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Abstract. The distribution of time series data changes over time, posing chal-

lenges for accurate time series forecasting. One common approach to tackle the 

issue of distribution shift involves transforming the data into a latent space where 

the impact of the shift is minimized. However, existing methods heavily depend 

on experienced distribution assumptions and lack guidance on the latent space, 

leading to sub-optimal performance enhancements. To tackle the above chal-

lenges, we propose a new transformation technique to explicitly mitigate the dis-

tribution shift between historical and forecast data without any distribution as-

sumptions. Specifically, an Invertible Neural Network Transformation (INNT) is 

designed to convert data into a smooth latent space. The INNT is constructed to 

be bidirectional and reversible by a temporal slicing mechanism, thereby preserv-

ing all information from the original data. Moreover, the transformation process 

is guided by a pretraining strategy that aims at reducing distribution divergence 

within the latent space. Additionally, the proposed method is model-agnostic, al-

lowing for seamless integration into various existing forecasting models. Exten-

sive experiments are conducted to validate the accuracy and generalization of the 

proposed framework.   

Keywords: Multivariate Time Series Forecasting, Data Normalization, Distri-

bution Shift. 

1 Introduction 

Time series forecasting is essential in various applications, such as traffic, weather, and 

energy analysis [1-3]. The precise prediction of future trends allows individuals to plan 

their daily commutes more efficiently. Additionally, governments and managers can 

make well-informed decisions using advanced forecasting and scheduling techniques. 

Recently, numerous methods have been developed for time series forecasting[4], in-

cluding transformer-based networks [5-7] and MLP-based networks [8-10]. A common 

challenge hindering forecasting advancements is the distribution shift, which means the 

distribution of time series data changes over time. This shift complicates capturing the 

relationship between historical and forecast data, leading to limited generalization and 

suboptimal performance. To address the distribution shift, current studies concentrate 
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on transforming data into a latent space where historical and forecast data are more 

proximate. These techniques are primarily implemented through improved normaliza-

tion methods. For example, RevIN [11], Dish-TS [12], and SAN [13] are essentially 

variants of conventional normalization to align data with a standard normal distribution. 

However, these methods exhibit two limitations.  

Firstly, the inherent distribution of time series data is notably intricate, and a specific 

distribution may not adequately capture the complexity of the data. Furthermore, these 

methods rely on precise future statistics, such as mean and standard deviation. These 

statistics can be challenging to ascertain due to the nonlinear nature and temporal vari-

ability of the data. Despite efforts by existing methods to quantify the shift, the utiliza-

tion of inaccurate statistics continues to mislead forecasting models. Secondly, these 

techniques do not impose constraints on the latent space. They rely on a fixed process 

for data transformation but fail to evaluate its effectiveness. Lacking sufficient guidance 

and evaluations on transformation results in the failure to effectively reduce the distri-

bution divergence between historical and forecast data.t, either. 

 

 
Fig. 1. Comparison with the existing methods, which transform observed data 𝐳in into latent 

data 𝐮in. (a) Existing methods rely on future statistics and de-normalize data primarily through 

shifting and scaling[11] or predicting future statistics[12, 13]. (b) The proposed method trans-

forms input data into latent embeddings and applies a pretraining strategy to minimize the distri-

bution discrepancy between transformed input data 𝐮in and ground truths 𝐮out. 

 

To tackle the aforementioned challenges, we propose the Invertible Neural Network 

Transformation (INNT). This approach aims to explicitly minimize distribution diver-

gence between historical and forecast data without any distribution assumptions on time 

series. As illustrated in Figure 1, compared with the existing methods, INNT offers a 

bijective mapping for data transformation and de-transformation, and effectively mini-

mizes distribution divergence through transformation pretraining. Firstly, considering 

the actual distribution is complex and difficult to fit, we design a reversible network as 

a special distribution transformation to transform historical data into a latent feature 

space. To ensure the bijection of the transformation, we employ a temporal slicing 

mechanism to divide a time series into multiple equal-length sub-series. That also meets 

the scenarios where the temporal dimensions of the input and output series are incon-

sistent. Secondly, a pretraining strategy is implemented using a slicing maximum mean 
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discrepancy loss function to optimize the latent space, ensuring that historical and fore-

cast data exhibit similar distributions after transformation. Then, forecasting tasks are 

carried out within the latent space. Finally, the results are converted back to the ob-

served space through an inverse transformation without relying on future statistics. 

