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Abstract. Fire detection plays an important role in safety and loss reduction and 

is widely used in scenarios such as forests, industrial facilities and urban envi-

ronments. However, fire detection faces many challenges, including the diversity 

of flame appearance, dynamic and unpredictable behaviour, and the complexity 

of distinguishing flames from similar visual phenomena. Existing fire detection 

algorithms generally suffer from low detection accuracy, slow processing speed, 

and poor adaptability to complex backgrounds. To address these limitations, we 

propose a fire detection algorithm called DRC-YOLO, an enhanced model based 

on YOLO11. First, we replace some standard convolution blocks with dynamic 

convolution layers, which improves the detection accuracy of irregular fire re-

gions while maintaining the lightweight design of the model. Second, we inte-

grated CBAM into the detection head and enhanced it through residual connec-

tions to further enhance the network's ability to localise fire-affected regions and 

improve robustness. Finally, we enhanced the spatial pyramid structure by simu-

lating large-kernel convolution operations, significantly   expanding the model's 

receptive field while improving multi-scale feature extraction capability and 

maintaining computational efficiency. Extensive experiments on the M4SFWD 

dataset show that DRC-YOLO improves the AP by 2.6%, the AR by 2.2% and 

the mAP@50 by 1.8%, which are significant advantages over the baseline model. 

Keywords: Fire Detection, YOLO11, Dynamic Convolution, CBAM, LSKA. 

1 Introduction 

Fires, whether caused by natural phenomena or human activities, pose a serious threat 

to economic and biological health [1]. They have the potential to escalate and spread 

rapidly, often leaving very little time for people to react or even escape. High tempera-

ture flames can exacerbate the danger and lead to tragic loss of life. In addition, once 

out of control, fires cause incalculable economic losses and pose a major threat to social 

production and livelihoods. Timely detection and early warning of fires is therefore an 

important means of ensuring the safety of people and property, reducing the losses 

caused by accidents and improving the overall level of emergency management [2–4]. 



 

Smoke appears earlier than other fire indicators, so early smoke detection is ex-

tremely important to improve fire control and chances of survival [5]. However, tradi-

tional smoke sensors rely on smoke spreading to a certain concentration before trigger-

ing an alarm, which not only suffers from detection delays, but is also prone to false 

alarms due to factors such as water vapour and soot [6]. In complex background envi-

ronments, the subtle characteristics of smoke and flame are often obscured by back-

ground clutter, coupled with the influence of light, weather, wind speed and other en-

vironmental factors, further exacerbating the risk of leakage and false alarms, missing 

the best time to control the fire. In the complex background environment, fire detection 

faces even greater challenges. The characteristics of smoke and flames in the early 

stages of a fire are typically weak and easily masked by the surrounding background 

clutter [7]. For example, reflected light from urban complexes and dappled sunlight in 

forests can interfere with the detection of fire-related features. In addition, the effects 

of environmental factors such as light variations, weather conditions (e.g. fog) and wind 

speed significantly weaken the performance of conventional detection devices [8]. The 

weak robustness of traditional detection methods in dealing with these complex scenar-

ios often leads to frequent misses and false alarms, and more efficient means of fire 

detection are urgently needed. 

Over the past few years, deep learning-based object detection methods have emerged 

as innovative solutions to critical challenges in fire detection. Representative models 

like Fast R-CNN [9] (two-stage detection), the YOLO family [10] (single-stage detec-

tion), and Transformer-based RT-DETR [11] have demonstrated remarkable progress 

in general object recognition through technological breakthroughs such as feature pyr-

amid networks and self-attention mechanisms. 

However, fire detection demands unique optimization criteria: algorithms must sim-

ultaneously resist environmental interference while maintaining real-time detection 

speed. Current solutions grapple with inherent trade-offs - Transformer-based ap-

proaches strengthen feature representation through global modeling at the cost of com-

putational efficiency, whereas YOLO architectures prioritize detection speed but risk 

missing critical details like flame edges under flickering lights or smoke patterns in 

foggy conditions where low contrast prevails.  

Therefore, in order to improve the accuracy and robustness of the fire detection al-

gorithm and to reduce false detections, we propose a new detection method, the DRC-

YOLO model. 

