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Abstract. Artificial Intelligence (AI)-driven road damage detection is a crucial 

component of intelligent transportation and smart cities. Given the outstanding 

performance of the You Only Look Once (YOLO) model in computer vision 

tasks, intelligent road damage detection technologies based on the YOLO model 

are currently among the mainstream methods. However, existing methods have 

limitations such as low accuracy and poor real-time performance when dealing 

with small objects and complex backgrounds. To alleviate these issues, this paper 

proposes an intelligent road damage detection method based on an improved 

YOLO-World model. Firstly, the Spatial Pyramid Pooling Cross Stage Partial 

Channel (SPPCSPC) convolutional structure and the FasterNet architecture are 

introduced into the detection backbone of the YOLO-World model. The aim is 

to simultaneously enhance the model's ability to extract multi-scale features and 

its detection speed. Secondly, the Convolutional Block Attention Module 

(CBAM) attention mechanism module is introduced into the detection head to 

improve the model's ability to extract key features. Finally, experimental results 

on the constructed complex road damage dataset show that the improved YOLO-

World model outperforms existing state-of-the-art methods in terms of accuracy 

and detection speed. In particular, the mAP50 index of the improved model is 

18.2 percentage points higher than that of YOLOv10.   

Keywords: Road Damage Detection; Complex Scenarios; YOLO-World; Real-

time Detection 

1 Introduction 

Driven by the global upsurge in smart city construction, the intelligent transportation 

system, as a key part of urban digital governance, is reshaping modern urban infrastruc-

ture management. Road health directly impacts urban operation and public safety. 

However, traditional manual inspection, with low efficiency and high error rate, fails 

to meet smart city management needs. Thus, AI-based intelligent road damage detec-

tion technology emerges, enabling high-precision and all-weather detection, ensuring 

smart city operation [1]. 



The road damage detection technology based on computer vision evolves through 

several stages. From the traditional machine learning framework based on Haar fea-

tures+Support Vector Machine (SVM) in the early stage [2], to the two-stage detection 

architectures represented by Faster Region-based Convolutional Neural Networks (R-

CNN) [3], R-CNN series [4] and Cascade R-CNN [5], and then to the one-stage detec-

tion paradigm led by the YOLO series, object detection algorithms achieve multi-di-

mensional technological breakthroughs. Two-stage methods construct a candidate re-

gion generation mechanism through the Region Proposal Network (RPN) [6]. They ex-

hibit significant advantages under complex background interference. Sun Chaoyun et 

al. [7] effectively improve the crack detection accuracy by optimizing Faster R-CNN, 

while Dongye Chang-lei et al. [8] enhance Mask R-CNN to achieve a breakthrough in 

pavement damage detection efficiency. However, the high computational cost of such 

algorithms restricts their real-time applications. Single-stage object detection algo-

rithms significantly simplify the detection process by completing target class prediction 

and bounding box regression simultaneously in one stage through a unified network 

[9], which is more in line with the urgent needs of smart cities for real-time monitoring 

and response capabilities of road infrastructure. Representative algorithms include Sin-

gle Shot MultiBox Detector (SSD) [10], YOLO series [11] and RetinaNet [12]. In re-

cent years, one-stage algorithms have made much important progress in the field of 

road damage detection. Yanbo J. Wang et al. [13] realize the recognition of road dam-

ages based on the Faster-RCNN and SSD models and win the IEEE Big Data Road 

Damage Detection Challenge. Among them, the YOLO series algorithms continuously 

refresh the performance boundaries through architectural innovation, as Gege Guo et 

al. [14] propose the MN-YOLOv5 algorithm. By integrating the lightweight Mo-

bileNetV3 backbone, coordinate attention, and K-Means clustering for prior box opti-

mization, and combining label smoothing regularization and structural re-parameteri-

zation, the accuracy and efficiency of road damage detection are significantly im-

proved, and at the same time, the lightweight deployment of the model is realized. Vung 

Pham et al. [15] propose a YOLOv7-based road damage detection method, integrating 

a coordinated attention module and optimization techniques. Trained on Google Street 

View data, the model secures a silver award (data contribution) and a bronze award 

(model prediction) in the Crowdsensing-based Road Damage Detection Challenge 

(CRDDC’2022) challenge, demonstrating the efficacy of crowdsourced data and light-

weight models. Jiayi Zeng et al. [16] propose the YOLOv8-PD lightweight algorithm. 

