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Abstract.  Due to WiFi protocols prioritized usability over security and adopted 

weak encryption because of resource constraints，consumer drones are vulnera-

ble to malicious hijacking attacks when communicating with ground stations via 

WiFi. In order to carry out drone WiFi hijacking attack experiments, the research 

team built the first real drone WiFi hijacking attack dataset to address the scarcity 

of real attack samples in this field, covering multiple types such as De-Authenti-

cation attacks. At the same time, considering the limited computing resources of 

drones and the high real-time requirements of communications, the team used 

self-built datasets and public datasets to conduct multi-dimensional comparative 

experiments on existing algorithms, selected the XGBoost model that takes into 

account both detection accuracy and lightness as the basic framework, designed 

a three-level feature screening mechanism of "variance threshold filtering-high 

correlation elimination-Boruta feature selection", and introduced a weighted 

cross entropy loss function to optimize learning performance, and developed a 

lightweight drone WiFi hijacking real-time detection algorithm. The experi-

mental results show that this method can effectively detect drone WiFi hijacking 

attack traffic, and its comprehensive performance is better than the existing algo-

rithms; compared with the original XGBoost method, the accuracy of the pro-

posed method reaches 96.3%, and the inference time is shortened by half, which 

has both high accuracy and lightness. 

Keywords: UAV WiFi Hijacking, Intrusion Detection System, Feature Selec-

tion Mechanism, Weighted Cross-Entropy. 

1 Introduction 

In recent years, the low-altitude [1] economy industry has garnered policy support and 

has been actively implemented across regions, entering a phase of rapid development. 

As a pivotal component of the low-altitude economy [2], unmanned aerial vehicles 

(UAVs) have witnessed significant growth in recent times. China boasts the largest 

consumer UAV market globally, with a market size estimated at approximately 327.5 



billion yuan in 2024. This is projected to surge to nearly 50 billion yuan in 2025, mark-

ing an annual growth rate exceeding 50%. Amidst the rapid expansion of the UAV 

industry, the issue of low-altitude safety has garnered increasing attention, leading to a 

burgeoning anti-UAV market and a rising demand for the establishment of UAV WiFi 

security   regulatory frameworks. 

In safety-critical UAV operations, communication architectures are categorized into 

three key types [3]. Satellite-based systems enable precise positioning via global net-

works, offering high reliability and interference resistance in remote/complex environ-

ments despite high deployment/maintenance costs. UAV self-organizing Mesh net-

works support direct node-to-node communication with dynamic routing capabilities, 

ensuring mission continuity through automatic path reconfiguration when failures oc-

cur. Short-range wireless links (e.g., Bluetooth/WiFi) facilitate flexible near-field data 

exchange with ground stations, though they suffer from signal interference and unstable 

transmission. 

UAV Communication Type

Communication Between 

Satellite and UAVS

• GNSS

• Expensive

• Provide real-time location

• Compatible

Communication Between UAVS

• 2.4-5 GHz

• Same Channel

• Same Manufacturer

• Same Controller

Communication Between 

Stations and UAVS

• 2.4-5 GHz WiFi/Bluetooth

• Same Channel

• Compatible

• Same Controller  

Fig. 1. Primary Communication Types of Unmanned Aerial Vehicles (UAVs) 

As a standard drone communication tech, WiFi creates a bidirectional air-ground 

data link via high-frequency signals. Core functions: 1) high-precision flight control—

using a dedicated remote to manage trajectories/camera angles and interact real-time 

with ground stations; 2) multi-mode data transmission—real-time low-bandwidth 

flight/sensor data alongside 60Mbps 4K/8K video over 5GHz, maintaining 5–10km 

line-of-sight range and supporting mobile apps for flight control and multi-camera co-

ordination. 

Although drones leverage common WLAN protocols for flexible communication, 

they also inherit the intrinsic security vulnerabilities of open wireless transmission [4]. 

The broadcast nature of wireless channels makes their communication links susceptible 

to threats including man-in-the-middle attacks, DoS flooding, DE authentication frame 

injection, and MAC address spoofing. Attackers may intercept control commands or 

navigation data, or even forge signals to hijack drones. Compared with traditional 

WLAN applications, the dynamic flight characteristics of drones further expand the 

attack surface, significantly escalating risks of illegal access and data tampering in air-

space environments. 