We designed the C3k2-DC module (Dynamic Convolution), an improved version of 

the C3k2 module, to enhance the baseline YOLO11 model. The C3k2 module is char-

acterised by the flexibility to choose between C2f and C3k structures internally, as well 

as its adaptability to different convolution kernel sizes. Based on these features, the 

C3k2-DC module significantly improves the feature extraction capability of the model 

and better handles the dynamic shapes of flame and smoke. Compared to the standard 

C3k2 module, the C3k2-DC module improves the detection accuracy of irregular fire 

regions by dynamically adjusting convolution parameters based on input features dur-

ing each operation. 

The integration of an enhanced CBAM (Residual Connection-improved Convolu-

tional Block Attention Module, RC-CBAM) in the detector head further enhances the 
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model's ability to independently extract and fuse small-scale feature information. This 

improvement significantly enhances the model's anti-interference capability against 

challenging backgrounds, reducing missed and false detections. By dynamically recal-

ibrating spatial and channel features, RC-CBAM effectively highlights key fire-related 

information, further improving the reliability of fire detection. 

The construction of the FSKA-Pool module, based on the integration of Large Sep-

arable Kernel Attention (LSKA) into the SPPF module, significantly enhances the 

model’s ability to extract and fuse multi-scale features. This allows for more effective 

interaction across scales, enabling the model to fully exploit different levels of semantic 

information. As a result, the detection of small smoke and flame targets is improved, 

along with the localisation accuracy of large targets. The enhanced cross-scale feature 

extraction further boosts the model’s adaptability and performance in detecting fire in 

diverse and complex scenarios. 

2 Related Work 

2.1 Conventional Fire Detection Methods 

Conventional fire detectors are mainly based on triggering an alarm when the smoke 

concentration or temperature reaches a preset threshold [12]. However, due to the de-

layed accumulation of smoke and temperature, this approach results in a delayed re-

sponse from the early fire detection system, which is particularly noticeable in large 

spaces or ventilated environments; this limitation increases the risk of fire spread and 

is significantly detrimental to evacuation and fire control. 

To improve sensitivity, several new techniques have been proposed in recent years. 

For example, a multi-bandpass filtered fire detection system based on spectral features 

[13] , which achieves accurate identification of flame radiation characteristics and sig-

nificantly reduces the detection delay by optimising the filter design; a rhodium com-

plex based CO detection material [14], which detects carbon monoxide through a col-

orimetric thin film and improves the reuse rate; and a distributed feedback semiconduc-

tor laser (DFB LD) combined with a harmonic detection technique [15], for radiation 

characterisation in the flame region, which demonstrates high sensitivity in complex 

backgrounds. In addition, fire detection devices based on chemical molecular materials, 

such as reduced graphene oxide paper (RGOP-NaCl) [16], effectively reduce the risk 

of electrical fires due to their self-destructing properties. 

Although the above new methods have improved detection accuracy and sensitivity, 

they are still limited by the fixed threshold triggering mechanism, resulting in a delayed 

response when the initial characteristics of the fire are not obvious [17]. To overcome 

this shortcoming, research has gradually shifted to machine vision-based fire detection 

techniques, aiming to achieve more real-time and dynamic fire detection and early 

warning, thus improving comprehensive and real-time fire detection. 



 

2.2 Machine Vision-Based Fire Detection Methods 

Machine vision-based fire detection mainly relies on machine learning and image pro-

cessing techniques, where the choice of colour space is critical. The YCbCr colour 

space [18] is used to extract flame pixels for real-time fire detection due to its advantage 

of luminance and chromaticity separation. In addition, the PreVM pixel accuracy 

method improves detection accuracy through L0-norm regularization constraints [19], 

performs well under non-rigid and colour uncertainty conditions of fire images, and is 

suitable for low computational resource environments. 

Both methods perform well in flame region segmentation, offering higher accuracy 

and real-time performance compared to traditional fire detection methods. However, 

the adaptability and generalisability of these vision-based detection techniques in com-

plex environments is still lacking compared to deep learning methods. 