Through multi-scale feature fusion optimization and lightweight design, the accuracy 

of road damage recognition is significantly improved while maintaining efficient de-

tection, verifying the robustness and practicability of the improved model in complex 

pavement scenarios. Although researchers have made some progress in road damage 

detection tasks based on general object detection algorithms such as the YOLOv8 

model, there are still three key challenges in complex road scenarios: Firstly, the fea-

tures of small-scale damages are easily interfered by the complex background, resulting 

in insufficient multi-scale feature extraction and seriously affecting the detection accu-

racy [17]. Secondly, the existing models lack the ability to adaptively focus on the key 

areas of damages during the feature extraction process, and it is difficult to effectively 
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distinguish background noise from real damage features [18]. Thirdly, there is an in-

herent contradiction between the computational complexity of high-precision models 

and the real-time requirements, restricting their deployment feasibility in edge compu-

ting scenarios [19]. As an advanced YOLO model, YOLO-World shows good perfor-

mance in object detection [20] but has limitations in road damage scenarios: insufficient 

multi-scale feature fusion, weak attention distribution, and a deployment bottleneck due 

to computational density and edge device resource limitations. These call for improve-

ments to achieve better detection accuracy and practicability. To address these bottle-

necks, this study improves the YOLO-World model with contributions in four aspects: 

(1) In view of the deficiency of the YOLO-World model in multi-scale feature fu-

sion, we borrow the SPPCSPC [21] structure, which integrates the Spatial Pyramid 

Pooling (SPP) and the feature fusion module. The multi-scale pooling of SPP can ex-

tract features at different scales in parallel, obtaining rich contextual information. Other 

components of SPPCSPC further cooperate with it to enhance feature fusion. This 

makes the model more accurate in detecting small objects, more adaptable to object 

scale changes, and significantly improves the multi-scale object detection performance. 

(2) To solve the limitations of the YOLO-World model in feature extraction under 

complex backgrounds, we introduce the CBAM attention mechanism [22]. This mech-

anism, with the synergistic effect of the channel and spatial dimensions, strengthens the 

model's ability to focus on key features, and significantly improves the feature extrac-

tion accuracy of the model under complex backgrounds. 

(3) Considering the large consumption of computing resources of the YOLO-World 

model and its difficulty in efficient deployment on edge devices, we draw on the light-

weight design concept of the FasterNet module [23]. Integrating FasterNet to the 

YOLO-World model effectively reduces the computational complexity while ensuring 

the efficiency of feature extraction, effectively meeting the dual requirements of real-

time performance and high accuracy in practical applications. 

(4) To optimize the model's generalizability and practical utility, this study con-

structs a comprehensive road damage dataset incorporating multi-regional samples with 

varied damage types and severity levels. By significantly expanding the data diversity, 

the performance and versatility of the model are improved. 

2 Our Method 

2.1 Overall Architecture 

To tackle the limitations of the YOLO-World model in road damage detection tasks, 

we introduce several key modules to enhance its performance. Fig. 1 illustrates the ar-

chitecture of the improved YOLO-World model.  
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Fig. 1.  Architecture Diagram of the Improved YOLO-World Model 

 

Compared with existing YOLO-based road damage detection methods, our approach 

significantly differs both in architecture and working principles. (1) Differences in Ar-

chitecture: a) Introduction of FasterNet and SPPCSPC Modules: These modules are 

incorporated into the backbone network. The FasterNet module utilizes PConv (Partial 

Convolution) and PWConv (Pointwise Convolution), effectively reducing computa-

tional complexity and memory load, thus enhancing the model’s detection speed. The 

SPPCSPC module integrates SPP and CSPC, achieving effective extraction and fusion 

of multi-scale features. b) Introduction of CBAM Module: The CBAM is integrated 

into the detection head. This module comprises channel attention and spatial attention 

sub-modules. The channel attention sub-module emphasizes globally important fea-

tures, while the spatial attention sub-module focuses on local areas, suppressing back-

ground noise interference, thereby improving the model's ability to extract critical fea-

tures. (2) Differences in Working Principles: a) Multi-Scale Feature Extraction: Our 
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model revolutionizes multi-scale feature extraction through the SPPCSPC module. Un-

like traditional YOLO models that rely solely on basic operations, our SPPCSPC mod-

ule employs diverse max-pooling kernels (5x5, 9x9, 13x13) to extract multi-granular 

features and efficiently fuses them. b) Complex Background Adaptation: In complex 

real-world scenarios, CBAM plays a crucial role in distinguishing true damage features 

from background noise. Its channel and spatial attention mechanisms enhance the 

model’s capability to handle complex backgrounds by emphasizing global and local 

important features respectively. c) Computational Efficiency: The FasterNet module 

addresses computational efficiency issues. By utilizing PConv and PWConv, it reduces 

computational and memory loads without sacrificing feature representation quality, en-

abling real-time road damage detection. Overall, the SPPCSPC, FasterNet, and CBAM 

modules work synergistically. SPPCSPC provides rich multi-scale feature information, 

