
 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Energy Efficiency Maximization in Wireless Federated 

Learning under Inter-Channel Interference 

Xinjie Yuan, Shengjie Zhao (), Weichao Chen(), Fengxia Han, Jin Zeng and Enze 

Cui 

Engineering Research Center of Key Software Technologies for Smart City Perception 

and Planning, Ministry of Education, School of Computer Science and Technology, Tongji 

University, Shanghai 201804, China 
shengjiezhao@tongji.edu.cn, carlyle.chen@tongji.edu.cn 

Abstract. Federated Learning (FL) offers a collaborative learning paradigm for 

a large number of devices while avoiding data centralization, which is particu-

larly advantageous in wireless environments. However, inter-channel interfer-

ence, a factor not fully explored in existing FL studies, significantly impacts 

model transmission and poses substantial challenges for resource allocation in 

the Wireless FL (WFL) framework. Additionally, the limited energy budgets of 

mobile devices necessitate energy-efficient strategies across both local computa-

tion and model transmission phases. To address these challenges, we formulate a 

joint learning and communication optimization problem aimed at maximizing the 

system’s Energy Efficiency (EE) under given constraints. We address the prob-

lem by decomposing it into two sub-problems: power allocation and client selec-

tion, then tackling them sequentially. First, a designed graph neural network 

(GNN) is employed to parameterize the power allocation strategy, which is opti-

mized through a primal-dual algorithm. Based on the power allocation model, we 

propose an online algorithm for energy-efficient client selection. Experimental 

results demonstrate that the proposed method achieves superior EE and reduced 

energy consumption compared to three baseline methods, while ensuring high-

quality wireless transmission and achieving comparable global model accuracy. 

Keywords: Federated Learning, Graph Neural Networks, Client Selection, 

Power Allocation, Energy Efficiency. 

1 Introduction 

The Internet of Things (IoT) and mobile devices generate vast amounts of daily data, 

providing valuable training samples for machine learning (ML) applications [1]. How-

ever, collecting and storing this data is costly, and it raises significant privacy and se-

curity concerns. Furthermore, due to limited wireless resources, it is impractical for 

edge devices to transmit all their data to the cloud. FL allows mobile devices to train 

ML models locally, coordinated by a central server, while keeping all training data on 
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the devices. This approach eliminates the need to upload and store data in the cloud, 

addressing privacy, security, and resource limitations [2]. 

In WFL, the base station (BS) typically functions as the central server, while mobile 

devices act as clients. At the start of each WFL round, the BS selects a subset of devices 

and transmits the global model to them. The devices then train the model using their 

local data and upload the updated models back through wireless networks to the BS for 

aggregation. 

Since mobile devices are typically powered by batteries, their limited energy con-

strains the number of rounds they can participate in FL [3]. Moreover, due to the scar-

city of wireless resources, only a limited number of devices can participate in FL during 

each training round. Therefore, the BS must strategically select a subset of devices to 

participate in each training round. Most existing client selection algorithms focus on 

optimizing the performance of the global FL model by selecting clients with more data 

samples [4] or higher local loss [5]. Additionally, [6] proposes an iterative algorithm to 

minimize the energy consumption of selected clients in FL. However, the majority of 

existing studies focus on enhancing FL performance and convergence speed, while 

overlooking the energy consumption of edge devices. 

Since the transmission of FL models relies on wireless networks, network conditions 

and the allocation of wireless resources significantly impact the final performance of 

the FL model [7]. Therefore, many studies have begun designing FL frameworks for 

joint device scheduling and wireless resource allocation [8, 9]. However, existing wire-

less FL frameworks typically assume transmission over interference-free orthogonal 

channels [6, 8, 10], which often results in devices being allocated the maximum trans-

mission power. In real wireless communication scenarios, such algorithms may exhibit 

instability due to the presence of inter-channel interference [11]. 

In addressing the wireless power allocation problem, GNN-based methods have 

demonstrated superior performance compared to traditional approaches [12]. GNNs are 

particularly well-suited for wireless networks due to their ability to efficiently learn 

from graph-structured data. Existing studies have leveraged GNNs to optimize metrics 

such as the total capacity of wireless communication [13] or the packet error rate (PER) 

[11]. However, by neglecting the energy consumption of wireless transmission, these 

models tend to prioritize transmission performance over energy efficiency. Unlike ex-

isting research, this paper considers wireless FL under interference constraints and aims 

to optimize EE in both the model training and wireless communication phases. We 

formulate an optimization problem aimed at maximizing the overall EE of FL and then 

decompose it into two sub-problems: power allocation and client selection. Then, we 

address these two sub-problems sequentially. The main contributions of this paper are 

as follows:  

• We develop a power allocation algorithm based on GNN to optimize EE during the 

wireless transmission phase, while ensuring high transmission quality in environ-

ments affected by inter-channel interference. 

• Utilizing the power allocation model, we design a client selection algorithm under 

constraints such as training time limits to optimize the EE during the computation 

phase. 
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• Through a series of numerical experiments on simulated wireless channels and 

benchmark machine learning datasets, we validate the efficiency and effectiveness 

of the proposed WFL algorithm. 

2 SYSTEM MODEL AND PROBLEM FORMULATION 

Fig. 1. Wireless Federated Learning for Battery-Powered Mobile Devices. 