2.3 Deep Learning-Based Fire Detection Methods 

As the technology develops, deep learning is gradually being applied to complex fire 

detection tasks. Early models such as VGG, AlexNet and DenseNet, although having 

some detection accuracy, have limited performance in real-time and large-scale fire 

monitoring scenarios due to the large number of parameters, high computational over-

head and overfitting problems [20]. To address these issues, models such as YOLO and 

Faster R-CNN have significantly reduced the number of parameters and improved the 

detection speed by optimising the network structure and feature extraction capability, 

while performing well in the accurate positioning of flames and smoke, which has be-

come a research hotspot in the field of fire detection. 

The researchers have further optimised the deep learning model. For example, by 

introducing the inverse convolution and null convolution layers, the resolution of the 

feature map and the ability to capture contextual information are improved [21], which 

performs well in small target detection; combining RCNN with ResNet [22] improves 

the recognition ability of key features of flames and smoke; and adding a small target 

detection (STD) layer to YOLOv5 [23], significantly improves the detection of fine fire 

and smoke. 

Despite the excellent performance of existing deep learning models in fire detection, 

there are still problems of insufficient ability to detect irregular fire regions and the 

balance between model lightness and accuracy [24]. To address these shortcomings, we 

propose an improved model based on YOLO11 called DRC-YOLO. 

3 Approaches 

In this section, the core components of DRC-YOLO are described in detail, including 

the dynamic convolution layer (DC), the DC-C3k2 module, the RC-CBAM, and the 

FSKA-Pool module. These modules work synergistically to effectively improve the 

model's detection accuracy and robustness to irregular fire regions. 
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3.1 DRC-YOLO 

Based on a comprehensive comparison of the various versions and different specifica-

tions of the YOLO model, we choose YOLO11n as the base framework of the model 

due to the consideration of detection speed and accuracy. As a single-stage detection 

algorithm, YOLO11n is lightweight, but there is still room for improving its accuracy 

and robustness in fire detection tasks. For this reason, we improve the model’s perfor-

mance while minimising the increase in computational complexity and detection la-

tency. The overall framework of DRC-YOLO is shown in Fig. 1. Overall architecture 

of DRC-YOLO. The improvement is divided into three parts: firstly, a dynamic convo-

lutional layer is constructed and the original C3k2 module is replaced by the C3k2-DC 

module in the Backbone and Neck part, thus enhancing the detection capability of ir-

regular fire regions while maintaining a lightweight design; secondly, the residual con-

nection-improved CBAM (RC-CBAM) is introduced in the detection head part to en-

hance the feature integration capability to improve the accuracy and robustness of fire 

detection; finally, the original SPPF module is replaced by the FSKA-Pool module to 

improve  multi-scale feature extraction ability. 

 

Fig. 1. Overall architecture of DRC-YOLO 

3.2 Dynamic Convolution Layer and C3k2-DC 

The main targets of fire detection are flames and smoke, which are highly irregular in 

shape and distribution. Therefore, traditional fixed shape convolutional kernels may 

have limitations in capturing these complex features. Dynamic convolution [25], on the 

other hand, allows the model to adaptively adjust the convolution kernel by introducing 

a weight generation mechanism based on the input features to better extract the key 

information in the input data. This dynamic feature provides a better option for more 

accurate flame and smoke detection. 

The dynamic convolutional layer constructed in this paper is implemented by com-

bining the input features to generate dynamic weights and conditional convolutional 



 

operations. First, the weight generation module dynamically generates weight vectors 

from the input features, as shown in Fig. 2. Weight generation module of dynamic con-

volution , where each channel is downscaled to a 1 × 1 global feature after the adaptive 

average pooling operation. Subsequently, the weight vectors are obtained by the flatten 

operation and then mapped to [0, 1] by the sigmoid function. Next, the conditional con-

volution module, as shown in Fig. 3. Conditional convolution (example with 4 expert 

kernels), dynamically fuses the different convolutions by the weight vectors of the input 

features to achieve dynamic convolution. In (1), the contribution of each convolution 

kernel is determined by its weight, and the final convolution result is the result of 

weighting all expert convolution kernels. 