CBAM enhances the extraction of critical features, and FasterNet ensures efficient fea-

ture extraction and cost-effective operation. Together, these enhancements make our 

method superior in road damage detection. The specific details of each module are as 

follows. 

 

2.2 Improvement of the Backbone Network 

FasterNet module.  FasterNet is a Convolutional Neural Network (CNN) architecture 

specifically designed for efficient feature extraction. Its core design concept lies in op-

timizing the network structure to significantly reduce computational complexity and 

latency while enhancing the feature representation ability. The core innovation of this 

architecture is reflected in the collaborative design mechanism of PConv and PWConv, 

as shown in Fig. 2.  
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Fig. 2. Structure of the FasterNet Module 

On the left side of the figure, the internal structure of the FasterNet block is displayed. 

Starting from the input, it goes through the Pconv layer and the PWConv×2 layer in 

sequence. On the right side, the hierarchical structure of FasterNet is presented. After 

the input image passes through the embedding layer, it is processed by multiple Faster-

Net modules in several stages and finally output to the detection head. 

Based on the redundancy characteristics among the channels of the feature map (for 

example, adjacent channels have similar features), PConv adopts a channel-selective 

convolution strategy. It only performs convolution operations on some input channels 

(such as cp =
1

4
𝑐), and its floating-point operations (FLOPs) can be expressed as:  

 𝐹𝐿𝑂𝑃𝑠𝑃𝐶𝑜𝑛𝑣 = ℎ × 𝜔 × 𝑘2 × 𝑐𝑝
2 (1) 

Where ℎ and ω are the height and width of the feature map, 𝑘 is the size of the convo-

lution kernel, and 𝑐𝑝 is the number of channels involved in convolution. Equation (1) 

shows that when 𝑐𝑝  is only 
1

4
 of the total number of channels c, the computational 

amount of PConv is approximately 93.75% less than that of the standard convolution 

(𝐹𝐿𝑂𝑃𝑠 = ℎ × 𝜔 × 𝑘2 × 𝑐2), which greatly reduces the computational cost. The cor-

responding memory access amount can be expressed as:  

 𝑀𝑒𝑚𝑜𝑟𝑦 𝐴𝑐𝑐𝑒𝑠𝑠𝑃𝐶𝑜𝑛𝑣 = ℎ × 𝜔 × 2𝑐𝑝 + 𝑘2 × 𝑐𝑝
2 (2) 

Equation (2) demonstrates that by reducing the number of channels involved in calcu-

lations, PConv not only decreases the computational load but also significantly opti-

mizes memory usage (a reduction of approximately 60%). This is of great significance 

for deployment on edge devices with limited computing power, such as road inspection 

drones. When PConv is combined with PWConv, it is equivalent to a composite con-

volution with a T-shaped structure whose floating-point operations are expressed as: 

 𝐹𝐿𝑂𝑃𝑠𝑇−𝑠ℎ𝑎𝑝𝑒𝑑 𝐶𝑜𝑛𝑣 = ℎ × 𝜔 × (𝑘2 × 𝑐𝑝 × 𝑐 + 𝑐 × (𝑐 − 𝑐𝑝)) (3) 

Compared with Equation (3), traditional T-shaped convolution needs to calculate all 

channels (𝑘2 × 𝑐2), while PConv only needs to calculate some channels (𝑘2 × 𝑐𝑝 × 𝑐), 

thereby minimizing computational redundancy. In contrast, the joint optimization de-

sign of PConv and PWConv can further reduce the computational complexity, and the 

expression of its floating-point operations is:  

 𝐹𝐿𝑂𝑃𝑠𝑃𝐶𝑜𝑛𝑣+𝑃𝑊𝐶𝑜𝑛𝑣 = ℎ × 𝜔 × (𝑘2 × 𝑐𝑝
2 + 𝑐2) (4) 