INNT mitigates distribution shifts by employing a flexible and controllable transfor-

mation, thereby enhancing forecasting accuracy and improving model generalization.  

The main contributions are concluded as follows: 

⚫ We propose the INNT to alleviate the distribution shift problem in time series 

forecasting without relying on specific distributions, making data transformation 

more generalized in the scenarios of drastic data changes. % We propose a novel 

INNT to alleviate the distribution shift problem in time series forecasting without 

relying on specific distributions or future statistics, making forecasting models 

more efficient and generalized to unknown distributions. 

⚫ We employ a temporal slicing mechanism to satisfy the bijection of data transfor-

mation, avoiding information loss.  

⚫ We employ pretraining to guide data transformation, explicitly reducing distribu-

tion divergence between historical and forecast data in the latent space.  

⚫ Extensive experiments demonstrate the superiority of our method in both accuracy 

and generalization. 

2 Related Works 

2.1 Time Series Forecasting 

Time series forecasting has become a research hotspot, achieving significant advance-

ments in recent years. In the early stage, statistical methods like Average Regressive 

Integrated Moving Average (ARIMA) and Historical Average (HA) are applied to con-

struct the distribution and prediction of data. With the rapid development of deep learn-

ing architectures, time series forecasting has been greatly promoted. For example, 

Transformer[14] has been widely adopted in time series forecasting. Numerous studies, 

including CrossFormer [6], InFormer [14], AutoFormer [5], FedFormer [7], and iTrans-

former [15], have enhanced the attention mechanism to better suit time series tasks. 

Recently, MLP-based methods like DLinear [8], TiDE [9], FreTS [16], and FITS [17] 

have demonstrated superior performance in both accuracy and efficiency. Additionally, 

TimesNet [18] applies Convolution Neural Network (CNN) and WTRAN [19] applies 

Recurrent Neural Network (RNN) to extract the periodicity of time series data.   

 

2.2 Time Series Forecasting 

Most of the existing approaches focus on exploring superior architectures for time se-

ries forecasting, but rarely pay attention to the distribution shift problem. AdaRNN [20] 

alleviates the impact of nonstationary factors by distribution characterization and 

matching in RNNs. Koopa [21] transforms data into a latent feature space to mitigate 

distribution shift, but it only considers the distribution divergence within input win-

dows, neglecting the divergence between input and output windows. Nonstationary 



Transformer [22] improves the attention mechanism by incorporating nonstationary 

factors. However, these methods are tailored to specific models, which may limit their 

applicability to newer architectures. Normalization-based methods have been effective 

in mitigating distribution shift. RevIN [11] proposes a simple yet effective normaliza-

tion-and-denormalization process to mitigate distribution divergence by trainable scal-

ing and shifting. Dish-TS [12] considers the distribution shift in intra-space and inter-

space and quantifies the shift by knowledge-induced training. SAN [13] dynamically 

predicts the distributions of future slices for nonstationary time series forecasting. How-

ever, they suffer from specific assumptions on the distribution and reliance on unknown 

future statistics. To enhance the generalization, In-Flows [23] uses an invertible net-

work to transform data into a latent space. However, it lacks sufficient guidance on 

transformation, which hinders the effective reduction of distribution divergence be-

tween historical and forecast data. 

3 Problem Definition 

3.1 Time Series Forecasting 

Time series forecasting aims to predict future data with input historical data. Take input 

data as {𝐗(𝑡−𝐿), … , 𝐗(𝑡−1)} ∈ ℝ𝐿×𝑁×𝐾  and forecast data as 

{𝐗̂(𝑡), 𝐗̂(𝑡+1)… , 𝐗̂(𝑡+𝐻−1)} ∈ ℝ𝐻×𝑁×𝐾. 𝐿 and 𝐻 are the lengths of the input and output 

series, respectively. 𝑁 and 𝐾 denote the number of features and feature dimension. 

The task can be formulated as: 

{𝐗̂(𝑖)}𝑖=𝑡
𝑡+𝐻−1 = ℱ𝜃({𝐗

(𝑖)}𝑖=𝑡−𝐿
𝑡−1 )                    (1) 

where 𝜃 denotes parameters of the forecasting model ℱ.  