 

Fig. 2. Weight generation module of dynamic convolution 

 

Fig. 3. Conditional convolution (example with 4 expert kernels) 

 𝐶𝑜𝑛𝑑𝐶𝑜𝑣(𝑥) = ∑ (𝛼𝑖 × 𝐶𝑜𝑛𝑣(𝑥,  𝑊𝑖))
𝑒𝑥𝑝𝑒𝑟𝑡𝑠

𝑖=1
 (1) 

The constructed C3k2-DC module is shown in Fig. 4. Structure diagram of C3k2-DC , 

and the design idea is to improve the extraction capability of the model for features of 

irregular targets (e.g., flames and smoke) by introducing dynamic convolution based 

on the C3k2 module. The C3k2 module is characterised by a flexible structure: when 

the parameter C3k is true, the interior of C3k2 consists of multiple C3k modules con-
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nected across phases; when the parameter C3k is false, C3k2 consists internally of mul-

tiple bottleneck modules connected across stages. The specific design to improve C3k2 

is as follows: 

• Bottleneck-DC module: in the Bottleneck module, this paper replaces the second 

convolutional layer with the constructed dynamic convolutional layer to obtain the 

new Bottleneck DC module. 

• C3k-DC module: the C3k module is replaced by C3k-DC module, and the Bottle-

neck module is replaced by Bottleneck-DC module to construct the C3k-DC module.  

• C3k2-DC module: the C3k module is replaced by C3k-DC module, and the Bottle-

neck module is replaced by Bottleneck-DC module to construct the final C3k2-DC 

module. The C3k2-DC module integrates the advantages of dynamic convolution 

and has a stronger feature extraction capability for irregular targets. 

 

Fig. 4. Structure diagram of C3k2-DC 

Previously, we proposed C3k2-DC with fused dynamic convolution, and it is worth 

noting that although dynamic convolution increases the number of parameters, the com-

putational increase due to dynamic convolution is almost negligible compared to nor-

mal convolution. This is because dynamic convolution generates fusion weights from 

input features that linearly weight multiple sets of convolution kernels. In the inference 

phase, only one regular convolution operation is performed with the fused single con-

volution kernel, instead of multiple convolutions with multiple sets of kernels. And in 

the fusion process, although the weighting operation is required, it only involves 

weighting and accumulating the matrix by elements, and the computational complexity 

is much lower than the multiply-add operation of the convolution operation. 

 𝑅FLOPs =
𝐶in

2+𝐶in⋅𝑀+𝑀⋅𝐶out⋅𝐶in⋅𝐾2+𝐻′⋅𝑊′⋅𝐶out⋅𝐶in⋅𝐾2

𝐻′⋅𝑊′⋅𝐶out⋅𝐶in⋅𝐾2  (2) 



 

The conclusion can be further verified by theoretical calculations. The ratio RFLOPs 
of the actual FLOPs of dynamic convolution compared to the ordinary convolution 
FLOPs is shown in (2). Since the number of the expert convolution kernels 𝑀 is much 
smaller than the product of the height and width of the output feature map  H′ ⋅ W′, 
which makes the computation of the weight generation and fusion stage a very small 
percentage, the additional overhead of dynamic convolution compared to ordinary con-
volution is negligible, and it can be introduced that RFLOPs ≈ 1. 

3.3 RC-CBAM 

 

Fig. 5. Structure diagram of CBAM 

 

Fig. 6. Structure diagram of RC-CBAM 

Convolutional Block Attention Module (CBAM) [26] is a lightweight and efficient at-

tention mechanism that enhances the feature extraction capability. CBAM is able to 

judge the two independent dimensions of the attention graphs, channel and spatial, in 

turn, and adaptively optimise the input feature graph. As shown in Fig. 5. Structure 

diagram of CBAM, CBAM first models the relationships between different channels in 

the feature map through the channel attention module and assigns weights to each chan-

nel, thus highlighting information-rich channels and suppressing irrelevant channels; 
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second, the spatial attention module analyses the spatial dependencies within each 

channel and learns the key spatial regions. 

