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Abstract. Effective spatiotemporal modeling is crucial for Human Activity 

Recognition (HAR) using wearable sensors. This paper proposes a novel HAR 

method integrating a feature enhancement layer, a spatiotemporal gated fusion 

module, and a fine-grained spatiotemporal segmentation attention module. The 

feature enhancement layer transforms input data to improve its representational 

capacity. The spatiotemporal gated fusion module extracts global spatiotemporal 

features using a Transformer-based temporal encoder and a residual Graph 

Convolutional Network (GCN)-based spatial encoder, with an adaptive gating 

mechanism for feature fusion. The fine-grained segmentation attention module 

further refines local spatial and temporal features to enhance feature interaction. 

The fully integrated features are then classified using a fully connected layer. 

Experimental results on multiple public datasets demonstrate that the proposed 

method outperforms conventional approaches in terms of recognition accuracy, 

robustness, and generalization. This model provides an efficient and adaptive 

solution for HAR using wearable sensors. 

Keywords: Wearable sensors, Human Activity Recognition, Spatiotemporal 

modeling, Graph convolutional network, Transformer. 

1 Introduction 

Human Activity Recognition (HAR) is a key research area in ubiquitous computing, 

playing a critical role in applications such as smart homes, health monitoring, sports 

training, rehabilitation management, and human–computer interaction [1]. With the 

increasing prevalence of wearable devices such as smartwatches, smartphones, and 

wristbands, vast amounts of data are continuously generated by embedded multi-

channel inertial sensors, including accelerometers, gyroscopes, and magnetometers. 

These sensor data provide a valuable basis for real-time monitoring and accurate 

analysis of human motion. Compared to vision-based activity recognition methods, 

inertial sensors offer notable advantages, including low power consumption, ease of 

deployment, and strong stability, while also reducing privacy concerns associated with 



image capture [2,3]. Therefore, inertial sensor-based HAR has emerged as a major 

focus in recent research. 

Existing Human Activity Recognition (HAR) methods predominantly utilize deep 

learning models such as Recurrent Neural Networks (RNNs), Long Short-Term 

Memory networks (LSTMs), Convolutional Neural Networks (CNNs), and 

Transformers. These approaches have achieved notable progress in temporal sequence 

modeling. However, most primarily focus on temporal dependencies, often overlooking 

the spatial correlations inherent in multi-channel inertial sensor data. In human 

movement, inertial sensor channels exhibit not only temporal dependencies but also 

potential spatial interactions. Effectively capturing this spatial dependency information 

is crucial for enhancing recognition accuracy and improving model generalization [4]. 

Some research have explored the use of graph structures to model cross-channel and 

cross-sensor dependencies. For instance, Mao et al. [25] constructed adjacency matrices 

based on expert priors to organize sensor data into multi-level graph structures, and 

employed Graph Attention Networks (GAT) to extract spatio-temporal features. While 

these approaches enhance spatial modeling to some extent, they still face two main 

limitations: (1) predefined graph structures lack adaptability to dynamic changes in 

activity patterns, limiting the model’s ability to capture individual behavioral 

differences; and (2) such structures cannot dynamically adjust the interaction weights 

between channels based on the data distribution, resulting in suboptimal spatial feature 

extraction. Therefore, dynamically modeling inter-channel relationships and 

integrating them with temporal features remains a core challenge in HAR. 

To address the limitations of predefined graph structures and the separate 

modeling of spatial and temporal features, this paper proposes a human activity 

recognition method based on adaptive graph learning and parallel spatio-temporal 

feature extraction. The proposed model consists of three core components: a feature 

transformation layer, a Spatio-Temporal Gated Fusion Module (STGFM), and a Fine-

Grained Spatio-Temporal Segmentation Attention Module (STSAM). 

The feature transformation layer enhances the representational capacity of raw 

sensor data. STGFM integrates a Transformer-based temporal encoder and a residual 

GCN-based spatial encoder, with a gating mechanism to adaptively fuse temporal and 

spatial features. The spatial encoder dynamically constructs behavior graphs using 

learnable embedding vectors, enabling adaptive modeling of inter-channel 

dependencies. STSAM further captures local spatio-temporal dependencies through 

segmented attention, enhancing fine-grained feature interactions. Finally, the fused 

spatio-temporal features are passed through a fully connected layer to achieve accurate 

human activity classification. 