 

3.2 Distribution Shift in Time Series Forecasting 

To alleviate the distribution shift, a general paradigm is to use a transformation block 

𝒯 to transform the input data before forecasting, and a de-transformation block 𝒯−1 

to map the observed distribution after forecasting. This paradigm helps mitigate the 

distribution shift between input and output space in forecasting models. Existing works 

generally define 𝒯 as the variants of standard normalization and 𝒯−1 as the corre-

sponding inverse operation. A general paradigm of time series forecasting with trans-

formation and de-transformation can be formulated as follows: 

{𝐗̂(𝑖)}𝑖=𝑡
𝑡+𝐻−1 = 𝒯−1(ℱ𝜃(𝒯({𝐗

(𝑖)}𝑖=𝑡−𝐿
𝑡−1 )))               (2) 

4 Methodology 

4.1 Overview 

In this paper, we propose the Invertible Neural Network Transformation (INNT), a 

model-agnostic technique involving transformation before forecasting and de-transfor-
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mation after forecasting to mitigate distribution shift. Unlike conventional normaliza-

tion-based approaches, INNT does not rely on prior knowledge of data distribution or 

precise future statistics, making it more adaptable and less susceptible to errors from 

inaccurate future information. Additionally, INNT incorporates a pretraining strategy 

to explicitly minimize distribution divergence between historical and forecast data.  

 

 
Fig. 2. Overview of INNT. INNT provides a mode-agnostic paradigm addressing distribution 

shift, including transformation before forecasting and de-transformation afterward. Firstly, a 

transformation block is used to transform the original input data into a smooth latent space. Then, 

forecasting tasks are carried out based on the transformed input. Finally, forecasting results are 

de-transformed to map the observed distribution. 

 

As illustrated in Figure 2, INNT establishes a one-to-one mapping between the 

observed space and latent space. Initially, a reversible network is utilized to convert the 

input data into the latent space. Subsequently, the transformed series is fed into a fore-

casting model ℱ𝜃. The forecasting process is carried out within the transformed latent 

space. Finally, the output sequence of the forecasting model is transformed back to 

align with the observed distribution through the corresponding de-transformation pro-

cess. Importantly, transformation and de-transformation can be trained by minimizing 

the discrepancy between the historical and forecast series in the latent space, effectively 

mitigating distribution shift. 

 

4.2 Slicing Transformation and De-Transformation 

We propose an invertible transformation 𝒯𝜙: 𝒵 → 𝒰 to convert data from the observed 

space 𝒵 to a smooth latent space 𝒰. The proposed INN transformation 𝒯𝜙  and its 

inverse 𝒯𝜙
−1 can be defined as:  

𝐮 ∼ 𝑝𝒰(𝐮), 𝐳 ∼ 𝑝𝒵(𝐳), 𝐮 = 𝒯𝜙(𝐳), 𝐳 = 𝒯𝜙
−1(𝐮)            (3) 



where 𝑝𝒰 and 𝑝𝒵  denote the latent distribution without specific assumptions and the 

observed distribution, respectively. 𝐳 and 𝐮 denote the observed and latent data em-

beddings. 

A critical challenge is to design a transformation module that satisfies the following 

requirements. First, transformation should be equivalent and reversible, without caus-

ing any information loss. Second, any experienced assumption on distribution will limit 

models to deal with uncertain distributions, so it should not be generalized to one spe-

cific distribution.  

Inspired by the above requirements, we define the special transformation 𝒯𝜙 and de-

transformation 𝒯𝜙
−1 with an Invertible Neural Network (INN) [25] which can reversi-

bly transform data between observed space and latent space.  

Initially, ensuring the reversibility of the transformation necessitates consistency be-

tween the input and output series in terms of series lengths, which is often challenging 

to fulfill in practical applications. For instance, forecasting a 336-length future series 

based on a 96-length historical series may pose difficulties. One approach [24] to ad-

dress this issue is to transform data on the unchanging feature dimension. However, 

focusing on the transformation of feature dimension is rarely beneficial to solving the 

distribution shift in the time dimension. To address the above issue, we apply a temporal 

slicing mechanism to ensure consistency on the time dimension in INNT. We first slice 

the series into equal-length periodic segments, denoted as 𝒮:ℝ𝑁∗𝑇 → ℝ𝑁∗𝑇 ′∗𝑃, where 

𝑁 is the number of features and 𝑇 is the length of time series. The temporal slicing 

operation transforms a 𝑇-length series into 𝑇 ′ sub-series with a period length 𝑃. For 

example, an hourly collected dataset will be divided into multiple 24-length sub-series 

to capture the daily periodicity.  