Residual connection is a widely used technique in deep learning models, the core 

idea of which is to improve the efficiency of feature transfer by directly adding input 

features to output features to alleviate the problem of vanishing or exploding gradients 

during training. Compared to other forms of shortcut connections, residual connections 

are unique in that they can optimise the model more efficiently through residual func-

tions rather than direct mapping. 
In this paper, CBAM is improved with residual connection and RC-CBAM is con-

structed, the specific structure is shown in Fig. 6. Structure diagram of RC-CBAM. The 
input feature 𝐹 is first processed by the bottleneck module to generate the transformed 
feature 𝑇(𝐹) (as formulated in (3)), which extracts the higher-level feature representa-
tion and effectively compresses the redundant information. Next, 𝑇(𝐹) is processed by 
the channel attention module 𝑀𝑐 to obtain the feature 𝐹′(as formulated in (4)). Then, 𝐹′ 
is further processed by the spatial attention module 𝑀𝑠 to produce 𝐹′′(as formulated in 
(5)). Meanwhile, as shown in (6)(7), the initial input features F are passed through the 
residual function to generate residuals to preserve the key information in the original 
features and provide supplements to the final results. Finally, 𝐹′′ is summed with the 
residual and an activation function is applied to complete the entire RC-CBAM inference 
process. The design effectively fuses the deep representation of the features with the 
original information, improving the expressiveness and robustness of the model. 

 𝑇(𝐹) = 𝐵𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘(𝐹) (3) 

 𝐹′ = 𝑀𝑐(𝑇(𝐹)) ⊗ 𝑇(𝐹) (4) 

 𝐹′′ = 𝑀𝑠(𝐹′) ⊗ 𝐹′ (5) 

 

                         𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = {
𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒(𝐹), 𝑖𝑓 𝑠ℎ𝑎𝑝𝑒_𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ

𝐹, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (6) 

 𝑜𝑢𝑡 = 𝑅𝑒𝐿𝑈(𝐹′′ + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙) (7) 

3.4 FSKA-Pool 

Spatial Pyramid Pooling Fast (SPPF) module improves on Spatial Pyramid Pooling 

(SPP) module by efficiently extracting multi-scale features in convolutional neural net-

works. It merges three successive pooling layers to fuse outputs for multi-scale fusion 

[27], while reducing computational complexity and increasing speed compared to SPP. 

However, the SPPF in the baseline model acquires features through pooling operations 

and lacks dynamic modelling capability, making it difficult to adapt to multi-scale tar-

get detection requirements in fire detection tasks. 

Large Separable Kernel Attention (LSKA) [28] has a better ability to model long-

range dependencies by decomposing a single convolutional kernel into a cascade of 

horizontal and vertical convolutional kernels, which reduces the optimisation difficulty 

and computational overhead while maintaining the ability to capture global infor-



 

mation. LSKA combines both spatial and channel attention mechanisms, is able to dy-

namically adjust the weights of features according to the contextual dependencies, thus 

improving the feature expression ability. 

 𝑍𝐶 = ∑ 𝑊(2𝑟−1)×1
𝐶

𝐻,𝑊 ∗ (∑ 𝑊1×(2𝑟−1)
𝐶

𝐻,𝑊 ∗ 𝐹𝐶) (8) 

 𝑍𝐶 = ∑ 𝑊
⌊
𝑘

𝑟
⌋×1

𝐶
𝐻,𝑊 ∗ (∑ 𝑊

1×⌊
𝑘

𝑟
⌋

𝐶
𝐻,𝑊 ∗ 𝑍𝐶) (9) 

 𝐴𝐶 = 𝑊1×1 ∗ 𝑍𝐶  (10) 

 𝐹𝐶 = 𝐴𝐶 ⊗ 𝐹𝐶 (11) 

To improve the capability of the baseline model in multi-scale feature extraction, this 

paper proposes to integrate LSKA into the SPPF module, and the constructed FSKA-

Pool module is shown in Fig. 7. Structure diagram of FSKA-Pool. The input features 

are first spliced by three MaxPool operations to preserve the multi-scale context, and 

then cascaded by deep separable convolution to obtain a larger range of spatial context 

as well as attention to capture the global semantics and highlight the key information. 