The main contributions of this chapter are as follows: 

⚫ A global graph modeling method based on adaptive graph learning is proposed, 

which dynamically updates the adjacency matrix to model spatial dependencies 

among multi-channel sensors, effectively addressing the limitations of fixed 

graph structures. 

⚫ A spatio-temporal gated fusion mechanism is designed, integrating a 

Transformer-based temporal encoder and a GCN-based spatial encoder, enabling 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

the adaptive fusion of temporal and spatial features and enhancing global 

representation capability. 

⚫ A fine-grained spatio-temporal segmentation attention mechanism is introduced 

to strengthen local spatio-temporal interactions and improve classification 

accuracy in activity recognition. 

Extensive experiments on four public datasets demonstrate that the proposed 

method outperforms existing prior-graph-based HAR approaches in terms of accuracy, 

generalization, and robustness. 

The remainder of this paper is organized as follows. Section 2 reviews related 

studies, focusing on the development of HAR techniques, the application of GNNs in 

sensor data modeling, and recent advances in automated graph learning. Section 3 

details the proposed method. Section 4 presents the experimental setup, including 

dataset descriptions, evaluation metrics, and result analysis. Section 5 concludes the 

paper and discusses future research directions. 

2 Relate Works  

Human Activity Recognition (HAR) involves modeling spatio-temporal dependencies 

in multi-channel sensor data. A variety of deep learning models have been proposed to 

address this challenge. CNN1D models are widely used for local temporal feature 

extraction due to their computational efficiency, though they are limited in capturing 

long-range dependencies [5-9]. In contrast, CNN 2D models transform sensor signals 

into image-like representations (e.g., spectrograms or activity images) to enhance 

spatial modeling [10-13], albeit at higher computational cost. LSTM and GRU models 

remain popular for temporal modeling. LSTM-based models are capable of learning 

long-term dependencies and benefit from attention mechanisms [14-18], but are less 

efficient in real-time applications. GRU offers better efficiency and has been enhanced 

with dual attention mechanisms and graph integration to improve performance [19-23], 

though it still lacks explicit spatial modeling. Transformer-based models have shown 

strong performance in HAR due to global self-attention[24,25], especially when 

combined with spatial structures like GAT. However, their high computational 

complexity and large data requirements hinder real-world deployment. Graph Neural 

Networks (GNNs) have emerged as powerful tools for modeling non-Euclidean spatial 

structures. Hybrid CNN-GCN models [26] and multi-graph convolutional networks 

[27] enhance spatial feature learning. However, these approaches often rely on 

manually defined graphs, limiting their generalizability. Recent work explores 

automatic graph construction techniques that learn data-driven spatial dependencies 

[28]. These methods reduce dependence on expert knowledge and improve adaptability. 

Despite the progress made, most existing approaches either neglect the complex spatial 

interactions among sensor channels or depend on static, manually defined graph 

structures that fail to generalize across different activities or sensor configurations. 

Furthermore, many models treat spatial and temporal dependencies separately, missing 

the opportunity to jointly model these two aspects in an integrated and adaptive manner. 

To overcome these limitations, we propose a Adaptive Spatio-Temporal Parallel Gating 



Fusion Network (ASTPGFN), which dynamically learns multiple types of graph 

structures and unifies spatio-temporal attention mechanisms for more expressive and 

flexible representation learning in HAR tasks. 

3 The Proposed Model 

This paper proposes a human action recognition method ASTPGFN based on adaptive 

graph learning and parallel spatiotemporal feature extraction, which aims to efficiently 

model the spatiotemporal dependencies of multi-channel sensor data. Figure 1 

describes the overall framework of the model and details each component that makes 

up the architecture. 

 
Fig. 1. Overall frame structure. 

