as the Lorenz attractor and the 

Van der Pol oscillator. However, nonlinear systems did not yield satisfactory experi-

mental results. 

The parameters for damped oscillation are 𝐾, 𝑐, 𝑡 (damping constant, damping coef-

ficient, time). The parameters for forced oscillation are 𝐾, 𝑐, 𝐴, 𝛺, 𝑡 (spring constant, 

damping coefficient, amplitude of the forcing, frequency of the forcing, time). The pa-

rameters for coupled oscillation are 𝐾, 𝑐, 𝑡  (coupling constant, damping coefficient, 

time). 

 

 

 



 

Table 1.We tested the impact of individual transformation matrices on model per-

formance, including random matrices, random matrices within specified intervals, and 

classic filters, demonstrating that color transformations rarely have a negative impact 

on the image itself. The purpose of this experiment was to prove that the RGB color 

selection logic is determined by a function, and this function, when freely valued, 

does not affect the model's judgment of the image. 

 

Setting Acc Setting Avg.Acc Setting Acc 

No change 54.10 Random [0~2] 57.36 Sobel-X 57.14 

Random set 61.32 Random [1~2] 56.03 Sobel-Y 36.78 

Random set 60.45 Random [-1~1] 62.99 Laplacian 56.04 

Random set 60.37 Random [-2~2] 59.52 Sharpening 56.23 

Random set 58.59 Random [-1~0] 10.00 Blur 58.89 

Random set 59.51 Random [-2~0] 10.00 Gaussian Blur 58.34 

Random set 60.82 Random [0~5] 55.09 High-pass Fliter 55.10 

Random set 60.94 Random [0~10] 50.21 Low-pass Fliter 64.60 

Random set 59.37 Random [-10~10] 56.62 Motion Blur 58.74 

Random set 60.72 Random [0~0.01] 63.66 Edge enhance 57.80 

Table 2. Non-monotonic oscillatory systems. The parameters in the table represent the varia-

bles of the oscillatory system. 

 

 

Word Embedding Comparison Experiment We conducted a comparative study with 

static word embeddings, including Word2Vec (CBOW / Skip-gram), GloVe, and 

FastText, as well as contextualized dynamic word embeddings, such as BERT, ELMo, 

and context2vec. The comparison was performed across multiple datasets. To validate 

the adaptability of our method, we applied our word embedding approach to  

 

Setting Acc Setting Acc Setting Acc Setting Acc 

Damped 

(1.0,0.5,0.1) 
63.62 

Damped 

(1.0,0.5,0.1) 
62.92 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
62.53 

coupled 

(1.0,0.5,0.1) 
62.00 

Damped 

(1.0,0.5,0.1) 
62.89 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
62.48 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
62.89 

coupled 

(1.0,0.5,0.1) 
62.18 

Damped 

(1.0,0.5,0.1) 
63.24 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
55.69 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
63.73 

coupled 

(1.0,0.5,0.1) 
63.10 

Damped 

(1.0,0.5,0.1) 
62.86 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
44.89 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
62.91 

coupled 

(1.0,0.5,0.1) 
62.01 

Damped 

(1.0,0.5,0.1) 
62.45 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
62.78 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
61.97 

coupled 

(1.0,0.5,0.1) 
60.36 

Damped 

(1.0,0.5,0.1) 
62.41 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
63.31 

Forced 

(1.0,0.2,0.2,2.0,0.1) 
64.94 

coupled 

(1.0,0.5,0.1) 
62.18 
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Table 3. Word embedding comparison experiment. This experiment verifies that our word em-

bedding method can be applied to any word embedding approach to replicate its embedding 

representation. It cannot surpass the performance of other methods but can reproduce their re-

sults. 

 

the best-performing models in each of the three classification categories. The results 

demonstrated that our method can be seamlessly integrated into any existing word em-

bedding approach without compromising embedding quality. 

It is important to note that in our word embedding process, all functions within the 

parametric equations used for each vector group were uniformly fitted using Fourier 

series. We conduct experiments on the Word Similarity task, and the dataset comes 

from [39-42]. The experimental results are shown in Table 3.  

 

Performance of T-Attention  In our method, the number of parameters is determined 

by the number of basis functions, computational complexity is influenced by the type 

of basis functions, and the relationship between the number of basis functions and the 

original function determines whether upsampling or downsampling occurs. By design-

ing appropriate basis functions, we can adjust the model's performance. To validate 

this, we conducted experiments under various specialized designs. 