2.1 Federated Learning over Wireless Networks 

As shown in Fig. 1, we consider an FL system consisting of a base station (BS) with 𝑛𝑅 antennas 

and 𝑁 single-antenna devices, where the BS and the devices communicate over a wireless net-

work. Each device has a local dataset 𝒟𝓃  containing 𝐷𝑛  data samples. In each dataset 𝒟𝓃 =

{𝒙𝒏(𝑖), 𝑦𝑛(𝑖)}𝑖=1
𝐷𝑛 ,  𝒙𝒏(𝑖) ∈ 𝑅𝑑  represents the input vector, and  𝑦𝑛(𝑖)  represents the correspond-

ing output. 

At the beginning of each FL round, the BS selects 𝑁0 devices (𝑁0 ≤ 𝑁)  to partici-

pate in this round and transmits the global model to them. The selected devices then 

use their local datasets 𝒟𝓃 to train a parameterized model Φ(⋅; 𝒘𝒏) to achieve the map-

ping 𝑦̂𝑛 = Φ(𝒙𝑛; 𝒘𝑛) . Each device’s objective is to minimize the loss function  

𝑓(𝒙𝑛, 𝑦𝑛; 𝒘𝑛) ≔ ∑  
𝐷𝑛
𝑖=1 ℓ(𝑦̂𝑛(𝑖), 𝑦𝑛(𝑖)). The loss function ℓ varies depending on the 

learning task, such as cross-entropy for classification or mean squared error (MSE) for 

regression. Once the t-th training round is complete, the device n uploads its local 

model  𝒘𝒏,𝒕  to the BS via the wireless network and the BS performs model aggregation. 

The global model update after the t-th round of training is given by 

𝒈𝒕 =
∑ 𝐷𝑛𝑎𝑛,𝑡𝒘𝒏,𝒕

𝑁
𝑛=1

∑ 𝐷𝑛𝑎𝑛,𝑡
𝑁
𝑛=1

, (1) 

where 𝑎𝑛,𝑡 ∈ {0,1}  indicates whether device n is selected in the t-th round of training. 

Let the CPU frequency of device 𝑛 at round t be 𝑓𝑛,𝑡. The computation time for de-

vice 𝑛 is given by 



𝜏𝑛,𝑡
comp

=
𝑎𝑛,𝑡𝜀𝑛𝐷𝑛𝜔𝑛

𝑓𝑛,𝑡

, (2) 

where ε𝑛  denotes the number of CPU cycles required by device n to process each bit 

of sample data and ω𝑛  indicates the number of bits per data sample. According to 

Lemma 1 in [14], the energy consumption for computation in each round is given by  

𝐸𝑛,𝑡
comp

= 𝑎𝑛,𝑡𝛿𝑛𝜔𝑛𝜀𝑛𝐷𝑛𝑓𝑛,𝑡
2 , (3) 

where δ𝑛  represents the energy coefficient of device n. Each device has an energy 

budget 𝐸𝑛 which represents its total energy available for FL. 

2.2 Wireless Transmission with Interference 

We focus on the uplink communication process from the devices to the BS. After the 

t-th round of training, device n transmits its model data to the BS with power 𝑝𝑛,𝑡. Let 

𝑠𝑛 ∈ ℂ denote the signal sent by device n, and the signal received at the BS is 𝑟 =
∑  𝑁

𝑛=1 𝐡𝑛𝑠𝑛 + 𝐳 , where 𝐡𝑛 ∈ ℂ𝑛𝑅  is the channel from device n  to the BS, and 𝐳 ∼
𝒩𝒞(0, 𝜎𝑛

2)  is the additive complex Gaussian noise. The signal-to-interference-plus-

noise ratio (SINR) of device n to the BS in the t-th round can be defined as 

SINR𝑛,𝑡 =
𝛼𝑛𝑝𝑛,𝑡

1 + ∑  𝑚≠𝑛 𝛽𝑛,𝑚𝑝𝑚,𝑡

, (4) 

where 𝛼𝑛 =∥ 𝐡𝑛 ∥2/𝜎𝑛
2  is the channel gain of device n  and 𝛽𝑛,𝑚 = |𝐡𝑛

𝐻𝐡𝑚|2/𝜎𝑛
2 ∥

𝐡𝑛 ∥2 is the interference coefficient between devices n and m. Then, we can define the 

channel state information (CSI) matrix 𝐇 ∈ ℝ𝑁×𝑁 , where 𝐇𝑛,𝑛 = 𝛼𝑛  and 𝐇𝑛,𝑚 =

𝛽𝑛,𝑚 when 𝑛 ≠ 𝑚. 

Let 𝐩𝑡 = (𝑝1,𝑡 , … , 𝑝𝑛,𝑡) ∈ ℝ𝑛  be the power allocation vector at round t, and 𝐇 ∈

ℋ ⊆ ℝ+
𝑛×𝑛 be the CSI matrix drawn from a specific channel distribution 𝑚(𝐇). We 

can calculate the transmission time τ𝑛,𝑡
trs  of device n as 

𝜏𝑛,𝑡
trs (𝐩𝑡 , 𝐇) =

𝑀

𝐵 log(1 + SINR𝑛,𝑡)
, (5) 

where B is the bandwidth, and M is the size of the model transmitted by device n (in 

bits). The energy consumption during the wireless transmission phase is given by 

𝐸𝑛,𝑡
trs = 𝑝𝑛,𝑡𝜏𝑛,𝑡

trs . (6) 