The core advantage of Equation (4) is that, by decoupling channel selection and feature 

fusion, PConv + PWConv, while ensuring the feature representation ability, greatly re-

duces the floating-point operations, improves the computational efficiency, reduces the 

consumption of hardware resources, and enables the model to operate efficiently with 
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low latency in complex tasks. Building on these optimization strategies, FasterNet sig-

nificantly improves the floating-point operations per second (FLOPS) and effectively 

reduces the model latency. The latency calculation model can be expressed as follows:  

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝐹𝐿𝑂𝑃𝑠

𝐹𝐿𝑂𝑃𝑆
 (5) 

The practical significance of Equation (5) is that, when the hardware computing power 

(FLOPS) is fixed, by optimizing the FLOPs (as shown in Equations 1-4), the model 

latency is inversely proportional to the computational efficiency. 

 

SPPCSPC module. To enhance the model's detection capability for multi-scale ob-

jects, especially small objects in complex scenes, we introduce the SPPCSPC convolu-

tion structure into the YOLO-World model. The introduced SPPCSPC structure is 

shown in Fig. 3, which displays the module structure of SPPCSPC. The input data 

(C_in) first goes through a 1×1 convolution to convert the number of channels from 

C_in to C_mid, and then enters the SPP Block. Three branches are split beside the SPP 

Block, each performing max-pooling operations with different kernel sizes. After that, 

the data from these branches is concatenated with the data from the main branch in the 

channel dimension, and the number of channels becomes 4*C_mid. Then, the number 

of channels is adjusted through a 1×1 convolution. Finally, the data is added to the 

data from the initial Identity Branch and output. The SPPCSPC integrates the concepts 

of SPP and Cross Stage Partial (CSP) channels to construct an efficient feature fusion 

and enhancement mechanism.   
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Fig. 3. Structure of the SPPCSPC Module 

 

The SPPCSPC module has a clear design logic and distinct hierarchy, mainly consisting 

of three stages: feature extraction, multi-scale pooling, and feature fusion and optimi-

zation. In the feature extraction stage, the input feature map goes through a 1 × 1con-

volution kernel to achieve feature compression and dimensionality regularization. Let 

the input feature map be I ∈ RH×W×C, where H is the height, W is the width, and C is 

the number of channels. The mathematical expression of the convolution operation is: 

 𝐹1 =  𝑆𝑖𝐿𝑈(𝐼 ∗  𝑊1 + 𝑏1)  (6) 



Where W1 ∈ R1×1×C×C′  denotes the convolution kernel weight, b1 ∈ RC′  is the bias 

term, * represents the convolution operation, SiLU represents the Sigmoid-weighted 

linear unit activation function, F1 ∈ RH×W×C′is the feature map after convolution and 

activation, and C′ is the number of channels after compression. The core function of 

this stage is to extract high-order abstract features while suppressing noise interference. 

After completing feature extraction, it enters the multi-scale pooling stage. The ex-

tracted feature 𝐹1 enters the multi-scale max-pooling module. This module adopts a 

multi-branch parallel pooling structure and uses pooling kernels of different sizes (such 

as 5×5, 9×9, 13×13) to extract multi-granularity features. Let k1 = 5, k2 = 9, k3 =

13 be the sizes of the three pooling kernels, respectively. For the 𝑘1 pooling kernel, the 

mathematical expression of its max-pooling operation is as follows: 

 𝑃1(𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥𝑚=0
4 𝑚𝑎𝑥𝑛=0

4 𝐹1(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐), (7) 

𝑖 ∈ [0, 𝐻1 − 1], 𝑗 ∈ [0, 𝑊1 − 1], 𝑐 ∈ [0, 𝐶′ − 1] 

Among them, H1  =  ⌊
H−5+1

1
⌋, W1  = ⌊

W−5+1

1
⌋. 

Similarly, for the pooling kernels k2 and k3, we respectively have:  

 𝑃2(𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥𝑚=0
8 𝑚𝑎𝑥𝑛=0

8 𝐹1(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐), (8) 

 𝑖 ∈ [0, 𝐻2 − 1], 𝑗 ∈ [0, 𝑊2 − 1], 𝑐 ∈ [0, 𝐶′ − 1]; 

This formula represents the max-pooling operation with a pooling kernel of size k2 =
9 × 9. Here, we search for the maximum value within a 9 × 9 neighborhood for each 

position (i, j) in the feature map F1across the channel dimension c. The range of i and j 
is determined by the size of the feature map after applying the pooling operation with 

a 9 × 9 kernel, where H2 and W2 are calculated based on the for-

mula ⌊
H−9+1

1
⌋ and ⌊

W−9+1

1
⌋ respectively, which are used to ensure that the pooling oper-

ation is performed within the valid region of the feature map. 