Aiming at the problem of expert experience required to build spatial structure 

based on prior knowledge and insufficient description of fine-grained instantaneous 

changes in behavior, a wearable human behavior recognition spatiotemporal modeling 

method combining global adaptive behavior graph and local dynamic graph is 

proposed. This method first automatically builds a spatial behavior graph structure 

based on the input multi-channel sensor data through an adaptive graph learning 

module, dynamically captures the spatial dependency between sensor channels, avoids 

strong dependence on expert domain knowledge, and improves the adaptability and 

generalization ability of the model. Subsequently, a graph convolutional network 

(GCN) and an improved lightweight Transformer structure are used to extract spatial 

and temporal features, respectively, and position encoding is used to retain the time 

order and original feature expression. Through the spatial temporal gated fusion module 

(STGFM), dynamic fusion between spatial and temporal features is achieved, and the 

model's ability to express global spatiotemporal dependencies is enhanced. 

Furthermore, considering that the local dynamic features of short-term behaviors may 

be ignored in the global modeling process, this paper divides the time series into 

multiple time slices and introduces a local channel attention module (LCAM) in each 

time slice for independent modeling to enhance the model's ability to capture local 
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behavior changes. At the same time, the channel self-attention mechanism is introduced 

to dynamically adjust the fusion weights of different sensor channel features, thereby 

improving the discrimination of cross-channel features. Finally, the fused global and 

local spatiotemporal feature vector is input into the classifier to complete behavior 

recognition. 

3.1 Adaptive Graph Construction Module 

To enhance spatial modeling, ASTPGFN incorporates an adaptive graph generation 

module [29], which dynamically learns adjacency matrices from input distributions, 

replacing static, prior-based graph construction and improving adaptability across 

scenarios. 

Specifically, for a sensor network with N nodes, denoted as 𝑉 =
(𝑣1, 𝑣2, ⋯ , 𝑣𝑁),we introduce two trainable node embedding matrices E1, E2 ∈ ℝN×d, 

where d is the embedding dimension. These embeddings are first transformed via linear 

projections, and then used to compute an asymmetric interaction matrix, from which 

the initial adjacency matrix A ∈ ℝN×N is obtained: 

𝐀 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈(𝐸1𝐸2
𝑇)) (1) 

This formulation captures non-symmetric node relationships and allows the graph 

structure to be learned end-to-end during training. The use of dual embeddings and 

nonlinear transformations enables the model to adaptively adjust connection strengths 

between nodes based on their latent representations, thereby constructing a behavior-

aware adjacency graph. 

To ensure numerical stability and consistent feature propagation in graph convolution 

operations, the learned adjacency matrix is further normalized using the symmetric 

normalization strategy: 

𝐀̃ = D−1/2AD−1/2 (2) 

Where D ∈ ℝN×N  is the diagonal degree matrix of A, with Dii = ∑ Aijj . The 

normalized adjacency matrix 𝐀̃ is subsequently used in the spatial encoder (graph 

convolution) to guide the aggregation of node features across the spatial dimension. 

3.2 Spatio-Temporal Gated Fusion Module 

To capture spatio-temporal dependencies in multi-channel sensor data, ASTPGFN 

adopts a parallel structure with stackable Spatio-Temporal Gated Fusion Modules 

(STGFM)[30], each integrating a spatial encoder, temporal encoder, and gated fusion 

to jointly learn spatial and temporal features. 

At each step t, the spatial encoder takes the node features Xt ∈ ℝB×N×D  and 

applies a two-layer Graph Convolutional Network (GCN) guided by a normalized 

adjacency matrix Ã . To enhance the model's representational capacity, the node 

features Xt ∈ ℝB×N×D are projected to a higher-dimensional space through a feature 

transformation layer using a linear transformation.The computation is as follows: 

𝐻𝑡
(𝑠)

= 𝜎(𝐴̃𝑋𝑡𝑊1) + 𝐴̃ (𝜎(𝐴̃𝑋𝑡𝑊1)) 𝑊2 (3) 

where 𝑊1, 𝑊2 ∈ ℝ𝐷×𝐷 are trainable weights and σ(⋅) denotes a nonlinear activation 

function. 



For temporal modeling, the temporal encoder takes node sequences as input and 

employs a Multi-head Self-Attention mechanism to capture global dependencies across 

time steps. For each attention head k, the computation is defined as follows: 

Q(k) = XWq
(k)

, K(k) = XWk
(k)

, V(k) = XWv
(k)

  

A(k) = softmax (
(Q(k))

T
(K(k))

√d
) , H(k) = A(k)V(k) (4) 

The outputs of all K heads are concatenated and linearly transformed to yield the 

final temporal feature Ht
(t)

∈ ℝB×T×N×D. 