For simplicity, we assume that each model is transmitted in a single packet [8]. Then 

the packet error rate (PER) is defined as 

PER𝑛,𝑡(𝐩𝑡 , 𝐇) = (1 − 𝑒
−

𝑐
SINR𝑛,𝑡), (7) 
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where c is the waterfall threshold [15]. If the transmission of model 𝒘𝑛,𝑡 fails, it will 

not be aggregated by the BS. Therefore, the model aggregation equation (1) can be 

updated as 

𝒈𝑡 =
∑  𝑁

𝑛=1 𝐷𝑛𝑎𝑛,𝑡𝑆𝑛,𝑡(𝐩𝑡 , 𝐇)𝒘𝑛,𝑡

∑  𝑁
𝑛=1 𝐷𝑛𝑎𝑛,𝑡𝑆𝑛,𝑡(𝐩𝑡 , 𝐇)

(8) 

where 

𝑆𝑛,𝑡(𝐩, 𝐇) = {
1,      with probability 1 − PER𝑛,𝑡(𝐩𝑡 , 𝐇),

0,      with probability PER𝑛,𝑡(𝐩𝑡 , 𝐇).
(9) 

2.3 Problem Formulation 

When considering the contribution of a device to FL, two main factors are primarily 

taken into account. First, a larger local dataset size indicates a higher likelihood that the 

device provides high-quality samples [16]. Additionally, a larger local loss value during 

the training process suggests that the current local model requires more training in sub-

sequent rounds [4]. Based on these two considerations, we define the contribution of 

device 𝑛 to FL in round 𝑡 as 

𝑣𝑛,𝑡 = √𝐷𝑛𝑓(𝒙𝑛, 𝑦𝑛; 𝒘𝑛,𝑡). (10) 

The square root operation applied to 𝐷𝑛 is intended to mitigate potential unfairness that 

may arise from significant differences in data sizes. The EE of the computation phase 

in the t-th FL round is defined as the ratio of the contribution of the selected devices to 

the energy consumed for computation 

EE𝑡
comp

=
∑ 𝑎𝑛,𝑡

𝑁
𝑛=1 𝑣𝑛,𝑡

∑ 𝑎𝑛,𝑡
𝑁
𝑛=1 𝐸𝑛,𝑡

comp . (11) 

In wireless transmission systems, EE is typically defined as the ratio of successfully 

transmitted bits to the energy consumed in transmission [17]. Based on this definition, 

the EE of the wireless transmission phase for device n is expressed as 

EE𝑛,𝑡
trs =

𝑎𝑛,𝑡𝑀

𝐸𝑛,𝑡
trs . (12) 

The optimization objective is to maximize the combined energy efficiency of com-

putation and transmission in each round of FL, while adhering to the necessary con-

straints of both phases. The entire optimization problem is defined as follows 

 



𝑃1    𝑚𝑎𝑥 
𝐚𝑡,𝐩𝑡,𝐟𝑡

   EE𝑡
comp

+ ∑  

𝑁

𝑛=1

𝑎𝑛,𝑡𝜇𝑛EE𝑛,𝑡
trs, ∀𝑡 ∈ 𝒯 (13a)

s. t. 𝑎𝑛,𝑡 ∈ {0,1}, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯, (13b)

∑  

𝑁

𝑛=1

𝑎𝑛,𝑡 ≤ 𝑁0, ∀𝑡 ∈ 𝒯, (13c)

𝑓𝑚𝑖𝑛 ≤ 𝑎𝑛,𝑡𝑓𝑛,𝑡 ≤ 𝑓𝑚𝑎𝑥 , ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯, (13d)

𝑎𝑛,𝑡𝜏𝑛,𝑡
comp

≤ 𝜏0
comp

, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯, (13e)

𝑝min ≤ 𝑎𝑛,𝑡𝑝𝑛,𝑡 ≤ 𝑝max, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯, (13f)

𝑎𝑛,𝑡𝜏𝑛,𝑡
trs ≤ 𝜏0

trs, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯, (13g)

𝑎𝑛,𝑡PER𝑛,𝑡 ≤ 𝑞0, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯. (13h)

𝑎𝑛,𝑡(𝐸𝑛,𝑡
comp

+ 𝐸𝑛,𝑡
trs) ≤ 𝐸0, ∀𝑛 ∈ 𝒰, ∀𝑡 ∈ 𝒯. (13i)

 

Here, 𝐚𝑡 = (𝑎1,𝑡 , … , 𝑎𝑛,𝑡), 𝐩𝑡 = (𝑝1,𝑡 , … , 𝑝𝑛,𝑡), 𝐟𝑡 = (𝑓1,𝑡 , … , 𝑓𝑛,𝑡)  represents the client 

selection vector, the power allocation vector and the CPU frequency vector, respec-

tively. Let 𝒰 = {1, … , N} and 𝒯 = {1, … , T} be the sets of device indices and training 

rounds, respectively. The parameter 𝜇𝑛 is introduced to represent the energy efficiency 

weight of the device 𝑛 during the wireless communication phase, which is set to 
1

𝑁
 in 

the experiment. Constraint (13d) specifies the range of CPU frequencies for the selected 

devices, while Constraint (13e) imposes time limits on the training phase. Constraint 

(13f) bounds the transmission power between 𝑝min and 𝑝max. The constraints in (13g) 

and (13h) ensure that for each selected device, the expected transmission time and 

packet error rate remain within the given thresholds. The constraint in (13i) ensures that 

the energy consumption of the selected device in each round does not exceed the energy 

budget 𝐸0.  