The detailed process of large kernel decomposition convolution within the FSKA-

Pool module is as follows: first, the input features 𝐹𝐶  are processed using a 

1 × (2𝑟 − 1) horizontal convolution and a (2𝑟 − 1) × 1 vertical convolution, result-

ing in intermediate feature 𝑍𝐶(as formulated in (8)). This step essentially decomposes 

the large kernel into depth-wise separable convolution operations. After obtaining 𝑍𝐶 , 

another large-kernel convolution with a scale of 
𝑘

𝑟
 (k: kernel size, r: decomposition fac-

tor) is applied and similarly decomposed to further expand the receptive field (as 

formulated in (9)). Finally, a 1×1 convolution is used to generate the attention map 

𝐴𝐶(as formulated in (10)). The attention map 𝐴𝐶 is then multiplied element-wise with 

the original feature 𝐹𝐶  to produce the final output (as formulated in (11)). 

 

Fig. 7. Structure diagram of FSKA-Pool 
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4 Experiments 

4.1 Datasets and experiment environment 

M4SFWD: The M4SFWD synthetic wildfire dataset with multi-scenario, multi-

weather, multi-light and multi-fire targets was selected for this experiment [29]. This 

dataset introduces complex terrain, different weather conditions and texture effects, and 

simulates light density at different times of day using real-time ray tracing. This diver-

sity is very important for investigating the robustness of the model under complex con-

ditions such as light and weather changes. In addition, M4SFWD contains 3974 images 

and 17763 bounding boxes covering multi-scale flame and smoke targets, providing a 

more challenging and representative test environment for fire detection algorithms. 

The experiments were conducted under the Windows 11 operating system environ-

ment with a hardware configuration of an NVIDIA RTX 4080 laptop GPU with 12 GB 

of video memory. The experiments utilized Python 3.12.3, CUDA12.7 to provide GPU 

acceleration support, and the deep learning framework PyTorch 2.5.1. The experi-

mental parameters were set as follows: the input image size was 640×640, the epochs 

were 400, and the batch size was set to 64. The pretrained and cache was set to False, 

and Automatic Mixed Precision (AMP) was set to True. 

4.2 Comparison Experiments 

Comparison of Different Attention Mechanisms 

Table 1. Experimental Results of Different Attention Mechanisms 

 mAP@50(%) AP(%) AR(%) 

 YOLO11n (Baseline) 86.8 82.3 80.8 

 YOLO11n +EMA 87.0 (+0.2) 83.4 (+1.1) 79.1 (-1.7) 

 YOLO11n +ECA 87.2 (+0.4) 82.4 (+0.1) 80.3 (-0.5) 

 YOLO11n +CBAM 87.3 (+0.5) 83.6 (+1.3) 81.1(+0.3) 

 YOLO11n +RC-CBAM 87.8 (+1.0) 83.8 (+1.5) 81.5(+0.7) 

 

To demonstrate the effectiveness of the RC-CBAM constructed in this paper for fire 

detection. We conducted experiments on the M4SFWD dataset and used YOLO11n as 

the baseline model to compare it with EMA [30], ECA [31]and CBAM. The experi-

mental results are shown in Table 1. The model integrated with RC-CBAM achieved 

improvements of 1%, 1.5% and 0.7% in mAP@50, AP(Average Precision) and 

AR(Average Recall) respectively compared to the baseline model. Compared to EMA 

and ECA, RC-CBAM improved the AP metric by 0.4% and 1.4% respectively. Unlike 

the trade-off observed in EMA, ECA where "AP increases but AR decreases" or "AP 

decreases but AR increases", RC-CBAM achieved improvements in both AP and AR 

metrics, demonstrating greater robustness. 



 

Comparison of Different Detection Models 

Table 2. Experimental Results of Different Detection Models 

 mAP@50(%) AP(%) AR(%) Params(M) FLOPS(G) 

RT-DETR 83.6 79.1 80.2 4.1 125.6 

 YOLOv5n 85.6 82.9 79.6 2.2 5.9 

 YOLOv8n 86.1 82.6 80.9 3.1 8.9 

 YOLO11n 86.8 82.3 80.8 2.6 6.4 

 DRC-YOLO 88.6 84.9 83.0 4.8 8.3 

 YOLO11s 88.1 84.6 83.0 9.4 21.6 

 

We conducted comparative experiments on the fire detection task using the M4SFWD 

dataset, evaluating YOLOv5n, YOLOv8n, YOLO11n/s, RT-DETR, and our improved 

DRC-YOLO model. The model selection rationale includes three key considerations: 