In our experiments, we selected four baselines for comparison. Full-att: This does not 

use a sparse attention mechanism. Sparse_A: Cannot optimize parameters but improves 

PPL. Sparse_B: Significantly reduces the number of parameters but introduces sparse 

matrix computations, which slow down training speed. NSA : a me- 

 Methods WS353 WS353S MEN SimLex999 RG-65 

Static 

Skip-gram 61.0 68.9 67.0 34.9 75.2 

CBOW 62.7 70.7 68.6 38.0 72.7 

Glove 54.2 64.3 68.3 31.6 61.8 

FASTTEXT 68.3 74.6 74.8 38.2 80.8 

Deps 60.6 73.1 60.5 39.6 77.1 

our+best 68.3 74.6 58.6 39.6 80.8 

Contextualized 

ELMo 45.5 62.1 57.2 40.6 60.9 

GPT2 30.7 31.4 26.2 26.4 10.6 

BERT 24.0 31.0 22.0 13.4 18.5 

XLNet 62.8 69.8 61.7 49.0 63.4 

our+best 62.8 69.8 61.7 49.0 63.4 

Context-to-Vec 

Context-LSTM 63.5 66.6 66.4 39.3 72.6 

SynGCN 60.9 73.2 71.0 45.5 79.6 

Bert+skip-gram 72.8 75.3 76.2 49.4 78.6 

Graph-Retro 78.9 77.0 77.9 55.2 85.1 

Our+best 78.9 77.0 77.9 55.2 85.1 



 

Table 4. The first six rows of experiments represent six typical matrix projection methods 

(baseline), while the remaining experiments involve function projection. The performance of 

the four evaluation metrics depends on the choice of basis functions and their parameters. 

Method Appropriate Para/M Time PPL FLOPs 

Full-att - 7.55 650.19 65.37 25.97 

Sparse_B - 0.43 4756.6 57.71 1.74 

Sparse_A - 7.55 792.48 1.00 25.90 

NSA - 0.20 312.16 1.20 0.10 

Flash-att 
 

- 0.10 103.31 1.18 0.11 

RetNet - 0.10 226.03 1.18 0.11 

Poly Basis 

Three-degree 0.03 45.94 1.35 0.02 

Six-degree 0.03 70.46 1.54 0.02 

Nine-degree 0.03 90.86 1.46 0.02 

Fourier Basis 

Three-series 0.03 61.87 1.18 0.23 

Six-series 0.03 129.36 1.30 0.23 

Nine-series 0.03 166.21 1.31 0.23 

 

Wavelet Basis 

Harr 0.03 37.98 2.97 0.02 

Meaican hat 0.03 145.71 1.28 0.02 

Morlet 0.03 140.83 1.28 0.02 

Gaussian Basis 

(μ, 𝜎2, n) 

(1,1,1) 0.029 137.07 1.26 0.03 

(1,1,3) 0.029 140.67 1.54 0.02 

(0.5,1,1) 0.029 140.58 1.24 0.02 

(1.5,1,1) 0.029 139.58 1.27 0.02 

(1,0.5,1) 0.029 135.42 2.02 0.02 

(1,1.5,1) 0.029 140.16 1.18 0.02 

Spline Basis 

Linear 0.029 549.75 173.5 0.02 

Cubic 0.029 754.85 170.1 0.02 

Cubic-B 0.029 759.73 170.1 0.02 

 

thod that simulates the NSA approach. The extra-para metric indicates the number of 

additional parameters introduced beyond the baseline model, while training time, PPL, 

and FLOPs are used to evaluate the model’s adaptability across different tasks. 

 

Our model was configured with a batch size of 32, a learning rate of 3e-4, and trained 

for 5 epochs, selecting the best results. The sequence length was 128, with 6 layers, 

hidden dimension d = 256, and 2 attention heads, using a random seed of 42. For basis 

function selection, we experimented with five distinct types: polynomial basis func-

tions, Fourier basis functions, Gaussian basis functions, spline basis functions, and 

wavelet basis functions. Each basis function was tested with corresponding controlled 

experiments. The results are shown in Table 4. 
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5 Conclusion 

We first validated the existence of an implicit value space underlying the data, which 

allows us to define vectors using functions, specifically, in the form of parametric equa-

tions. The advantage of this approach is that function projection calculations require 

significantly less computational cost compared to matrix projections, eliminating the 

need to update large matrix parameters for the sampling process. We acknowledge that 

this method demands additional computational resources during the word embedding 

process. However, we consider this an acceptable pretraining strategy. Finally, our ex-

periments confirmed that function projections can reduce model complexity to some 

extent. We tested various types of basis functions to evaluate multiple metrics, though 

this represents only a small subset of possible functions. We believe this concept has 

significant room for improvement, and we will further explore it in future studies. 
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