Then, we apply INNT on the input sub-sequence 𝐗 ∈ ℝ𝑁∗𝑇 ′  into two parts as 

{𝐗1:𝑑 , 𝐗𝑑+1:𝐷}. Transformation can be defined as: 

𝐗̂1:𝑑 = 𝐗1:𝑑                            (4) 

𝐗̂𝑑+1:𝐷 = 𝐗𝑑+1:𝐷 ⊙ exp(𝐹(𝐗𝑑+1:𝐷)) + 𝐺(𝐗1:𝑑)             (5) 

where 𝑑  is the segmentation position, 𝐷  is the length of series, and 𝐗̂ =

𝑐𝑜𝑛𝑐𝑎𝑡𝑒(𝐗̂1:𝑑 , 𝐘𝑑:𝐷) is the transformed results. 𝐹, 𝐺:ℝ𝑑 → ℝ𝐷−𝑑 denote deep learn-

ing architectures for scaling and shifting. We incorporate MLP layers and tanh activa-

tion functions as 𝐹 and G operations.  

 

Forecasting tasks are performed in a transformed latent space by any forecasting 

model ℱ𝜃. Take 𝐘̂ as the forecasting results. The corresponding de-transformation can 

be defined as: 

𝐘1:𝑑 = 𝐘̂1:𝑑                            (6) 

𝐘𝑑+1:𝐷 = [𝐘̂𝑑+1:𝐷 − 𝐺(𝐘̂1:𝑑)] ⊙ exp(𝐹(𝐘̂1:𝑑)
−1)            (7) 

where 𝐘 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒(𝐘1:𝑑 , 𝐘𝑑:𝐷) is the final prediction. Transformation and de-trans-

formation share the same parameters 𝜙 to maintain a consistent latent space.  

One transformation only changes half of the series, so we execute multiple transfor-

mations with self-exchange as 𝐗̂1:𝑑 , 𝐗̂𝑑:𝐷 = 𝐗̂𝑑+1:𝐷, 𝐗̂1:𝑑  to ensure adequate infor-

mation mixture. 
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The effective invertible transformation converts data into a smooth latent space, en-

abling forecasting models to more accurately infer the relationships between historical 

and forecast series. Parameters are shared between the transformation and de-transfor-

mation processes, ensuring that the INNT maintains the equivalence between the ob-

served space and the latent space. This approach effectively enhances time series fore-

casting from a stable perspective. 

 

4.3 Two-Stage Training Strategy 

Though the designed invertible transformation offers a flexible mapping approach with-

out specifying data distribution, a significant challenge lies in effectively training the 

parameters of the transformation and forecasting models. Specifically, it is necessary 

to optimize the transformation parameters 𝜙 to minimize the discrepancy between his-

torical and forecast sequences in the latent space, and the forecasting parameters 𝜃 to 

minimize the error between the predicted sequence and the ground truth. To achieve 

these goals, the training process is divided into two stages: transformation pretraining 

and forecasting training. 

Transformation Pretraining A slicing Maximum Mean Divergence (MMD) loss 

function is proposed to evaluate the discrepancy between the transformed historical and 

forecast series in the latent space.  

Transformation is applied on both historical and forecast sub-series as 𝑥 ′ =
𝒯(𝑥)𝑎𝑛𝑑𝑦′ = 𝒯(𝑦). {𝑥, 𝑥 ′, 𝑦, 𝑦′} are period-length sub-series. We use slicing MMD 

loss to evaluate the divergence between input and output sub-series as:  

𝑙𝑜𝑠𝑠MMD =∑\

𝑁

𝑘=1

|
1

𝑛2
∑ 𝑓

𝑛

𝑖,𝑗=1

(𝑥𝑖,𝑘
′ , 𝑥𝑗,𝑘

′ ) 

−
2

𝑛𝑚
∑ 𝑓𝑛,𝑚
𝑖,𝑗=1 (𝑥𝑖,𝑘

′ , 𝑦𝑗,𝑘
′ ) +

1

𝑚2
∑ 𝑓𝑛,𝑚
𝑖,𝑗=1 (𝑦𝑖,𝑘

′ , 𝑦𝑗,𝑘
′ )          (8) 

 

where 𝑛 and 𝑚 are the numbers of historical and forecast sub-series. The total loss is 

evaluated across the 𝑁  features. The kernel function 𝑓(. ) is defined as 𝑓(𝑎, 𝑏) =

𝑒
−
|𝑎−𝑏|2

2𝜎2 .  