First, improved models mentioned in Chapter 2 [21-23] were excluded from compari-

son due to unavailability of open-source code for reproduction. Second, the classical 

lightweight versions YOLOv5n and YOLOv8n were chosen as performance bench-

marks due to their extensive deployment validation in industrial applications. Third, the 

novel baseline YOLO11n was introduced for its C3k2 module's flexibility and detection 

head's lightweight design, theoretically combining high accuracy with low computa-

tional costs. Additionally, RT-DETR is selected as a comparative model because it rep-

resents a state-of-the-art real-time detection method based on the Transformer architec-

ture. This choice allows us to validate the performance advantages of DRC-YOLO in 

cross-methodology scenarios (CNN vs. Transformer) while also evaluating the model's 

comprehensive competitiveness in both real-time efficiency and detection accuracy. 

 The experimental results validate the technical rationale for selecting YOLO11n as 

the baseline model: 

• Hardware cost: With 2.6M parameters, YOLO11n exhibits an 18% increase com-

pared to v5n (2.2M) but remains 16.1% lower than v8n (3.1M). 

• Computational efficiency: At 6.4G FLOPS, it achieves a 28% reduction compared 

to v8n (8.9G) while maintaining comparable efficiency to v5n (5.9G). 

• Performance: The model achieves a cross-generational breakthrough with 86.8% 

mAP@50, surpassing v5n (85.6%, released in 2019) by 1.2% and outperforming v8n 

(86.1%, 2023 release) by 0.7%. 

These three-dimensional advantages—controlled parameter growth, sustained compu-

tational efficiency, and leading detection accuracy—solidify YOLO11n's technical va-

lidity as a novel baseline for fire detection tasks. 

The data in Table 2 demonstrates that the YOLO series comprehensively outper-

forms the Transformer-based RT-DETR in fire detection tasks: DRC-YOLO achieves 

a significant 5.0% lead in mAP@50 (88.6% vs. 83.6%) while compressing computa-

tional costs from 125.6G to 8.3G FLOPS (merely 6.6% of RT-DETR's). This "higher 
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accuracy, lower energy consumption" characteristic validates the adaptive superiority 

of the YOLO architecture in fire detection scenarios. 

Compared to the baseline model YOLO11n, DRC-YOLO achieves three-dimen-

sional improvements through C3k2-DC, RC-CBAM, and FSKA-Pool modules: 

mAP@50: 86.8% → 88.6% (+1.8%), AP: 82.3% → 84.9% (+2.6%), AR: 80.8% → 

83.0% (+2.2%). 

Notably, despite increased parameters from architectural enhancements, DRC-

YOLO maintains substantial efficiency advantages over the larger YOLO11s variant. 

With only 51.1% of YOLO11s' parameters (4.8M vs. 9.4M) and 38.4% of its compu-

tational costs (8.3G vs. 21.6G FLOPS), DRC-YOLO surpasses YOLO11s in both AP 

and mAP@50 metrics. 

 

Fig. 8. Precision-recall curve 

As shown in Fig. 8. Precision-recall curve, comparing the Precision-Recall (P-R) curve 

of DRC-YOLO with the baseline model YOLO11n, it can be seen that DRC-YOLO is 

almost always on top of the baseline model, indicating that the improved model has a 

higher precision for the same recall, implying that DRC-YOLO is able to detect more 

positive samples with a lower false detection rate. As shown in Fig. 9. F1-confidence 

curve , the F1-confidence plots of DRC-YOLO versus the baseline model YOLO11n 

show that the F1 scores of DRC-YOLO for different confidence thresholds are always 

higher than those of the baseline model, which also shows that the model has a better 

balance between precision and recall. 



 

 

Fig. 9. F1-confidence curve 

Fig. 10. Partial detection results (top two-YOLO11n, bottom two-DRC-YOLO)Fig. 
10. Partial detection results (top two-YOLO11n, bottom two-DRC-YOLO) shows a 
comparison of some of the YOLO11n and DRC-YOLO detection results on the test set, 
where the top two are the YOLO11n detection results and the bottom two are the DRC-
YOLO detection results. The test samples were deliberately selected from images with 
both daytime and nighttime backgrounds in order to fully evaluate the model's perfor-
mance. It can be seen that in the daytime background, with the interference of the forest 
background and lighting conditions, YOLO11n failed to detect, while DRC-YOLO suc-
cessfully detected all the targets in this image. It can also be seen that the confidence 
level of DRC-YOLO in detecting targets is also higher than that of YOLO11n in the 
nighttime background image, which also verifies the detection capability of DRC-
YOLO in low light conditions. 