 𝑃3(𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥𝑚=0
12 𝑚𝑎𝑥𝑛=0

12 𝐹1(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐), (9) 

 𝑖 ∈ [0, 𝐻3 − 1], 𝑗 ∈ [0, 𝑊3 − 1], 𝑐 ∈ [0, 𝐶′ − 1]. 

This formula is for the max-pooling operation using a pooling kernel of size k3 =
13 × 13. It finds the maximum value within a13 × 13neighborhood for each posi-

tion (i, j) in the feature map F1for each channel c. The ranges of i and j are defined ac-

cording to the size of the feature map after the 13 × 13  pooling operation, 

andH3 andW3 are calculated as ⌊
H−13+1

1
⌋and ⌊

W−13+1

1
⌋respectively, so as to keep the 

pooling operation within the boundaries of the feature map. 

Among them, H2  =  ⌊
H−9+1

1
⌋, W2  =  ⌊

W−9+1

1
⌋, H3  =  ⌊

H−13+1

1
⌋, W3  =  ⌊

W−13+1

1
⌋. 

The outputs P1, P2, and P3 of each branch are concatenated along the channel dimension 

to form a multi-scale feature matrix Fpool: 

 𝐹𝑝𝑜𝑜𝑙 = [𝑃1; 𝑃2; 𝑃3] (10) 
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This multi-scale pooling design enables the model to capture both global and local fea-

tures simultaneously, effectively improving the recognition ability for objects in com-

plex scenes. 

Finally, it comes to the feature fusion and optimization stage. In this stage, the multi-

scale features Fpool are fused with the original input feature map I in the channel di-

mension. Let the fused feature map be Fmerge, and its mathematical expression is: 

 𝐹𝑚𝑒𝑟𝑔𝑒 = [𝐼; 𝐹𝑝𝑜𝑜𝑙] (11) 

Subsequently, the fused features Fmerge are further optimized through several convo-

lutional layers. Assuming there are N convolutional layers, the weight of the convolu-

tion kernel of the n-th convolutional layer is 𝑊𝑛 , and the bias is 𝑏𝑛 , then the out-

put Fn of the n-th convolutional layer is: 

 𝐹𝑛 = 𝑆𝑖𝐿𝑈(𝐹𝑛−1 ∗ 𝑊𝑛 + 𝑏𝑛),      𝑛 = 1,2, ⋯ , 𝑁 (12) 

where Fn = Fmerge. The final output detection feature map is Fout = FN. These convo-

lutional layers are highly scalable and can flexibly adjust the number of channels and 

dimensions of the output features according to the task requirements. 

The SPPCSPC module caters to the scale-difference characteristics of objects such 

as cracks and potholes in road distress detection tasks. It enhances the adaptive repre-

sentation of multi-resolution features through a dynamic feature weighting mechanism, 

providing an efficient solution for distress identification in complex road scenarios.  

2.3 Improvement of Detection Head 
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To enhance the object detection accuracy of the YOLO-World model in complex sce-

narios, the CBAM attention mechanism is introduced., and the combined structure of 

CBAM and the C2f module is shown in Fig. 4. The module employs CBAM to guide 

multi-scale feature map fusion, thus enhancing its focus on key features. The C2f back-

bone takes the P3/8 feature map as input. By leveraging CSPNet, features are split: one 

part operates is processed within the C2f module, while the other adopts identity map-

ping or streamlined operations. These two parts are cross-stage connected and fused to 

output the P4/16 feature map. The CBAM sub-module consists of  channel and spatial 

attention. For the channel attention, it applies global average and max-pooling to input 

features, then uses a parameter-shared Multi-Layer Perceptron (MLP) and the Sigmoid 

function to generate a channel attention map for channel weighting. As for the spatial 

attention,it pools the input feature map in the channel dimension, concatenates the re-

sults, and applies a 7×7 convolution to produce a spatial attention map, which helps in 

capturing local features. CBAM acts on different-scale feature maps. By integrating 

these two types of attention, it strengthens the model's focus on key information and 

cross-layer feature representation, thereby improving object recognition in complex 

scenarios. 