To ensure consistency between the latent space and observed space, we maximize 

the likelihood of the marginal of the latent embeddings 𝐮 via Equation (9) in transfor-

mation training, which follows [26].  

𝑙𝑜𝑠𝑠𝒯 = log |det
𝜕𝒯𝜙

−1(𝐮)

𝜕𝐮
|                     (9) 

where 
𝜕𝒯𝜙

−1(𝐮)

𝜕𝐮
 denotes the Jacobian of 𝒯𝜙

−1(𝐮) at 𝐮 and det(. ) computes the deter-

minant.  

Ultimately, we learn an invertible mapping function that transforms a time series 

into a latent representation without information loss. The final loss function of pretrain-

ing is: 

𝑙𝑜𝑠𝑠trans = 𝑙𝑜𝑠𝑠𝒯 + 𝑙𝑜𝑠𝑠MMD                    (10) 



In transformation training, only transformation parameters 𝜙 are considered, and 

we focus on creating an invertible mapping to a latent space that is equivalent to the 

observed space but with fewer distribution shifts.  

 

Forecasting Training For the second stage, the goal is to enhance the accuracy of 

time series forecasting. Since the transformation is essential for the final prediction, 

both forecasting parameters 𝜃 and transformation parameters 𝜙 are optimized in this 

stage. The optimization of 𝜃 and 𝜙 is defined as:  

𝜃∗, 𝜙∗ = 𝑎𝑟𝑔min
𝜙,𝜃

𝑙 𝑜𝑠𝑠MSE (𝜃, 𝜙, (𝒚𝑖
𝑡𝑟𝑢𝑡ℎ, 𝒚𝑖

𝑝𝑟𝑒𝑑
))            (11) 

Overall, the main architecture of INNT is model-agnostic and follows a general par-

adigm of transformation and de-transformation. The proposed invertible mapping can 

improve the generalization and accuracy of dealing with drastic distribution changes in 

time series.  

5 Experiments 

5.1 Experimental Setup 

Datasets We conduct experiments on seven real-world time series datasets : (i) ETT-

datasets, including ETTh1, ETTh2, ETTm1, and ETTm2. The ETTh datasets are col-

lected hourly, and the ETTm datasets are collected at 15-minute intervals, each con-

taining seven variables. (ii) Electricity dataset records the hourly electricity consump-

tion for 321 clients. (iii) Weather dataset records the 10-minute evolution of 21 mete-

orological variables. (iv) Traffic dataset, collected from the PEMS system, records 

hourly traffic density changes from 861 highway sensors.  

 

Implementation All experiments are conducted using PyTorch on two 24GB RTX 4090 

GPUs. Input windows are fixed as 96 for PatchTST, 96 for iTransformer, and 336 for 

DLinear to satisfy the basic settings of models. Horizon windows are set to {96, 336, 

720} to evaluate the applicability across different tasks.  

 

Metrics We evaluate time series forecasting performance using Mean Squared Error 

(MSE) and Mean Absolute Error (MAE). Considering the heterogeneity and varying 

scales of features, evaluation metrics are normalized for consistency.  

 

Baselines INNT is model-agnostic and can be easily integrated with any forecasting 

model. We demonstrate the effectiveness of INNT from two aspects. First, INNT en-

hances the accuracy of existing forecasting methods. We apply INNT to DLinear [8], 

PatchTST [26], and iTransformer [15] as a plugin. Second, INNT outperforms other 

methods designed to address the distribution shift problem, including RevIN [11], Dish-

TS [12], and SAN [13]. 
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Table 1. Main Results on Different Datasets with Different Forecasting Models. 