3 Proposed Method 

Addressing problem 𝑃1 directly poses considerable challenges due to several factors: 

the non-convex nature of both the objective function and the constraints, the channel 

state information which follows a specific distribution and dynamically changes in 

wireless transmission, and the interdependence of multiple constraints. By recognizing 

the monotonicity of the objective function with respect to 𝑓, we first derive a closed-

form solution for the frequency allocation problem. This closed-form solution enables 

us to decouple the original problem into two subproblems—power allocation and client 

selection—which are then solved sequentially. 
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3.1 Power allocation 

We observe that the objective function is monotonically decreasing with respect to the 

device CPU frequency 𝐟𝑡, while the constraint (13e) essentially imposes a lower bound 

on the frequency of each device, i.e., 

𝑎𝑛,𝑡𝑓𝑛,𝑡 ≥
𝜀𝑛𝐷𝑛𝜔𝑛

𝜏0
𝑐𝑜𝑚𝑝 . (14) 

Therefore, we can derive a closed-form expression for determining the optimal CPU 

frequencies of the selected devices, which is presented as follows 

𝑓𝑛
∗ = min (max (𝑓min,

ε𝑛𝐷𝑛ω𝑛

τ0
comp ) , 𝑓max) (15) 

By substituting (15), we can rewrite constraint (13i) in a form that only involves 

𝐸𝑛,𝑡
trs. Then, we derive the power allocation subproblem by adopting a fixed selection 

strategy. Specifically, given the client selection policy 𝑎𝑡, we can derive the CSI matrix 

𝐇′  of the selected devices from 𝐻. Subsequently, the problem is reformulated as a 

power allocation subproblem based on 𝐇′. The objective of the power allocation sub-

problem is to determine the power function for each instantaneous channel state, i.e., 

𝑝(𝐇′), in order to optimize the devices’ EE while satisfying the constraints in wireless 

transmission. Let 𝑒0 = 𝐸0 − δ𝑛ω𝑛ε𝑛𝐷𝑛(𝑓𝑛
∗)2, the power allocation subproblem 𝑆1 is 

written as 

𝑆1    𝑚𝑎𝑥
𝐩

  ∑  

𝑁0

𝑛=1

𝜇𝑛𝔼𝐇′[EE𝑛
trs(𝐩, 𝐇′)], (16a)

s. t. 𝑝min ≤ 𝑝𝑛(𝐇′) ≤ 𝑝max, ∀𝑛 ∈ 𝒰, (16b)

𝔼𝐇′[𝜏𝑛
trs(𝐩, 𝐇′)] ≤ 𝜏0

trs, ∀𝑛 ∈ 𝒰, (16c)

𝔼𝐇′[PER𝑛(𝐩, 𝐇′)] ≤ 𝑞0, ∀𝑛 ∈ 𝒰, (16d)

𝔼𝐇′[𝐸𝑛
trs(𝐩, 𝐇′)] ≤ 𝑒0, ∀𝑛 ∈ 𝒰. (16e)

 

It is worth mentioning that since 𝐇 is drawn from a certain channel distribution ℋ, 

the function related to 𝐇′ in 𝑆1 is expressed as expectation. This formulation aims to 

optimize the power allocation strategy 𝐩 under dynamically varying channel condi-

tions. 

Due to the non-convex nature of the problem and the infinite-dimensionality of the 

power allocation function 𝐩(𝐇′), directly solving 𝑆1 is highly challenging. Inspired by 

[13], we employ a specifically designed GNN to parameterize the power allocation 

function, reducing the dimension of sub-problem 𝑆1. Specifically, we define 

𝐩(𝐇′) = 𝜙(𝐇′; 𝜽), (17) 

where the CSI matrix 𝐇′ is treated as the adjacency matrix of the sub-graph correspond-

ing to the selected device. ϕ is our designed power allocation graph neural network 

(PAGNN) and 𝜽 represents the corresponding trainable weights. The input of PAGNN 

is 𝐅(0) = 𝑝min𝟏 with the output being the power allocation vector 𝐩. 



The first part of the PAGNN employs graph attention network (GAT) to capture non-

local dependencies and importance weights among fading channels. GAT uses a self-

attention mechanism to assign different attention weights to each node, thereby ena-

bling better handling of complex interactions between nodes [18]. After GAT, we em-

ploy multiple layers of graph convolutional network (GCN). GCNs learn the power 

allocation function by aggregating information from neighboring nodes and performing 

feature extraction through convolution operations. The 𝑙-th intermediate layer of the 

GCN is defined as 

𝐅(𝑙+1) = 𝜎 (𝐃−
1
2𝐇̃𝐃−

1
2𝐅(𝑙)𝐖(𝑙)) , (18) 

where 𝐇̃ = 𝐇′ + 𝐼 with 𝐼 being the identity matrix, 𝐃 is the degree matrix of 𝐇̃, 𝐖(𝑙) 

is the weight matrix of the 𝑙-th layer, and σ is the activation function. 

In fact, various neural network architectures can be used as the parameterization 

method for power allocation. A key reason for selecting GNNs is their ability to handle 

inputs of varying sizes, which allows for flexible application in the subsequent client 

selection sub-problem. Furthermore, GNNs can ensure permutation invariance [19], 

which guarantees that the power allocation strategy remains stable and unaffected by 

changes in node indexing. 