 

Fig. 10. Partial detection results (top two-YOLO11n, bottom two-DRC-YOLO) 
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4.3 Ablation Experiments  

 

Fig. 11. Histogram for ablation experiments 

Table 3. Ablation Experiments 

 mAP@50(%) AP(%) AR(%) 

YOLO11n(Baseline) 86.8 82.3 80.8 

+DC-C3k2 87.1(+0.3) 83.5(+1.2) 81.9(+1.1) 

+RC-CBAM 87.8(+1.0) 83.8(+1.5) 81.5(+0.7) 

+FSKA-Pool 87.4(+0.6) 83.7(+1.4) 81.4(+0.6) 

+DC-C3k2+RC-CBAM 88.2(+1.4) 84.3(+2.0) 82.5(+1.7) 

+DC-C3k2+FSKA-Pool 87.9(+1.1) 84.6(+2.3) 82.0(+1.2) 

+RC-CBAM+FSKA-Pool 88.1(+1.3) 84.0(+1.7) 82.4(+1.6) 

DRC-YOLO(AllModules) 88.6(+1.8) 84.9(+2.6) 83.0(+2.2) 

 

To investigate the effectiveness of the proposed enhancement modules, we per-

formed progressive performance tests on each enhancement point of DRC-YOLO. Ta-

ble 3 shows the experimental results of the ablation experiments, and it can be seen that 

the results of adding each module improved compared to the baseline model. After the 

introduction of DC-C3k2, mAP@50, AP and AR increased by 0.3%, 1.2% and 1.1%, 

respectively. After the introduction of RC-CBAM, mAP@50, AP and AR increased by 

1.0%, 1.5% and 0.7%, respectively. With the addition of the FSKA-Pool module, 

mAP@50, AP, and AR increased by 0.6%, 1.4%, and 0.6%, respectively. Notably, the 

combination of RC-CBAM and FSKA-Pool delivers the highest mAP@50 improve-

ment (+1.4%), demonstrating that the synergy between attention mechanisms and 



 

multi-scale feature fusion is critical for location precision enhancement. Conversely, 

the DC-C3k2 and FSKA-Pool pairing achieves the greatest AR boost (+2.3%), validat-

ing that dynamic convolutions coupled with long-range dependency modeling effec-

tively mitigate missed detections. DRC-YOLO, which integrates all the above modules, 

achieved significant performance improvements, with mAP@50 increasing by 1.8%, 

AP by 2.6%, and AR by 2.2%. For a more intuitive comparison, the results of the abla-

tion experiments are presented as histogram in Fig. 11. Histogram for ablation experi-

ments. 

5 Conclusion 

Aiming at a series of problems in the fire detection task, this paper proposes an im-

proved model DRC-YOLO based on YOLO11. Firstly, due to the problem of fire and 

smoke target irregularity in the fire detection task, this paper introduces the Dynamic 

Convolutionally-improved C3k2 Module (DC-C3k2). Secondly, the Residual Connec-

tion-improved CBAM (RC-CBAM) is introduced to address the problems of complex 

background, light and weather interference in fire detection. Furthermore, the SPPF 

module improved with LSKA (FSKA-Pool) enhances the multi-scale feature extraction 

capability, effectively capturing critical features in fire detection. The experimental re-

sults on the M4SFWD dataset show that the improved DRC-YOLO has a significant 

improvement in mAP@50, AP and AR compared to the state-of-the-art target detection 

model, and have higher precision and robustness in fire detection tasks. Although the 

selected YOLO11n is a lightweight model among the YOLO models, while our model 

has achieved improved accuracy in fire detection, its lightweight design remains a po-

tential area for further optimization. Due to the requirements of the fire detection task 

for the deployment of edge devices, future work will focus on further work on the 

lighter model while ensuring that it does not have a significant decrease in accuracy in 

the fire detection task. 
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