Method DLinear W/ INNT PatchTST W/ INNT iTransformer W/ INNT 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

E
T

T
h
1
 96 0.372 0.395 0.370 0.392 0.422 0.435 0.411 0.421 0.393 0.410 0.382 0.400 

336 0.437 0.439 0.432 0.430 0.461 0.456 0.420 0.431 0.485 0.461 0.479 0.458 

720 0.557 0.551 0.442 0.456 0.455 0.508 0.438 0.480 0.499 0.487 0.485 0.478 

avg 0.455 0.462 0.415 0.426 0.446 0.466 0.423 0.444 0.459 0.453 0.449 0.445 

E
T

T
h
2
 96 0.295 0.358 0.274 0.336 0.327 0.369 0.305 0.350 0.337 0.380 0.303 0.347 

336 0.473 0.475 0.371 0.407 0.451 0.466 0.423 0.432 0.456 0.454 0.419 0.429 

720 0.729 0.607 0.395 0.430 0.472 0.475 0.423 0.440 0.451 0.461 0.427 0.444 

avg 0.499 0.480 0.347 0.391 0.417 0.437 0.384 0.407 0.415 0.432 0.383 0.407 

E
T

T
m

1
 96 0.300 0.344 0.301 0.346 0.368 0.398 0.350 0.381 0.348 0.376 0.326 0.364 

336 0.372 0.389 0.370 0.386 0.451 0.433 0.416 0.412 0.437 0.425 0.419 0.413 

720 0.424 0.421 0.425 0.417 0.429 0.437 0.398 0.401 0.510 0.463 0.480 0.450 

avg 0.365 0.385 0.365 0.383 0.416 0.423 0.388 0.398 0.432 0.421 0.408 0.409 

E
T

T
m

2
 96 0.169 0.264 0.165 0.255 0.182 0.268 0.186 0.271 0.209 0.291 0.186 0.261 

336 0.292 0.351 0.277 0.329 0.311 0.351 0.310 0.347 0.325 0.358 0.309 0.339 

720 0.443 0.452 0.367 0.384 0.411 0.402 0.411 0.404 0.428 0.425 0.412 0.401 

avg 0.301 0.356 0.270 0.323 0.301 0.340 0.302 0.341 0.321 0.358 0.302 0.334 

E
L

C
 

96 0.140 0.237 0.140 0.235 0.231 0.320 0.228 0.315 0.152 0.244 0.165 0.256 

336 0.169 0.267 0.171 0.264 0.248 0.336 0.242 0.331 0.182 0.274 0.185 0.275 

720 0.203 0.301 0.209 0.295 0.261 0.355 0.256 0.350 0.218 0.305 0.297 0.314 

avg 0.171 0.268 0.173 0.265 0.247 0.337 0.242 0.332 0.184 0.274 0.190 0.279 

W
ea

th
er

 96 0.175 0.237 0.177 0.227 0.208 0.246 0.202 0.244 0.209 0.250 0.211 0.256 

336 0.261 0.312 0.267 0.296 0.264 0.304 0.252 0.298 0.303 0.319 0.306 0.322 

720 0.324 0.36 0.334 0.342 0.318 0.359 0.315 0.352 0.372 0.362 0.373 0.365 

avg 0.253 0.304 0.259 0.288 0.263 0.303 0.256 0.298 0.295 0.310 0.297 0.314 

T
ra

ff
ic

 96 0.410 0.282 0.409 0.279 0.660 0.445 0.640 0.419 0.414 0.285 0.417 0.286 

336 0.435 0.295 0.435 0.289 0.656 0.442 0.636 0.414 0.450 0.298 0.446 0.289 

720 0.465 0.314 0.462 0.306 0.371 0.481 0.643 0.452 0.481 0.316 0.480 0.315 

avg 0.437 0.297 0.435 0.291 0.662 0.456 0.640 0.428 0.448 0.301 0.448 0.297 

 

5.2 Main Results 

In this section, we evaluate the impact of INNT on accuracy by integrating it with var-

ious forecasting models, including DLinear [8], PatchTST [15], and iTransformer [15]. 

Table 1 shows how INNT enhances the performance of three state-of-the-art models 

across seven datasets.  