After parameterizing the power allocation 𝐩 with (17), 𝑆1 is transformed into an op-

timization problem with respect to 𝜽. We aim to solve 𝑆1 with standard gradient de-

scent-based algorithms. To achieve this, we first attempt to formulate the Lagrangian 

dual problem of 𝑆1. The reformulated problem 𝑆1.1 is as follows 

 

                    S1.1 𝑚𝑎𝑥
𝜃,𝒆,𝝉,𝒒,𝒆̃

       ∑  𝑁
𝑛=1 𝜇𝑛𝑒𝑛,                                    (19a)

                  s. t. 𝜙𝑛(𝐇′; 𝜽) ∈ [𝑝𝑚𝑖𝑛 , 𝑝𝑚𝑎𝑥], ∀𝑛 ∈ 𝒰,                                    (19b)

𝒆𝑛 ≤ 𝔼H[EE𝑛
trs(𝜙(𝐇′; 𝜽), 𝐇′)], ∀𝑛 ∈ 𝒰,                                   (19c)

𝝉𝑛 ≥ 𝔼H[𝜏𝑛
trs(𝜙(𝐇′; 𝜽), 𝐇′)], ∀𝑛 ∈ 𝒰,                                   (19d)

𝒒𝑛 ≥ 𝔼H[PER𝑛(𝜙(𝐇′; 𝜽), 𝐇′)], ∀𝑛 ∈ 𝒰,                                   (19e)

𝒆̃𝑛 ≥ 𝔼H[𝐸𝑛
trs(𝜙(𝐇′; 𝜽), 𝐇′)], ∀𝑛 ∈ 𝒰,                                   (19f)

𝝉𝑛 ∈ (0, 𝜏0
trs], ∀𝑛 ∈ 𝒰,                                    (19g)

𝒒𝑛 ∈ [0, 𝑞0], ∀𝑛 ∈ 𝒰,                                    (19h)

𝒆̃𝑛 ∈ (0, 𝑒0], ∀𝑛 ∈ 𝒰.                                    (19i)
For the power constraints in (19b), we directly impose the limits within the output of 

the PAGNN. We then introduce the dual variables 𝒆, 𝝉, 𝒒 and 𝒆̃𝑛, along with the non-

negative Lagrange multipliers λ{𝒆,𝝉,𝒒,𝒆̃} ∈ 𝑅+
𝑁 . For simplicity, we denote 

𝔼H[EEtrs(𝜙(𝐇′; 𝜽), 𝐇′)] , 𝔼H[PER(𝜙(𝐇′; 𝜽), 𝐇′)] , 𝔼H[𝝉trs(𝜙(𝐇′; 𝜽), 𝐇′)]  and 

𝔼H[𝐸trs(𝜙(𝐇′; 𝜽), 𝐇′)]  as 𝔼H[𝑓𝑒] , 𝔼H[𝑓𝑞] , 𝔼H[𝑓𝜏]  and 𝔼H[𝑓𝑒̃]  respectively. The La-

grangian function corresponding to 𝑆1.1 is then defined as follows  

ℒ(𝜽, 𝒆, 𝒒, 𝝉, 𝒆̃, 𝝀𝑒 , 𝝀𝑞 , 𝝀𝜏, 𝝀𝑒̃) = ∑  

𝑁

𝑛=1

𝜇𝑛𝒆𝑛 + 𝝀𝑒
⊤(−𝒆 + 𝔼H[𝑓𝑒]) 

+𝝀𝑞
⊤(𝒒 − 𝔼H[𝑓𝑞]) + 𝝀𝜏

⊤(𝝉 − 𝔼H[𝑓𝜏]) + 𝝀𝑒̃
⊤(𝒆̃ − 𝔼H[𝑓𝑒̃]). (20) 
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We also denote the feasible domains of 𝝉, 𝒒 and 𝒆̃ as 𝒳 ≔ (0, 𝜏0𝟏], 𝒴 ≔ [0, 𝑞0𝟏] 
and 𝒵 ≔ [0, 𝑒0𝟏]. We employ the Lagrangian function as the designated loss function 

for PAGNN, and, based on the standard dual learning framework [20], we derive the 

subsequent iterative formula: 

  𝜽𝑘+1 = 𝜽𝑘 + 𝜌𝜽(∇𝜃𝔼H[𝑓𝑒]𝝀𝑒,𝑘 − ∇𝜃𝔼H[𝑓𝑞]𝝀𝑞,𝑘

−∇𝜃𝔼H[𝑓𝜏]𝝀𝜏,𝑘 − ∇𝜃𝔼H[𝑓𝑒̃]𝝀𝑒̃,𝑘), (21a)

  𝒆𝑘+1 = 𝒆𝑘 + 𝜌𝒆(𝝁 − 𝝀𝑒,𝑘), (21b)

  𝒒𝑘+1 = proj𝑋  (𝒒𝑘 + 𝜌𝒒𝝀𝑞,𝑘), (21c)

 𝝉𝑘+1 = proj𝒴(𝝉𝑘 + 𝜌𝝉𝝀𝜏,𝑘), (21d)

 𝒆̃𝑘+1 = proj𝒵  (𝒆̃𝑘 + 𝜌𝒆̃𝝀𝑒̃,𝑘), (21e)

 𝝀𝑒,𝑘+1 = [𝝀𝑒,𝑘 − 𝜌𝜆𝑒
(−𝒆 + 𝔼H[𝑓𝑒])]+, (21f)

