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Abstract. Medical Vision-Language Models (VLMs) show significant potential 

for auxiliary diagnosis, especially given the continuous growth of medical image 

data. However, adapting these models effectively with limited labeled data re-

mains a challenge. This paper proposes a cross-modal adaptation method for few-

shot medical image classification based on pre-trained VLMs. Our approach lev-

erages both image features and corresponding text features extracted from the 

pre-trained models to train a classifier head. Furthermore, we employ the SHAP 

interpretability analysis method to select the most informative text features, 

thereby enhancing classification performance. We evaluated our method on the 

CheXpert5x200 dataset using MedCLIP and KAD as foundation models, com-

paring it against zero-shot classification and uni-modal adaptation (using only 

image features). Results demonstrate that our approach significantly improves 

few-shot classification performance over the baselines. The SHAP-based feature 

selection provides additional gains. Ultimately, we present a general, simple, and 

efficient cross-modal adaptation strategy that enhances medical VLM perfor-

mance using a small number of image samples, contributing to more reliable AI-

powered diagnostic tools.  

Keywords: Vision-Language Model, Cross-Modal Adaptation, Few-shot 

Learning. 

1 Introduction 

In recent years, VLMs such as CLIP[1] have received increasing attention in medicine. 

The CLIP model maximizes the similarity between image features and text features of 

the same category through contrastive learning, introduces text information into the 

visual model, and improves the model's classification capabilities of medical images. 

In addition, the increasing amount of medical imaging and pathology report data also 



provides support for the pre-training of medical visual language large models. More 

and more medical visual language large models continue to emerge, helping doctors to 

better diagnose patients. 

Based on the ability of the visual language large model to tightly align text and image 

information into the latent space, the cross-modal adaptive method further improves the 

classification performance of the model by training a linear classifier with a mixture of 

aligned text and image features. At the same time, more text features can be added as 

additional training samples by setting a variety of artificial text prompt methods con-

taining category names, or by using other automatic text prompt methods. This method 

only requires a small number of image samples to achieve few-sample classification, 

and quickly improves performance while occupying a small amount of computing re-

sources. 

The main contributions of this paper are as follows:  

─ Introducing cross-modal adaptation methods into the basic model of medical visual 

language. For the first time, cross-modal adaptation technology is used in the field 

of medical images to significantly improve the small sample classification perfor-

mance of the basic model.  

─ Introducing the SHAP strategy to filter text features. For the same type of disease 

label, we can generate multiple text prompt words, and their quality varies. We use 

SHAP interpretability analysis to rank the importance of text features. In this way, 

we can filter out better text features for classification head training.  

2 Related Works 

2.1 Vision-Language Model in Medical Imaging 

Vision-Language Models (VLMs) such as the CLIP match images with text through 

text and image encoders, and train the model by comparing and learning the similarity 

between text and image embeddings. They have good performance in the field of nat-

ural images. Compared with natural images, in addition to global visual features, local 

visual features are also important for medical images. At the same time, the processing 

of medical reports also requires more professional medical knowledge. The application 

of CLIP pre-training on medical image text datasets needs to be improved accordingly 

[2]. ConVIRT [3] first introduced contrastive learning to align medical images and re-

ports. GLoRIA [4] introduced semantically driven multi-scale contrast and considered 

global and local information for image text feature alignment. MedCLIP[5] further uti-

lized unpaired medical image report data. KAD[6] introduced word-based entity ex-

traction to extract report information, thereby improving the generalization ability of 

the model. CARZero [7] replaced the original similarity calculation with a cross-atten-

tion mechanism to more accurately reflect the similarity of complex relationships in 

medical semantics. Large models have strong generalization capabilities, but for spe-

cific tasks, their performance may not be as good as lightweight models trained for the 

task. How to enhance the adaptability of large models to specific tasks is one of the 

current research directions.  
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In this research, we focus on MedCLIP and KAD as vision-language foundation 

models. 