We make the following observations: (1) Integrating INNT with the original models, 

which typically overlook distribution shifts, significantly reduces errors on both MSE 

and MAE metrics. (2) The improvement is especially pronounced for unstable datasets 

like ETTH, which means addressing shift information is essential for irregular and un-

certain distribution. (3) For datasets Electricity and Weather, which have significant 



feature scaling differences, iTransformer, which is sensitive to multivariate correla-

tions, exhibits less benefit from INNT. However, INNT still achieves improvements in 

most settings. 

 

5.3 Comparison with Normalization-based Methods 

In this section, we compare the performance of INNT with normalization-based meth-

ods, as shown in Table 2 and Table 3. For clarity, we present the average metrics across 

prediction horizons [96, 336, 720] on DLinear [8] and iTransformer [16]. Baselines 

include state-of-the-art normalization methods such as SAN [13], Dish-TS [12], and 

RevIN [11], all of which address distribution shift in time series forecasting. Unlike 

these baselines, INNT does not rely on specific distribution assumptions or future sta-

tistics. These comparisons demonstrate the effectiveness of INNT.   

We make the following observations: (1) INNT outperforms these baselines on most 

datasets and metrics, demonstrating the effectiveness of modeling transformations 

without relying on specific distributions or accurate future statistics. This improvement 

is largely due to the more generalized latent space, which better captures data patterns 

and mitigates distribution shift. (2) Dish-TS [12] underperforms because it is designed 

for raw time series data, whereas most methods, including the baselines, utilize data 

pre-processing steps such as standard normalization before training. (3) We conducted 

comparisons across different forecasting models (DLinear and PatchTST), confirming 

the universality of the conclusions. 

Table 2. Comparison with Normalization-based Methods on DLinear 

Methods DLinear 

w/ INNT 

DLinear 

w/ SAN 

DLinear 

w/ Dish-TS 

DLinear 

w/ RevIN 

Improved 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 0.415 0.426 0.439 0.440 0.848 0.707 0.416 0.430 0.9% 0.7% 

ETTh2 0.347 0.391 0.348 0.392 3.066 1.342 0.374 0.413 5.3% 3.5% 

ETTm1 0.365 0.383 0.357 0.386 0.887 0.711 0.382 0.390 -0.7% 2.0% 

ETTm2 0.270 0.323 0.264 0.324 3.047 1.348 0.318 0.353 -2.3% 3.8% 

Electricity 0.173 0.265 0.190 0.279 0.371 0.428 0.185 0.277 1.7% 1.0% 

Weather 0.259 0.288 0.236 0.282 0.648 0.619 0.298 0.322 -0.8% -0.6% 

Traffic 0.435 0.291 0.448 0.304 0.695 0.387 0.422 0.298 6.2% 1.0% 

 

5.4 Ablations 

To illustrate how INNT influences the forecasting models, we conduct an ablation study 

using DLinear and iTransformer. We design three variants as INNT (the original 

model), w/ INNT (the proposed method), and w/ INNT w/o pretrain (the proposed 

method without pretraining). As shown in Table 4 and Table 5, w/ INNT achieves 

lower prediction errors compared to the original models w/o INNT, confirming that 

INNT enhances forecasting by effectively reducing distribution shift.  

Notably, w/ INNT w/o pretrain also shows improvements over the original models 

in some datasets, suggesting that even without pre-training, the introduction of INNT  
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Table 3. Comparison with Normalization-based Methods on PatchTST 

Methods PatchTST 

w/ INNT 

PatchTST 

w/ SAN 

PatchTST 

w/ Dish-TS 

PatchTST 

w/ RevIN 

Improved 

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

ETTh1 0.423 0.444 0.427 0.447 0.978 0.679 0.473 0.460 5.6% 3.2% 

ETTh2 0.384 0.407 0.405 0.422 2.903 1.309 0.403 0.420 0.3% 0.3% 

ETTm1 0.388 0.398 0.391 0.406 0.856 0.713 0.441 0.427 2.2% 0.8% 

ETTm2 0.302 0.341 0.309 0.354 3.018 1.005 0.314 0.345 2.1% 0.4% 

Electricity 0.242 0.332 0.238 0.329 0.322 0.501 0.254 0.337 -8.9% -5.3% 

Weather 0.256 0.298 0.258 0.300 0.574 0.565 0.396 0.312 9.8% 2.1% 

Traffic 0.640 0.428 0.682 0.433 0.702 0.485 0.671 0.433 2.8% 4.3% 

 

can still enhance forecasting performance. This is likely because the forecasting train-

ing process helps guide the latent space to be more beneficial for the tasks. Furthermore, 

the comparison between w/ INNT and w/ INNT w/o pretrain indicates that pretraining 

with a slicing MMD loss function can reduce uncertainty and improve accuracy in fore-

casting, providing a more stable transformation. 