To enable effective fusion of spatial and temporal features, STGFM incorporates 

a gated fusion mechanism. Specifically, a gating vector Z is generated using the 

Sigmoid activation function to adaptively weight and combine the spatial and temporal 

features: 

𝑍 = 𝜎(𝐻𝑡
(𝑠)

𝑊𝑠 + 𝐻𝑡
(𝑡)

𝑊𝑡) (5) 

𝐻 = 𝑍 ⊙ 𝐻𝑡
(𝑠)

+ (1 − 𝑍) ⊙ 𝐻𝑡
(𝑡)

 (6) 

where ⊙  denotes element-wise multiplication, and 𝑊𝑠, 𝑊𝑡 ∈ ℝ𝐷×𝐷  are trainable 

parameters.The fused result 𝐻 serves as the output of the current layer and the input to 

the next STGFM layer. 

This modular design supports multi-layer stacking, enabling progressive 

abstraction of higher-order spatio-temporal representations with enhanced structural 

expressiveness and dynamic modeling capability. 

3.3 Local Channel Attention Module 

After multi-layer spatio-temporal modeling, ASTPGFN introduces a Local Channel 

Attention Module (LCAM) to enhance local spatio-temporal feature learning. Based on 

multi-head attention, LCAM independently models temporal dynamics for each sensor 

node and aggregates outputs into a unified representation. 

Let the spatio-temporal feature representation encoded by the STGFM layer be 

denoted as HL ∈ ℝB×𝑃×N×𝐹, where B is the batch size, 𝑃 is the number of time slices, 

N is the number of sensor nodes, and 𝐹 is the feature dimension. Assume there are ℎ 

attention heads, each with a head dimension of 𝑑 , such that 𝐹 = ℎ ∙ 𝑑 . To enable 

feature correlation across the temporal dimension for each node, the input feature tensor 

is reshaped as 𝐻𝑝𝑒𝑟𝑚 ∈ ℝ𝐵×𝐹×𝑁×𝑃. 

This reshaping enables each sensor node to perform interaction modeling across 

all time slices. 

Based on this structure, three sets of fully connected layers with shared parameters 

are applied to generate the Query, Key, and Value representations, respectively: 

𝑄 = FC𝑞(𝐻𝑝𝑒𝑟𝑚),  𝐾 = FC𝑘(𝐻𝑝𝑒𝑟𝑚),  𝑉 = FC𝑣(𝐻𝑝𝑒𝑟𝑚) (7) 

Each of these representations has the shape ℝB×F×N×P,enabling each attention 

head to learn temporal response features across different time steps for each sensor 

node. 

The feature dimension F is split into K attention heads, each with a dimension of 

d, and the resulting head-wise representations are concatenated along the batch 

dimension to form the multi-head representation: 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

𝑄ℎ , 𝐾ℎ , 𝑉ℎ ∈ ℝ𝐾𝐵×𝑑×𝑁×𝑃 (8) 

To match the matrix multiplication format required for attention computation, the 

dimensions of 𝑄ℎ , 𝐾ℎ , 𝑉ℎ  are reshaped to ℝ𝐾𝐵×𝑁×𝑃×𝑑 , enabling the calculation of 

scaled attention weights. At each sensor node, the attention mechanism independently 

models the internal relationships across time slices. The attention weights are computed 

as: 

Att = softmax (
𝑄ℎ𝐾ℎ

⊤

√D
) ∈ ℝ𝐾𝐵×𝑁×𝑃×𝑃 (9) 

The Softmax operation is applied along the temporal dimension, allowing each 

node to dynamically attend to features from different time steps. The attention weights 

are then applied to the value vectors to obtain the attention-weighted output: 

𝑍ℎ = 𝐴𝑡𝑡 ⋅ 𝑉ℎ ∈ ℝ𝐾𝐵×𝑁×𝑃×𝑑 (10) 

The outputs from all attention heads are reshaped back to the original batch size, 

transposed, and concatenated along the feature dimension to form the fused 

representation Z ∈ ℝB×𝑃×N×𝐹 .To aggregate the multi-head attention outputs and 

enhance non-linear representational capacity, a fully connected layer followed by a 

non-linear activation is applied: 

𝐻′ = 𝜎(𝑍𝑊 + 𝑏) ∈ ℝ𝐵×𝑃×𝑁×𝐹 (11) 

Where W  and b are learnable parameters, and σ(∙)  denotes a non-linear 

activation function (e.g., ReLU).H′ serves as the final output of the LCAM module. 