2.2 Adaptive methods for pre-trained models 

With the development of pre-trained models, more and more work has focused on how 

to better apply large models to downstream tasks. The most basic methods include local 

or global fine-tuning[8] of the CLIP model, linear probing [9], and other methods. The 

design of text prompt words greatly affects the model performance and the adaptability 

of large models to specific tasks. Manually designed prompt words require a lot of at-

tempts to find the best template, while prompt learning such as CoOp [10] and CoCoOp 

[11] can automatically learn the optimal prompt vector and improve classification per-

formance. CLIP-Adapter [12] and Tip-Adapter[13] increase the fine-tuning speed by 

adding lightweight multi-layer-perceptrons (MLPs) in parallel and freezing the original 

parameters during training to only train the Adapter, which not only retains the gener-

alization ability of the large model but also improves its adaptability to specific tasks.  

However, the above methods only use information from a single modality. The 

cross-modal adaptation method[14] is different from the above uni-modality adaptive 

method. It adds data from other modalities as additional training samples during the 

adaptive process, making better use of information from both image and text modali-

ties, and further improving the adaptability of the large model on the basis of the above 

single-modality adaptive method. 

3 Methodology 

3.1 Uni-modal linear probing 

The CLIP is pre-trained on large-scale data using contrastive learning method, and we 

get pretrained image encoder 𝐸𝐼(·) and text encoder 𝐸𝑇(·), which can extract more gen-

eral image and text features and have stronger robustness. Linear probing freezes the 

weights of the 𝐸𝐼(·), extracting features from input images, and training a simple clas-

sifier head 𝐻(·)  (e.g., a single fully connected layer). For n-shots classification, we 

have 𝑛 (𝐼, 𝑙𝑎𝑏𝑒𝑙) pairs, and train the classifier head with the softmax loss: 

𝐿𝑜𝑠𝑠𝑢𝑛𝑖−𝑚𝑜𝑑𝑎𝑙 =  ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻(𝐸𝐼(𝐼𝑖)),  𝑙𝑎𝑏𝑒𝑙𝑖)𝑖  (1) 

 During the uni-modal linear probing, we only use the image features to train the 

classifier head, while the text features were not used. Although the text and image fea-

tures are aligned through contrastive learning in the pre-training stage, we can still im-

prove the classification performance by adding text features in the classification head 

training stage. 



3.2 Cross-modal linear probing:  

Different from uni-modal linear probing, we incorporate image features and text fea-

tures together during the training of the classifier head. For n-shots classification, we 

not only use 𝑛 (𝐼, 𝑙𝑎𝑏𝑒𝑙) pairs, but also add 𝑚 (𝑇, 𝑙𝑎𝑏𝑒𝑙) pairs into the training. The 

default value of 𝑚 is 10. 

𝐿𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠−𝑚𝑜𝑑𝑎𝑙 = ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻(𝐸𝐼(𝐼𝑖)), 𝑙𝑎𝑏𝑒𝑙𝑖)𝑖   

+ ∑ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻 (𝐸𝑇(𝑇𝑗)) , 𝑙𝑎𝑏𝑒𝑙𝑗)𝑗  (2) 

Algorithm 1: The framework of Cross-modal Adaptation for medical vision-language foun-

dation model 

Input:  

I, I_label: images and corresponding image labels 

T, T_label: texts and corresponding text labels 

t: temperature scaling (2.5911 for MedCLIP and 2.6593 for KAD) 

Output: logits, logit_head 

Features pre-extraction:  

1:   I_feature = Image_encoder(I) 

2:   T_feature = Text_encoder(T) 

# mix the text feature and image feature (optional) 

3:   if mix feature : 

          # Mix the text feature and image feature which has the same label 

4:       Mix_feature = mix_ratio * I_feature + (1 – mix_ratio) * T_feature 

Classifier head training: 

5:   train_features = cat((T_feature, I_feature), dim=0) 

6:   train_labels = cat((I_label, T_label), dim=0) 

7: train_loader = DataLoader(train_features, train_labels) 

# initialize classifier head randomly 

8: linear_head.init() 

9: while train_loader: 