Table 4. Ablation Study on DLinear 

Methods DLinear 

w/ INNT 

DLinear 

w/o INNT 

PatchTST 

w/o INNT 

w/o pretrain 

Metrics MSE MAE MSE MAE MSE MAE 

ETTh1 0.415 0.426 0.455 0.462 0.407 0.424 

ETTh2 0.374 0.391 0.499 0.480 0.349 0.396 

ETTm1 0.365 0.383 0.365 0.385 0.368 0.383 

ETTm2 0.270 0.323 0.301 0.356 0.322 0.356 

Electricity 0.173 0.265 0.171 0.268 0.177 0.269 

Weather 0.259 0.288 0.253 0.304 0.281 0.307 

Traffic 0.435 0.291 0.437 0.297 0.439 0.294 

Table 5. Ablation Study on iTransformer 

Methods DLinear 

w/ INNT 

DLinear 

w/o INNT 

PatchTST 

w/ INNT 

w/o pretrain 

Metrics MSE MAE MSE MAE MSE MAE 

ETTh1 0.449 0.445 0.459 0.453 0.457 0.451 

ETTh2 0.383 0.407 0.415 0.432 0.409 0.427 

ETTm1 0.408 0.409 0.432 0.421 0.428 0.420 

ETTm2 0.302 0.334 0.321 0.358 0.322 0.356 

Electricity 0.190 0.279 0.184 0.274 0.184 0.275 

Weather 0.297 0.314 0.295 0.310 0.295 0.312 

Traffic 0.448 0.297 0.448 0.300 0.447 0.299 



 

5.5 Visualization Analysis 

Visualizations on Forecasting Results In this section, we visualize the original and 

transformed data of DLinear w/ INNT on the ETTh2 and ETTm1 datasets, as shown 

in Figure 3. We make the following observations: (1) The observed series shows irreg-

ular and drastic changes, while, in the latent space, the divergence between historical 

and forecast series is substantially reduced. (2) INNT effectively bridges two distribu-

tions with significant differences. Since INNT is a bijective mapping, latent embed-

dings can be converted back to the observed space without information loss.  

 

 
Fig. 3. Visualization of the prediction results of DLinear w/ INNT on the ETTh2 and ETTm1 

datasets. 

 

Visualizations on the Data Embeddings Normalization-based methods rely on accurate 

future statistics, such as mean and standard deviation, which are difficult to obtain due 

to the nonlinearity and temporal instability of time series data. Although methods like 

RevIN [11], Dish-TS [12], and SAN [13] attempt to quantify these shifts, inaccurate 

statistics often hinder reducing the distribution shift between input and output spaces. 

As shown in Figure 4, input and output embeddings after SAN normalization [13] ex-
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hibit clear stratification in distribution. In contrast, the proposed method can better al-

leviate distribution shifts between input and output embeddings in the latent space. 

Meanwhile, the MMD values between the input and output series are significantly re-

duced. This demonstrates the effectiveness of the INNT to reduce distribution diver-

gence in transformation.  

 

 
Fig. 4. Visualization of the data embeddings from the normalization method (SAN [13]) and the 

proposed method by T-SNE [27]. Deep blue points represent the transformed input embeddings 

and light blue points represent the transformed output embeddings. 

6 Conclusion 

This paper aims to alleviate the distribution shift problem in time series forecasting 

through a generalized transformation approach. The accuracy and generalization capa-

bilities of current methods are often limited by specific distribution assumptions and a 

lack of sufficient guidance for transformation procedures. To tackle these limitations, 

we present a model-agnostic framework named INNT, which transforms data into a 

smooth latent space with a bijective mapping. Without reliance on predefined distribu-

tion assumptions or unattainable future statistics, INNT is better suited to handle un-

certain distributions and provide more precise predictions. Additionally, we explicitly 

minimize the distribution discrepancy between historical and forecast data through a 

pretraining strategy on transformation. Extensive experiments have been conducted to 

validate the effectiveness of the proposed framework. 
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