3.4 Classifier 

The feature representations generated by the STSAM module are fed into a fully 

connected layer, followed by global average pooling across temporal and spatial 

dimensions to obtain a sample-level spatio-temporal representation, which is then used 

for activity classification via a linear classifier. ASTPGFN is trained using the cross-

entropy loss function, optimized through backpropagation in an end-to-end supervised 

manner. To enhance training stability and convergence, the model incorporates Batch 

Normalization, weight initialization, and learning rate decay strategies. 

4 Experiments and Results 

4.1 Dataset 

To evaluate the performance of the ASTPGF model, four widely used open-source 

datasets were employed: UCI-HAR, MotionSense, Shoaib, and WISDM. Table 1 

summarizes the detailed information of each dataset. The activities included in the 

datasets are: walking (wlk), upstairs (ups), downstairs (dws), sitting (sit), standing (std), 

lying (lay), jogging (jog), and biking (bik). 

4.2 Experiment details 

The experiments were conducted on a server equipped with an Intel Core i9-9900K 

processor running at 3.6 GHz, 32 GB of RAM, and the Windows 10 (x64) operating 

system. The proposed model was implemented and evaluated using the Python 

programming language. The batch size was set to 64, and the maximum number of 



training epochs was 100. The Adam optimizer was employed for training. A learning 

rate of 1e-3 was used for all datasets except for the Shoaib dataset, which used a 

learning rate of 1e-4. The weight decay was set to 1e-3. All experiments were 

performed on an NVIDIA 2080Ti GPU. 

Table 1. Statistics of the datasets. 

Dataset Subject SR Channels Sample Activity SW Activities 

UCI-

HAR 

30 50 9 1318272 6 128 wlk,ups,dws,sit,std,lay 

Motion 24 50 12 1412865 6 120 dws,jog,sit,std,ups,wlk 

Shoaib 10 50 9 63000 7 120 wlk,sit,std,job,bik,ups,dws 

WISDM 36 20 3 1098208 6 120 wlk,jog,sit,std,ups,dws 

 

4.3 Evaluation Metrics 

( )

( )

TP TN

TP FP TN FN

+
=

+ + +
Acuracy   (1) 

Where 𝑇𝑃  and 𝑇𝑁  are true positive and true negative rates, 𝐹𝑃  and 𝐹𝑁  are 

false positive and false negative rates. 

TP

TP FP
=

+
Precision   (2) 

TP

TP FN
=

+
Recall   (3) 

We use macro average F1-score as metric to compare the performance of the 

proposed method with other methods. In this regard, we calculate F1-score for each 

class according to equation (4) as follows: 

1

2

| |

C
i i

i i i

Precision Recall

C Precision Recall=


− = 

+
MacroF1 Score   (15) 

Where, |𝐶| in equation(15) indicates number of classes and F1-score for each 

class is given the same weight irrespective of their number of instances and 𝑖 =
1,2, ⋯ 𝐶 is considered as the set of classes considered for experiment. 

1

2
C

c i i

i total i i

N Precision Recall

N Precision Recall=


− = 

+
MicroF1 Score    (16) 

Micro F1-score is different from macro F1-score, weighted by the number of 

samples in different class. 

4.4 Compare with other experiments 

To validate the effectiveness of the proposed method, this section conducts a 

comparative evaluation against established baseline models for human activity 

recognition. 
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⚫ Transformer[24]: Adapted from the original Transformer[31], this model modifies 

input/output formats for activity recognition and leverages parallel attention for more 

efficient temporal modeling than RNNs.. 

⚫ SelfAttention[32]: This method uses a Transformer-like structure with self-

attention and 1×1 convolutions for multi-channel fusion, integrating multi-modal data 

and global temporal attention to extract key spatio-temporal features. 