  𝝀𝑞,𝑘+1 = [𝝀𝑞,𝑘 − 𝜌𝜆𝑞
(𝒒 − 𝔼H[𝑓𝑞])]+, (21g)

                            𝝀𝜏,𝑘+1 = [𝝀𝜏,𝑘 − 𝜌𝜆𝜏
(𝝉 − 𝔼H[𝑓𝜏])]+, (21h)

 𝝀𝑒̃,𝑘+1 = [𝝀𝑒̃,𝑘 − 𝜌𝜆𝑒̃
(𝒆̃ − 𝔼H[𝑓𝑒̃])]+. (21i)

 

Here we introduce 𝜌𝜽,𝒆,𝒒,𝝉,𝒆̃,𝜆𝑒,𝜆𝑞,𝜆𝜏,𝜆𝑒̃
> 0 as scalar step sizes. The gradient updates in 

(21a) - (21i) constitute a primal-dual learning approach that trains the PAGNN model 

to maximize wireless transmission energy efficiency while ensuring the satisfaction of 

constraints. 

3.2 Client Selection 

After completing the training process of PAGNN, we use it to assist in solving the 

original problem 𝑃1. However, using PAGNN to predict power allocation for every 

client selection strategy 𝑎𝑡 incurs significant computational costs. To address this, we 

propose a more efficient approach. Initially, we set 𝑎𝑡 = 1 and utilize PAGNN to pre-

allocate power 𝐩 for all devices. Based on 𝐩, we then estimate each device’s relevant 

metrics during the wireless transmission phase, and subsequently solve the client selec-

tion subproblem 

                              𝑆2    𝑚𝑎𝑥 
𝐚𝑡

     
∑  𝑁

𝑛=1 𝑎𝑛,𝑡𝑣𝑛,𝑡

∑  𝑁
𝑛=1 𝑎𝑛,𝑡𝐸𝑛,𝑡

comp + ∑  

𝑁

𝑛=1

𝑎𝑛,𝑡𝜇𝑛EE𝑛,𝑡
trs,               (22𝑎)

𝑠. 𝑡.     (13𝑏), (13𝑐), (13𝑓) − (13𝑖).               (22𝑏)

 

One method for obtaining 𝑣𝑛,𝑡 is forcing all devices to perform a local training epoch 

at the start of each FL round and upload the most recent loss value to the BS. However, 

this introduces additional computational and communication costs. To address this, we 

compute 𝑣𝑛,𝑡 using the historical loss from the device’s most recent training round, and 

introduce the Age of Update (AoU) metric to reflect the timeliness of model updates 

[21]. We define the client 𝑛’s AoU at round 𝑡 as AoU𝑛
𝑡 , which can be calculated by 

AoU𝑛
𝑡 = {

AoU𝑛
𝑡−1 + 1, 𝑎𝑛,𝑡−1 = 0,

1, 𝑎𝑛,𝑡−1 = 1.
 (23) 



The AoU metric provides an intuitive indication of the device’s obsolescence. Based 

on the theoretical derivation in [22], maximizing the AoU-weighted contribution during 

the client selection process minimizes the gap between the global model’s loss and its 

expected upper bound. In other words, selecting devices with higher AoU values in 

each round enables more information updates, which facilitates the convergence of FL. 

Therefore, we update 𝑣𝑛,𝑡 in an AoU-weighted manner as follows 

𝑣𝑛,𝑡 = √𝐷𝑛𝑓(𝒙𝑛 , 𝑦𝑛; 𝒘𝑛̃,𝑡) ⋅
AoU𝑛

𝑡

∑  𝑁
𝑖=1 AoU𝑖

𝑡 , (24) 

where 𝒘𝑛̃,𝑡 represents the model from the device’s most recent local training. 

Algorithm 1. Energy-Efficient Client Selection and Power Allocation Algorithm 

Input: Device data size vector 𝒟, set of devices 𝒰, current CSI matrix 𝑯 

Output: Selected device vector 𝒂, power allocation vector 𝐩′ 

1: 𝐩 ← 𝜙(𝐇; 𝜽) 

2: Calculate 𝜏𝑛,𝑡
trs , 𝜏𝑛,𝑡

comp
, 𝐸𝑛,𝑡

trs  𝑎𝑛𝑑 𝐸𝑛,𝑡
comp

 for each device based on (2), (3), (5), (6) 

3: 𝒰sub ← Filter(𝒰) 

4: Update 𝑣𝑛,𝑡 based on (24) 

5: if |𝒰sub| ≥ 𝑁0 then 

6:   𝐚 ← B&B(𝒰sub, 𝒟, ℰ) 

7: else 

8:   𝐚 ← Select(𝒰sub) 

9: end if 

10: 𝐇′ ← Transform(𝐇, 𝐚) 

11: 𝐩′ ← 𝜙(𝐇′; 𝜽) 

 

𝑆2 is a binary nonlinear integer programming problem that does not possess low 

complexity solutions in general. For cases with a relatively small 𝑁, we use the standard 

branch-and-bound (𝐵&𝐵) algorithm to solve it, while employing strategies such as 

bound pruning to improve solving efficiency. The original problem 𝑃1 is solved with 

the following steps. At the beginning of each FL round, the BS collects the current 

channel state information 𝐻 and attempts to allocate power to all devices by PAGNN, 

i.e., 𝐩 = 𝜙(𝐇; 𝜽). The BS utilize 𝐩 to estimate the relevant performance metrics of de-

vices during the wireless transmission phase and apply the constraint (13e) – (13i) to 

filter suitable devices. Furthermore, devices with 𝑝𝑛 < 𝑝min are also excluded, as this 

indicates that the model perceives the wireless channel of the device to be poor or that 

it exhibits strong interference with other channels. The binary integer programming 

problem is then solved with the 𝐵&𝐵 method on the remaining candidate devices. Fi-

nally, based on the client selection strategy 𝑎𝑡, the submatrix 𝐇′ is derived, and the 

final device power allocation strategy 𝐩′ is obtained using PAGNN. The comprehen-

sive algorithm is outlined in Algorithm 1. 