First, the channel attention module models the input feature map's global info, learns 

and assigns channel weights to identify task-crucial features. Given input feature 

map F, global average and max-pooling operations yield one-dimensional feature vec-

tors 𝑓𝑎𝑣𝑔 and 𝑓𝑚𝑎𝑥 respectively, with calculation formulas as follows: 

 𝑓𝑎𝑣𝑔 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹), 𝑓𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹) (13) 

Then, the compressed feature vectors are input into a shared MLP. The MLP contains 

a hidden layer, and the size of the activation units is 
𝐶

𝑟
 (where 𝑟 is the channel reduction 

ratio), and a Rectified Linear Unit (ReLU) activation function is used for non-linear 

transformation. The formula is as follows:  

 𝑓𝑎𝑣𝑔
𝑐 = 𝑊1 (𝑅𝑒𝐿𝑈(𝑊0𝑓𝑎𝑣𝑔)), 𝑓𝑚𝑎𝑥

𝑐 = 𝑊1(𝑅𝑒𝐿𝑈(𝑊0𝑓𝑚𝑎𝑥)) (14) 

Finally, the resultant vectors undergo element-wise summation, and a channel attention 

map is generated through the Sigmoid function: 

 𝑀𝑐(𝐹) = 𝜎(𝑓𝑎𝑣𝑔
𝑐 + 𝑓𝑚𝑎𝑥

𝑐 ) (15) 

where 𝑊0 and 𝑊1 are the weight matrices of the MLP respectively, and σ represents 

the Sigmoid function. 

Secondly, the spatial attention module captures prominent features in the local spa-

tial dimension from the input feature map and identifies the regions of interest in the 

spatial dimension for the objects. Specifically, average-pooling and max-pooling oper-

ations are performed on the input feature map in the channel dimension to generate two 

two-dimensional feature maps: 

         𝑓𝑎𝑣𝑔
𝑠 = 𝑀𝑒𝑎𝑛(𝐹, 𝑑𝑖𝑚 = 1), 𝑓𝑚𝑎𝑥

𝑠 = 𝑀𝑎𝑥(𝐹, 𝑑𝑖𝑚 = 1) (16) 
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Subsequently, the above two feature maps are concatenated in the channel dimension, 

and a spatial attention map is generated through a 7×7 convolution operation: 

 𝑀𝑠(𝐹) = 𝜎 (𝑓7×7([𝑓𝑎𝑣𝑔
𝑠 ; 𝑓𝑚𝑎𝑥

𝑠 ])) (17) 

where 𝑓7×7represents a 7×7 convolution operation, and [∙;∙]represents the concatena-

tion operation in the channel dimension. 

By applying the channel attention map and the spatial attention map to the input 

feature map in sequence, CBAM can effectively enhance the model's focus on key fea-

tures, thus improving the accuracy of object detection. 

3 Experiments 

3.1 Experimental Datasets and Environment Setup 

Constructed Dataset. In the field of road distress detection, existing datasets, such as 

Road Damage Detector 2022 (RDD2022) [24] covering road scenes from multiple 

countries and Street View Image Dataset for Automated Road Damage Detection 

(SVRDD) [25] based on high-resolution street-view images, have certain value, yet 

they suffer from incomplete data coverage. To address this, we extend the existing da-

taset by collecting and annotating new data. Our collected dataset, consisting of 2000 

images collected by vehicle-mounted devices and meticulously annotated, focuses on 

supplementing samples of long-tail distresses like ruts and raveling, as well as complex 

scenario data including low-light conditions and occlusions, significantly enhancing 

data diversity, as shown in Table 1. The two subsets in Table 1 that constitute the dataset 

are collected by our two authors separately. During the data preprocessing stage, vari-

ous enhancement strategies are employed to expand the environmental adaptability of 

the data. Moreover, all integrated datasets are divided into a training set (70%), a vali-

dation set (20%), and a test set (10%) at the same ratio to ensure the fairness of exper-

iments.  

 

Table 1. Statistical Information of the Self-annotated Dataset. 