10:      features, labels = train_loader.next() 

           #compute the loss and update the params of the classifier head 

11:      logits = linear_head(features) 

12:      loss = SoftmaxLoss(logits / t, labels) 

13:      loss.backward() 

14:      update(linear_head.params) 

3.3 Features Selection using SHAP analysis 

SHAP (SHapley Additive exPlanations) [15] is a model interpretation framework based 

on cooperative game theory, which aims to unify and optimize existing feature im-

portance analysis methods and provide interpretability for the predictions of complex 

models (such as deep learning and integrated models).  
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The Shapley value provides a theoretically sound method to fairly distribute the pre-

diction outcome of a model 𝑓 for a specific input 𝑥 among its individual features, cal-

culating the contribution 𝜑𝑖(𝑓,𝑥) for each feature 𝑖. It operates by considering every pos-

sible subset 𝑆 of features that excludes the feature 𝑖 being evaluated. For each subset 𝑆, 

it calculates the marginal contribution of adding feature 𝑖 to that subset, which is the 

difference in the model’s prediction with feature 𝑖  present (𝑓𝑥(𝑆∪{𝑖})) versus absent 

(𝑓𝑥(𝑆)). Finally, the formula computes a weighted average of these marginal contribu-

tions across all possible subsets 𝑆 , using a specific combinatorial weight 
(|𝑆|! ∗ (𝑀 − |𝑆|− 1)!)

𝑀!
 derived from cooperative game theory, ensuring that the feature’s con-

tribution is averaged fairly across all possible contexts and orders of feature inclusion. 

Where 𝐹 is the set of all input features, 𝑀 is the total number of features in the set 𝐹. 

 𝜑𝑖(𝑓,𝑥) =  𝑠𝑢𝑚𝑆⊆𝐹{𝑖} (
(|𝑆|!∗(𝑀−|𝑆|−1)!)

𝑀!
) ∗  [𝑓𝑥(𝑆∪{𝑖}) − 𝑓𝑥(𝑆)] (3) 

The algorithm 2 outlines a procedure for selecting important text features using 

SHAP analysis. It requires as input a pre-trained classifier (linear head), the training 

features (which include both image and text data used to originally train the classifier), 

and the full set of text features encoded by a text encoder. First, the training features 

are designated as the background dataset, providing context for the SHAP calculations. 

A SHAP Explainer is then initialized with the linear head model and this background 

data. Subsequently, this explainer computes the shapley values for the input text fea-

tures, quantifying the contribution of each text feature dimension to the linear head’s 

predictions relative to the background. Finally, the algorithm selects the top k (specified 

as 10 in this example) text features by ranking them based on their calculated shap 

values (implicitly using a metric like mean absolute SHAP value), outputting these as 

the selected features. 

 

Algorithm 2: Selecting text features by SHAP analysis 

Input:  

Linear_head: well trained classifier head  

Training features: the features training classifier head including 16 image features and 15 text 

features per class 

Text_features: all the text features encoded by text encoder  

Output:  

Selected_features: selected text features 

 

# select training features as background 

1:  background = training_features 

2:  explainer = shap.Explainer (linear_head, background) 

3:  shap_values = explainer.shap_values (Text_features) 

4:  selected_features = top_k (Text_features, sort_by = shap_values, k = 10) 

 



4 Experiments and Evaluation 

4.1 Experiment Dataset 

We referred to the experiments in the MedCLIP[5] and selected the CheXpert5x200 

dataset[16] for the experiment, which contains 200 chest X-ray images of five catego-

ries: atelectasis, cardiomegaly, edema, pleura, and effusion, and each image contains 

only one positive label of a specific category. Since both the foundation models 

MedCLIP and KAD are trained only on X-ray datasets, our experiments are also ana-

lyzed and evaluated on X-ray datasets. These images have been checked by radiologists 

to ensure that they do not contain other abnormalities besides the label of that category, 

and that the image quality and shooting posture are normal. The image dataset was 

divided, and 800 images were selected as the test set, and the other 200 images were 

used for training and validation. The training and validation sets were further divided 

into small sample sets, and small sample training sets of [1, 2, 4, 8, 16] images were 

divided respectively, and randomly sampled 10 times. 