During each round of FL, the BS employs Algorithm 1 to efficiently schedule de-

vices and allocate resources, subsequently aggregating the local models uploaded by 
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these devices. Upon the completion of 𝑇 training rounds, the BS provides the global 

model 𝒘𝑇  as the comprehensive final output. 

3.3 Convergence Analysis 

In this section, we present a convergence analysis of the proposed algorithm. Denote 

the optimum of original problem 𝑆1 and dual problem 𝑆1.1 as 𝑃∗ and 𝐷𝜙
∗ , respectively. 

Define ζ as the upper bound on the approximation error when the parameterized func-

tion ϕ(𝐇′; 𝜽) approximates the power allocation function 𝐩(𝐇′). Based on the theoret-

ical proof in [23], under the necessary conditions (such as ℋ being a nonatomic distri-

bution and the feasible region of the objective function containing at least one interior 

point), the duality gap 𝑃∗ − 𝐷𝜙
∗  has an upper bound, i.e., 

𝑃∗ − 𝐷𝜙
∗ ≤ |λ∗|1𝐾ζ, (25) 

where ∥𝜆∗∥1 ≤
𝑃∗−𝐱0

𝑠
< ∞ , with 𝑥0 representing an interior point value within the fea-

sible region, and 𝑠 is the strict parameter that causes the objective function to surpass 

𝐱0. This conclusion indicates that the approximation error ζ of the parameterized func-

tion ϕ has a linear relationship with the duality gap. In other words, as the approxima-

tion error ζ of the parameterized function ϕ gradually decreases, the algorithm will pro-

gressively converge and achieve a solution close to the optimal solution of 𝑃1. 

3.4 Complexity Analysis 

This subsection presents an analysis of the complexity of the proposed algorithm. 

The time complexity for each layer of GAT and GCN is 𝑂(𝐸), where 𝐸 denotes the 

number of edges in the graph. For smaller device scales, the CSI matrix 𝐻 is typically 

dense, hence the time complexity of PAGNN can be considered as 𝑂(𝐿𝑁2), with 𝐿 

representing the number of layers in PAGNN. The 𝐵&𝐵 algorithm has a worst time 

complexity of 𝑂(𝐶𝑏𝑑), where 𝐶 is treated as a constant, 𝑏 represents the branching fac-

tor (2 in this study), and 𝑑 indicates the depth of the search tree. Consequently, the 

overall complexity of the algorithm is 𝑂(𝐿𝑁2 + 𝐶2𝑑). Despite the exponential nature 

of 𝐵&𝐵’s worst-case time complexity, the integration of cutting planes and pruning 

techniques greatly enhances the algorithm’s efficiency, making it feasible for moderate 

values of 𝑁 [24]. For extensive FL systems, we recommend heuristic algorithms as they 

may provide near-optimal solutions within polynomial time complexity. 

4 NUMERICAL EXPERIMENTS 

In this section, we present a series of experiments to evaluate the performance of the 

proposed model and algorithm. 



4.1 Simulation Settings 

Our simulation system consists of one BS and 𝑁  mobile devices within a 

500m × 500m area. We generate fading channels following the path loss model from 

[25] with carrier frequency of 1.8 GHz and power decay factor equal to 4.5. Meanwhile, 

fast fading is modeled as a circularly symmetric complex Gaussian random variable 

with zero mean and unit variance. In the system with 𝑁 devices, a total of 4,000 channel 

realizations were generated, with 3,000 for training and 1,000 for testing. The architec-

ture of the proposed PAGNN model is as follows: the first hidden layer is a GAT layer 

with a feature dimension of 8 and 8 attention heads. It is followed by four GCN layers 

with feature dimensions {32, 64, 16, 4}. The activation function σ for the intermediate 

layers is set as ELU. The key parameter values discussed in the text are enumerated in 

Table 2. 

Table 2. SYSTEM PARAMETERS 

Parameter Value Parameter Value 

𝑁 16 𝑛𝑅 10 

ω 25000 bits 𝑐 0.023 

ε 30 cycles/bit ρ𝜽 5 × 10−4 

δ 10−28 ρ{𝑒,𝑞,τ,𝑒̃,λ𝑒,λ𝑞,λτ,λ𝑒̃} 1.5 × 10−4 

τ0
comp

 10.0 s τ0
trs 3.0 s 

𝑞0 0.1 batch size 32 

𝑝min 10−6W 𝑓min 0.5 GHz 

𝑝max 0.1W 𝑓max 2.0 GHz 

We first generate channel test sets with different interference intensities and varying 

numbers of devices to test the effectiveness of PAGNN. We then perform FL experi-

ments using the proposed WFL method on the CIFAR-10 dataset. In each FL round, a 

new channel realization is generated using the previously described channel fading 

model to simulate the dynamic wireless network environment. FL training is conducted 

with a four-layer convolutional neural network (CNN) as the local model, with each 

experiment comprising 100 FL rounds. Considering data heterogeneity, we partition 

the dataset among devices according to a logarithmic distribution of dataset sizes, using 

a log-normal distribution with a standard deviation of 0.7. Additionally, we employ a 

Dirichlet distribution with the concentration parameter set to 1.0 to achieve a Non-IID 

partitioning of the dataset across different data categories. 