 Subset1 Subset2 Total 

Alligator Crack 78 6 84 

Transverse Crack 765 1000 1765 

Longitudinal crack 753 904 1657 

Net crack 222 31 253 

Pothole 25 86 111 

Raveling 102 507 623 

Ruts 368 521 889 

train_images 700 700 1400 

val_images 200 200 400 

test_images 100 100 200 

total_images 1000 1000 2000 

Total instances 2313 3055 5368 



 

Experimental Environment Setup. The hardware is including an NVIDIA GeForce 

RTX 4060 Laptop GPU, an Intel Core i7-14700HX, and 16.0GB of memory in a light-

weight setup. The model runs on Windows 11 with Python 3.10.15, PyTorch 

2.1.2+cu118. Poetry locks albumentations 1.4.4, numpy 1.26.3, opencv-python 

4.10.0.84. 

 

3.2 Experimental Setup 

Parameter Settings. Employing the genetic algorithm, we globally optimize the mod-

el's key hyperparameters, searching in the space of learning rate (1e-5 to 1e-1) and data 

augmentation rotation angle (0.0 to 45.0). Input image resolution is set at 640×640 pix-

els. We select the AdamW optimizer with an adaptive learning rate of 0.05, weight 

decay of 0.85, an initial learning rate of 2e-4, and a minimum learning rate ratio of 0.1. 

The 200-epoch training enhances stability by adjusting data augmentation and extend-

ing warmup to 10 epochs. The model is saved every 10 epochs with a patience value of 

20. We use the commonly-used classification loss with a classification loss weight (cls) 

of 0.5 and distribution focal loss with a distribution focal loss weight (dfl) of 1.5 for 

model training. GPU, mixed-precision training, 4 data-loading processes, and freezing 

the first 12 network layers improve speed and performance. All parameters, fine-tuned 

multiple times, ensure experiment fairness and consistency.  

 

Evaluation Indicators. To ensure comparability with related research in the field, this 

study adopts the same evaluation metrics as those in Ref. [14], including mean Average 

Precision (mAP), F1-score, Giga-Floating Point Operations Per Second (GFLOPs), 

number of parameters (in millions), model size (in MB), Frames Per Second (FPS), 

Precision, and Recall. These metrics comprehensively measure the model's perfor-

mance from multiple dimensions such as detection accuracy, computational efficiency, 

and model scale.  

 

3.3 Experimental Results 

Table 2. Comparison of the Experimental Results. 

Modules mAP50 mAP50-95 F1/% GFLOPs Params/106 
Model 

size/MB 
FPS 

YOLOv9 0.55 0.31 58 236.7 50.71 98 1.0 

YOLOv10 0.50 0.28 54 8.2 2.73 5.51 10.4 

YOLOv11 0.62 0.36 64 194.4 56.98 109.12 1.3 

Improved 

YOLO-World 

(ours) 

0.68 0.47 66 21.3 5.19 10.1 12.4 

 

Table 2 shows the comparative experiment results. The bolded numbers indicate the 

best results. The improved YOLO-World model surpasses YOLOv9, YOLOv10, and 

YOLOv11 in key metrics. Its mAP50 hits 68.1%, 13, 18.2, and 6.2 percentage points 
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higher than the three respectively; mAP50-95 reaches 47.2%, 16.7, 19.4, and 11.1 

points higher. Feature representation optimization boosts performance, especially in 

multi-scale and small-object detection. In terms of accuracy-recall balance, the im-

proved YOLO-World excels. Its F1 value at 66% is 8, 12, and 2 points higher than the 

others. It raises recall while keeping high accuracy, enhancing distress detection in 

complex roads. For efficiency, the improved YOLO-World requires only 21.3 

GFLOPs, reducing computational cost by 91% and 89% compared to YOLOv9 and 

YOLOv11; parameters drop to 5.19M, 89.8% and 90.9% less. The FasterNet-inspired 

design drives this. Model size is cut to 10.1 MB, 89.7% and 90.7% smaller, and FPS 

rises to 12.4, meeting real-time needs. 

 

3.4 Ablation Study 

Table 3. Results of the Ablation Experiment. 