4.2 Text prompts generation: 

For each disease type, we used the text prompt word generation method in the MedCLIP 

paper. For each disease type, Atelectasis, Cardiomegaly, Consolidation, Edema, and 

Pleural Effusion, we used the following template to generate prompt words: [‘severity’] 

[‘subtype’] [‘location’], which is used to generate richer disease descriptions rather than 

simple disease names. At the same time, more diverse prompt words can also better 

align with chest X-ray image features. The total number of text prompt words for each 

disease type is shown in Table 1. 

Table 1. Text prompts numbers for each disease class 

Class Name Text prompts numbers 

Atelectasis 210 

Cardiomegaly 15 

Consolidation 192 

Edema 18 

Pleural Effusion 54 

 

4.3 Experimental Settings 

The optimizer used is AdamW, and for each single seed, we try different hyperparam-

eters including learning rate, weight decay and batch size to achieve best results on the 

validation set. We search the best learning rate in [1e-4, 1e-5], weight decay in [0.0, 

0.01, 0.0001], and batch size in [1, 2, 4, 8, 16]. In the first 50 iterations we warmup the 

learning rate with linear type, and we set the maximal iteration of each examination to 
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12800. To achieve better results, we evaluate on the validation set per 10 iterations, and 

retain the model which has the best AUC result on validation set. 

4.4 Results and Discussions 

Table 2 shows the experimental results obtained with MedCLIP as the pre-training 

model. The zero-shot row is the zero-shot classification result of the MedCLIP model. 

The Uni row indicates that only the image features are added during the training of 

classifier head. N-shots of images are added to perform a few-shot classification exper-

iment, which corresponds to the uni-modal linear probing experiment. The Cross row 

indicates that in addition to adding a small number of pictures, 10 text features are 

added to the cross-modal training classification head, which corresponds to the cross-

modal linear probing experiment.  

Table 2. The ACC and AUC results based on MedCLIP 

 Shots Zero 1 2 4 8 16 

acc Zero-

shot 

0.56750      

Uni  0.42150  0.47888  0.54388  0.59938  0.63750  

Cross  0.60863 0.62075 0.63013 0.64025 0.64500 

Shap  0.60875  0.62525  0.63513  0.64250  0.64525  

auc Zero-

shot 

0.77569      

Uni  0.70910  0.75780  0.80465  0.84627  0.86082  

Cross  0.86291 0.86448 0.86563 0.87001 0.86952 

Shap  0.86236  0.86682  0.86900  0.87322  0.87029  

 

In subsequent experiments, we also tested the impact of different numbers of text 

features on the results. The detailed results are shown in Table 4. The Shap row shows 

the results obtained by training after using SHAP to select text features. Here, we select 

the best 10 features selected by each type of label for training. We also experimented 

with the number of selected features. The detailed results are shown in Table 5. 

It can be seen that the cross-modal linear probing result is significantly improved 

compared with the uni-modal linear probing, indicating that the introduction of text 

modality can further improve the adaptive task.  

After using SHAP to select text features, the classification effect is also improved, 

indicating that the feature selecting method is effective. This method can also automat-

ically select the best text features when there are more text inputs in the future, which 

facilitates feature selection.  

The results based on KAD modal is shown in Table 3. Compared with the MedCLIP 

model, the improvement on the KAD model is not so significant. This is because the 

KAD model has a step of fusing text and image features during pre-training stage. Even 



so, it still has a significant improvement over zero-shot classification and still has some 

advantages compare to single-modal adaptive classification results. 

The result shows that, our method can be applied to a variety of pre-trained models, 

and the training is very fast because text and image features are extracted in advance, 

and the classification head has very few parameters. 