⚫ GraphConvLSTM[33]: The model combines GCN and TCN to extract spatial-

temporal features from skeletal graphs, followed by LSTM for global modeling and 

classification. 

⚫ DDNN[32]: Integrates LSTM and CNN with feature extraction from temporal, 

spatial, and statistical domains, followed by feature concatenation for activity 

recognition. 

⚫ ConvLSTM[35]: Stacks convolutional layers to extract spatial features and LSTM 

layers for temporal modeling in activity recognition. 

⚫ STGTN(FC)[25]: Utilizes a fully connected channel-level adjacency matrix as 

input. 

⚫ STGTN(VLG)[25]: Uses locally fully connected adjacency matrices based on 

sensor nodes, with additional virtual local and global nodes. 

To evaluate component effectiveness, the proposed ASTPGFN model is tested under 

different graph configurations: 

⚫ ASTPGFN (Directed): Uses directed graphs based on sensor nodes as input. 

⚫ ASTPGFN (Undirected): Uses undirected graphs based on sensor nodes as input. 

Table 2 shows that ASTPGFN, in both its directed and undirected forms, consistently 

outperforms existing baseline methods across the UCI-HAR, Motion, Shoaib, and 

WISDM datasets, demonstrating strong generalization under diverse sensor 

configurations and sampling conditions. The directed variant achieves better 

performance, likely due to its ability to capture asymmetric information flow between 

sensor nodes, whereas the undirected structure loses directional cues, limiting its 

capacity to model complex temporal-spatial relationships. Directionality is particularly 

important in activity recognition, where signal propagation exhibits inherent temporal 

order. ASTPGFN integrates adaptive graph structures and directed connections to 

dynamically model sensor dependencies, enabling effective extraction of key patterns 

and suppression of irrelevant features, especially in high-resolution datasets like UCI-

HAR and Motion. Compared to Transformer-based models and fixed-window 

approaches like ConvLSTM and DDNN, ASTPGFN optimizes spatio-temporal 

information flow via adaptive topologies, showing notable advantages on datasets such 

as Shoaib, where class balance coexists with limited subject diversity. Unlike GNN 

models with predefined adjacency (e.g., GraphConvLSTM, STGTN), ASTPGFN 

dynamically adjusts inter-sensor connectivity, improving robustness in complex and 

heterogeneous sensing scenarios. Its performance on the low-sampling WISDM dataset 

further highlights its capability to extract meaningful features under limited temporal 

resolution. Overall, ASTPGFN offers a robust and generalizable framework for human 

activity recognition across diverse and challenging data environments. 

Figure 2 presents the confusion matrices of the ASTPGFN model using directed 

weighted graphs across four different datasets. The results show that the model achieves  



Table 2. Comparison of baseline results(mif/maf). 

Methods Motion UCI-HAR Shoaib Wisdm 

ASTPGFN

（Directed） 

0.9688/0.960

4 

0.9206/0.920

4 

0.9542/0.953

2 

0.8668/0.824

9 

ASTPGFN(Undirected

) 

0.9640/0.953

5 

0.9175/0.917

6 

0.9476/0.947

1 

0.8564/0.811

7 

STGTN (FC )[25] 
0.9629/0.951

0 

0.9138/0.913

1 

0.9429/0.939

7 

0.8627/0.824

8 

STGTN (VLG)[25] 
0.9658/0.955

4 

0.9165/0.916

1 

0.9524/0.952

3 

0.8565/0.811

0 

Transformer[24] 
0.9294/0.904

4 

0.9104/0.908

8 

0.9067/0.894

7 

0.8133/0.761

5 

GraphConvLSTM[33] 
0.9435/0.928

4 

0.9091/0.909

2 

0.9257/0.924

6 

0.8179/0.764

4 

DDNN[34] 
0.9554/0.941

9 

0.9057/0.905

1 

0.8952/0.877

7 

0.8526/0.810

3 

ConvLSTM[35] 
0.9539/0.943

3 

0.9053/0.904

8 

0.8895/0.886

0 

0.8549/0.807

1 

SelfAttention[32] 
0.9272/0.908

6 

0.8949/0.893

5 

0.7010/0.683

8 

0.7361/0.677

8 

 

high classification accuracy for most activity categories, with particularly stable 

performance in recognizing dynamic activities such as “jogging,” where the accuracy 

approaches 1.0. Static activities like “sitting” and “standing” are also classified with 

high accuracy, though some confusion between the two is observed in certain datasets. 