4.2 Effectiveness of PAGNN 

First, we evaluate the performance of the proposed PAGNN on the simulated channel 

dataset by comparing it against three baselines: 

• Rand: Random power allocation. 

• Orth: Optimal power allocation under orthogonal channel conditions [8]. 

• PDGNet: A power allocation model based on GCN, optimized to minimize 

weighted PER [11].
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Fig. 2.       EE and PER achieved by different power allocation methods under varying interfer-

ence intensities and network sizes. 

We begin by scaling the original wireless network based on the the interference fac-

tor, and then compare the EE and PER of devices under varying interference intensities. 

As shown in Fig. 2, both GNN-based methods maintain low error rates under low in-

terference intensity, with PAGNN consistently outperforming other methods. Moreo-

ver, under conditions of high interference intensity, PAGNN demonstrates superior sta-

bility compared to the other methods. Meanwhile, PAGNN achieves significantly 

higher energy efficiency than the other methods across various interference intensities, 

highlighting the effectiveness of the dual learning algorithm. 

In experiments with varying numbers of devices, PAGNN consistently achieves the 

lowest PER and the highest EE, demonstrating its effectiveness for wireless networks 

of different scales. Although trained solely on channel dataset where 𝑁 = 16, PAGNN 

effectively adapts to wireless networks of varying scales (𝑁 = {8,16,24,32,64}). This 

adaptability is due to the inherent flexibility of GNNs in handling inputs of different 

sizes. 



 

4.3 Comparison of Wireless Federated Learning Methods 

  

Fig. 3. The performance of different power allocation methods on CIFAR-10 dataset. 

  

Fig. 4. The performance of different WFL methods on CIFAR-10 dataset with IID data distribu-

tion. 

 

  

Fig. 5. The performance of different WFL methods on CIFAR-10 dataset with Non-IID data 

distribution. 

Furthermore, to demonstrate the generalization and effectiveness of the proposed FL 

method, we conducted a series of FL experiments on real-world dataset CIFAR-10. We 
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first conduct FL experiments with variations in the power allocation model only. Next, 

we perform FL experiments under both IID and Non-IID data distributions using the 

proposed joint client selection and power allocation algorithm. For experiments with 

different power allocation model, we fix the client selection strategy to be random se-

lection in FedAvg [26]. For the other two sets of experiments, we establish the follow-

ing baselines to compare with the proposed algorithm: 

• Rand+Rand: Random device selection method used in FedAvg, combined with Rand 

power allocation strategy. This method serves as a benchmark, simulating conven-

tional FL. 

• Rand+Orth: Random device selection with Orth power policy. This method is used 

to simulate WFL under orthogonal channel conditions. 

• Sample+PDG: Probabilistic sampling based on the number of device samples [10], 

with PDGNet as the power allocation method. This method is set as a high-perfor-

mance baseline without specific constraints on energy consumption. 

The specific experimental results are presented in Fig. 3-Fig. 5. The results shown 

in Fig. 3 illustrate the comparison of FL model accuracy and transmission energy con-

sumption among different power allocation models. It can be observed that FL with 

PAGNN consistently maintains the lowest transmission energy consumption, while 

achieving a convergence speed comparable to that of PDGNet. This is attributed to 

PAGNN’s ability to optimize EE while satisfying constraints on transmission time and 

error rate. Additionally, since the Orth strategy does not account for inter-channel in-

terference, FL with Orth consumes the most energy and exhibits poor performance. 

For the IID data distribution, despite the proposed algorithm’s convergence speed 

being slightly slower compared to the Sample+PDG baseline, it ultimately achieves a 

comparable model accuracy while reducing energy consumption to only 38% of that 

required by Sample+PDG (Fig. 4). 

For Non-IID data distribution, as shown in Fig. 5, the proposed method demonstrates 

even better performance, matching the accuracy of the Sample+PDG method while be-

ing more stable compared to the other two methods. This is attributed to the introduc-

tion of the AoU metric during the client selection phase, which not only ensures the 

timeliness of model updates but also enables the data from more devices to participate 

in training. Similar to the case with IID data distribution, the proposed method also 

achieves the lowest energy consumption under Non-IID distribution, demonstrating its 

generalizability. 

Based on the experimental results above, it can be concluded that the proposed 

method effectively enhances the transmission quality and EE of WFL in interference 

environments without making significant compromises in performance. 

5 Conclusion 

In this paper, we proposed an energy-efficient framework for wireless FL. First, we 

developed a GNN-based power allocation algorithm to optimize the weighted EE 



 

during transmission phase under inter-channel interference. Next, we designed a client 

selection algorithm aimed at maximizing the EE for computation phase, while ensuring 

the performance of the FL model. Through numerical experiments on simulated wire-

less system and benchmark machine learning datasets, we validated that the proposed 

algorithm enhances EE without compromising FL performance. Future work will ex-

tend our model to explore its performance in large-scale IoT scenarios and under more 

complex communication network conditions. 
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