Table 3. Results based on KAD 

 Shots Zero 1 2 4 8 16 

acc Zero-

shot 

0.52470       

Uni  0.56813  0.58213  0.58850  0.60213  0.60100  

Cross  0.58250  0.58750  0.59000  0.60236  0.60663  

Shap  0.59125  0.59438  0.60100  0.60750  0.61163  

auc Zero-

shot 

0.79160       

Uni  0.82148  0.83022  0.83846  0.84646  0.85201  

Cross  0.83170  0.83272  0.84035  0.84709  0.85176  

Shap  0.83315  0.83374  0.84167  0.84689  0.85195  

4.5 Ablation study 

In the experiments in Table 4, we conducted experiments on different text numbers. 

Intuitively, we can expect that the performance of the experiment should improve with 

the increase of text numbers. But comparing the results of 10 and 15 text numbers, extra 

text features do not significantly improve classification performance, but instead harms 

it. We set the maximal text number to 15 because the Cardiomegaly class has only15 

prompts, as shown in Table 1. 

If low-quality text features are added to the Cross-modal linear probing training, the 

final classification performance will be reduced. Therefore, we need to select the best 

text features, especially as more and more work uses LLM to generate text prompts. 

Faced with more and more text features, features selection becomes more important. 

Meanwhile, we compared different number of text features selected by SHAP in 

Table 5. As we add the number of selected features from 10 to 12, the improvement of 

acc and auc is not that obvious. This may be because the differences between text 

prompts are limited and a small number of text features are representative enough, and 

we choose 10 as the default value of k. 
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Table 4. Ablation text number 

  Text num 

 Image 

num 

Uni(0) 1 2 4 8 10 15 

acc 1 0.4215  0.5609  0.5821  0.6048  0.6050  0.6086  0.6086  

2 0.4789  0.5820  0.6031  0.6245  0.6174  0.6208  0.6186  

4 0.5439  0.5974  0.6113  0.6261  0.6259  0.6301  0.6286  

8 0.5994  0.6188  0.6246  0.6394  0.6403  0.6403  0.6395  

16 0.6375  0.6423  0.6419  0.6458  0.6460  0.6450  0.6458  

auc 1 0.7091  0.8280  0.8475  0.8564  0.8599  0.8629  0.8617  

2 0.7578  0.8362  0.8473  0.8607  0.8612  0.8645  0.8654  

4 0.8047  0.8349  0.8482  0.8617  0.8634  0.8656  0.8684  

8 0.8463  0.8571  0.8617  0.8654  0.8690  0.8700  0.8726  

16 0.8608  0.8631  0.8644  0.8659  0.8682  0.8695  0.8707  

 

Table 5. Ablation SHAP 

 Shots 1 2 4 8 16 

acc Cross 0.60863  0.62075  0.63013  0.64025  0.64500  

SHAP

(n=10) 

0.60875  0.62525  0.63513  0.64250  0.64525  

SHAP

(n=12) 

0.60925  0.62475  0.63413  0.64300  0.64988  

auc Cross 0.86291  0.86448  0.86563  0.87001  0.86952  

SHAP

(n=10) 

0.86236  0.86682  0.86900  0.87322  0.87029  

SHAP

(n=12) 

0.86205  0.86516  0.86915  0.87382  0.87052  

 

5 Conclusion and Future Work 

In this paper, we presented an approach for enhancing the few-shot classification per-

formance of pre-trained medical vision-language models (VLMs) through cross-modal 

adaptation. By incorporating aligned text features alongside limited image features dur-

ing the training of a simple linear classifier head, we demonstrated significant improve-

ments in ACC and AUC compared to both zero-shot classification and traditional uni-

modal linear probing on the CheXpert5x200 dataset, using MedCLIP and KAD as foun-

dation models. Furthermore, we successfully integrated SHAP analysis as an effective 

method for selecting high-quality text features from a pool of generated prompts, 



leading to additional performance gains and providing a strategy to manage potentially 

noisy or redundant text information. Our results highlight that leveraging the inherent 

cross-modal alignment within VLMs during adaptation is a highly effective and gener-

alizable strategy for boosting performance on specific downstream tasks even with very 

few labeled image samples.  
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