Misclassification is more prominent between “upstairs” and “downstairs,” indicating 

significant similarity in their inertial sensor patterns. Additionally, some “walking” 

samples are misclassified as stair-related activities, suggesting overlapping acceleration 

trends between walking and stair movements. Overall, the ASTPGFN model 

outperforms baseline methods across multiple datasets, demonstrating strong 

classification capability under various human activity patterns. 

 

    

Fig. 2. Confusion matrix. 

4.5 Ablation experiment 

Table 3 reports the classification performance of individual modules to evaluate their 

standalone contributions and the overall model effectiveness. A “leave-one-module-in” 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

ablation strategy is adopted, where only one module is retained at a time. The full 

model, ASTPGFN, serves as the performance upper bound. 

As shown in Table 3, both the spatial and temporal modules consistently 

contribute to stable performance across datasets, highlighting their essential roles in 

human activity recognition. Their relative importance varies by dataset: the temporal 

module performs better on the Shoaib dataset due to more distinctive temporal patterns, 

while the spatial module is generally more effective elsewhere. In contrast, models 

retaining only the fusion module exhibit significantly lower performance, indicating 

that without explicit spatial or temporal modeling, feature fusion lacks discriminability 

and may introduce noise. The LCAM module, which constructs fully connected intra-

slice graphs via a Transformer-based approach, achieves moderate performance 

without dynamic graph construction, suggesting structural consistency but limited 

capacity for capturing spatio-temporal dependencies. The complete model consistently 

outperforms all variants, demonstrating the complementarity of its components and the 

effectiveness of joint modeling of spatial, temporal, and global structures. These 

findings validate the model architecture and highlight the necessity of multi-

dimensional feature integration for optimal recognition performance. 

Table 3 Comparison results of model ablation methods(mif/maf). 

Graph type Models Motion UCI Shoaib Wisdm 

Directed 

Only Spatial 0.9450/0.9309 0.8870/0.8856 0.9028/0.9040 0.8445/0.8065 

Only Temporal 0.9112/0.8852 0.8639/0.8610 0.9419/0.9412 0.8252/0.7667 

Only Fusion 0.3154/0.2716 0.4086/0.3575 0.5472/0.4980 0.6403/0.4708 

Only LCAM 0.9361//0.9217 0.8731/0.8726 0.9113/0.9118 0.8499/0.8078 

ASTPGFN 0.9688/0.9604 0.9206/0.9204 0.9542/0.9532 0.8668/0.8249 

Undirected 

Only Spatial 0.9525/0.9420 0.8745/0.8735 0.8885/0.8874 0.8557/0.8001 

Only Temporal 0.9261/0.9053 0.8582/0.8553 0.9457/0.9457 0.8082/0.7539 

Only Fusion 0.3830/0.3799 0.4276/0.3756 0.5434/0.4822 0.6731/0.5049 

Only LCAM 0.9495/0.9386 0.8677/0.8665 0.8847/0.8807 0.8425/0.7649 

ASTPGFN 0.9640/0.9535 0.9175/0.9176 0.9476/0.9471 0.8564/0.8117 

5 Conclusion 

In this paper, we propose a spatio-temporal multi-attention recognition model based on 

graph neural networks to address the limitations in spatial dependency modeling and 

temporal feature extraction in multi-channel sensor-based human activity recognition. 

An adaptive graph generation mechanism is introduced to dynamically construct four 

types of adjacency matrices, capturing complex spatial relationships among sensor 

channels. Multi-head temporal attention and gated fusion modules enhance temporal 

dynamics modeling and feature integration. Additionally, local and channel-wise 

attention mechanisms improve the representation of local and cross-channel features. 

Experiments on public datasets demonstrate that the proposed method achieves superior 

accuracy, robustness, and adaptability, particularly in modeling directional 

dependencies with asymmetric weighted graphs. 
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