Modules Precision Recall mAP50 mAP50-95 

YOLO-World 0.55 0.46 0.45 0.22 

+CBAM 0.60 0.50 0.54 0.26 

+SPPCSPC 0.63 0.61 0.65 0.37 

+FasterNet 0.64 0.52 0.575 0.28 

+CBAM、SPPCSPC 0.70 0.55 0.62 0.43 

+CBAM、FasterNet 0.71 0.59 0.71 0.42 

+SPPCSPC、FasterNet 0.66 0.63 0.65 0.48 

+CBAM、SPPCSPC、Fa

sterNet 
0.73 0.60 0.68 0.47 

 

To systematically analyze the impact mechanisms of the three modules, namely 

CBAM, FasterNet, and SPPCSPC, on the model's evaluation metrics, we conduct ab-

lation experiments. Table 3 shows the results of the ablation experiments. The experi-

mental results indicate that each module and various combinations exhibit unique per-

formance optimization characteristics in different evaluation dimensions. For example, 

in terms of the Precision metric, when CBAM is combined with either FasterNet or 

SPPCSPC and applied to the YOLO-World model, the Precision value reaches around 

0.70. When the three modules of CBAM, FasterNet, and SPPCSPC are used in synergy, 

the Precision value reaches 0.73, showing a further improvement compared with pair-

wise combinations and demonstrating a more powerful optimization effect under the 

synergy of multiple modules. In terms of the mAP50 metric, after adding the CBAM 

module to YOLO-World, the mAP50 increases from 0.45 to 0.54. When the FasterNet 

and SPPCSPC modules are used alone, they increase the mAP50 to 0.575 and 0.65, 

respectively. When CBAM and FasterNet are used in combination, the mAP50 value 

exceeds 0.7, significantly improving the model's detection performance. When the three 

modules of CBAM, FasterNet, and SPPCSPC act in concert, the mAP50 value reaches 

0.68, indicating the different effects of different module combinations in improving the 

model performance. In short, these modules work well together as CBAM pinpoints 

key features, FasterNet boosts efficiency, and SPPCSPC enriches multi-scale features. 



Their combined action optimizes different aspects of the model, leading to improved 

performance.  

 

3.5 Analysis of Detection Capability in Complex Scenes 

(a) YOLOv9 (b) YOLOv10

(c) YOLOv11 (d) Improved YOLO-World (ours)

 
 

Fig. 5. Detection Results Comparison of Each Model under Rainy Road Conditions 

 

(a) YOLOv9 (b) YOLOv10

(c) YOLOv11 (d) Imporved YOLO-World (ours)

 
Fig. 6. Detection Results Comparison of Each Model for Small Objects 

(a) YOLOv9 (b) YOLOv10

(c) YOLOv11 (d) Imporved YOLO-World (ours)

 
Fig. 7. Detection Results Comparison of Each Model under Poor Lighting Conditions 
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(a) YOLOv9 (b) YOLOv10

(c) YOLOv11 (d) Imporved YOLO-World (ours)

Fig. 8. Detection Results Comparison of Each Model under Multi-vehicle Interference Condi-

tions 

 

To comprehensively evaluate the performance of the improved YOLO-World model in 

complex scenarios, we carry out a multi-scene detection ability test. The test results are 

shown in Figs. 5-8. The improved YOLO-World outperforms baseline models across 

all test scenarios: In Fig. 5, YOLOv9 has a problem of missed detection, while 

YOLOv10, YOLOv11, and the improved YOLO-World can all detect all the objects, 

among which the improved YOLO-World has the highest confidence level. In Fig. 6, 

YOLOv10 has a missed detection phenomenon, and YOLOv9, YOLOv11, and the im-

proved YOLO-World can all detect the objects, with the improved YOLO-World still 

maintaining the leading confidence level. In Fig. 7, YOLOv10 and YOLOv11 have 

false detections, while the improved YOLO-World and YOLOv9 can accurately detect 

the objects, and the confidence level of the improved YOLO-World is significantly 

higher than that of YOLOv9. In Fig. 8, all four models have missed detection problems, 

but the improved YOLO-World has the fewest missed detections, the largest number 

of detected objects, and a relatively high confidence level. In conclusion, the improved 

YOLO-World model can stably detect road damages in various complex environments 

and shows a high detection accuracy. 

4 Conclusion 

This study addresses road damage detection challenges by optimizing the YOLO-

World framework and validating it via comprehensive experiments. Introducing the 



SPPCSPC, FasterNet, and CBAM modules into the backbone and detection head en-

hances multi-scale feature extraction, detection speed, and key feature extraction. Ex-

perimental results on our constructed road damage dataset demonstrate superior perfor-

mance over state-of-the-art methods. Future research will investigate open-set detection 

models and their Unmanned Aerial Vehicle (UAV) deployment to advance intelligent 

road maintenance systems.   
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