Drone networks are severely constrained by limited device resources, rendering tra-

ditional encryption methods impractical due to their high computational costs. Alt-

hough emerging technologies like blockchain, software-defined networks (SDNs), ma-

chine learning, and fog/edge computing have been integrated into architectural frame-

works, resource-constrained drones still cannot run complex security algorithms. Given 

that gateways often function as fog nodes, developing lightweight host-based intrusion 
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detection systems (HIDS) tailored for low-computational environments becomes cru-

cial. These systems aim to minimize resource usage while enabling real-time threat 

monitoring, ensuring optimal security performance in drone networks. 

2 Related works 

The UAV network is confronted with numerous security threats and issues. In recent 

years, intrusion detection systems (IDS) have been deployed to detect malicious activ-

ities of drones and identify potential suspicious attacks targeting them. Typically, IDS 

monitors both incoming and outgoing network traffic, analyzing it to detect anomalies. 

Their objective is to detect and recognize cyber-attacks by scrutinizing data audits gath-

ered from various segments of the network. Moving forward, several IDS methods 

aimed at safeguarding the UAV network from intruders will be introduced. 

Significant advancements in rule-based intrusion detection systems (RB-IDS) for 

drones have been done: Strohmeier et al. [7] developed a false data injection attack 

detection scheme leveraging signal strength analysis in drone-ground station commu-

nications, achieving attack identification within 40 seconds. However, critical limita-

tions persist: dynamic rule base maintenance relies heavily on manual updates, increas-

ing operational complexity, and detection mechanisms dependent on static known-at-

tack signature libraries inherently fail to address emerging unknown threats, creating 

persistent detection gaps. 

Anomaly detection-based intrusion detection systems (IDS) are also applied in drone 

security to counter interference attacks. Condomines et al. [8] proposed a hybrid IDS 

architecture integrating spectrum traffic analysis with FANET robust control algo-

rithms for real-time distributed DoS attack estimation. Their experiments demonstrated 

accurate identification of multiple anomaly types and significant detection performance 

for distributed DoS attacks. However, current research still requires multi-scenario 

long-term validation to confirm reliability in practical deployments. 

Existing real-time intrusion detection system (IDS) studies exhibit notable limita-

tions. Zang and Yan [9] achieved a 0.61-second detection time using a random forest-

based IDS for vehicular ad-hoc networks on Mininet-WiFi, yet their approach lacked 

optimization for drone scenarios. Das et al. [10] developed a Bagging Extra 

Trees/RF/XGBoost ensemble model achieving 98.26% accuracy on the AWID dataset 

(covering injection, flooding, spoofing attacks, and normal traffic), but its 13.03-second 

training time severely compromised real-time performance. Ahmad et al. [11] attained 

a 432ms detection speed via a low-latency feature selection mechanism using random 

forest-sorted features on NSL-KDD, though their model failed to adapt to WiFi traffic. 

Collectively, these methods inadequately address both real-time requirements and en-

vironmental adaptability challenges specific to drone operation scenarios. 

Literature [12] proposed an LSTM-based algorithm achieving high accuracy on 

CICIDS2017, NSL-KDD, and UNSW-NB15, but it didn’t quantify training time or de-

tection speed. Reference [13] introduced FEDGAN-IDS, a privacy-preserving IDS 

combining GAN and federated learning, achieving 98.7% attack detection accuracy. 

However, its datasets (NSL-KDD, KDD-CUP99, UNSW-NB15) lack radio/MAC layer 



features, making it unsuitable for direct WiFi attack classification. Research on IEEE 

802.11 networks [14-15] shows that although deep learning methods can significantly 

improve classification accuracy, they have significant defects: the complex model ar-

chitecture makes the training/testing/inference process time-consuming, and hyperpa-

rameter tuning will cause optimization delays. In contrast, the lightweight IDS archi-

tecture based on XGBoost has more advantages. By simplifying feature engineering 

and model structure, it achieves higher computing efficiency while ensuring detection 

effectiveness. 

The literature review highlights that existing lightweight anomaly detection models 

demonstrate insufficient effectiveness in real-time WiFi networks, primarily due to 

their time complexity ranging from tens of seconds to minutes, which fails to meet the 

demands of high-speed traffic analysis. A significant research gap persists in real-time 

detection technologies for high-speed WiFi traffic within highly constrained computing 

environments, particularly in edge nodes like drone networks. There is an urgent need 

for lightweight host anomaly detection techniques to minimize computational resource 

consumption, which can be achieved through optimized machine learning frameworks 

or low-dimensional statistical approaches. 

In this paper, we propose a machine learning detection algorithm for drone WiFi 

hijacking based on feature selection and loss function optimization. Our contributions 

mainly include the following four points: 

1) We constructed the first real-world dataset of drone WiFi hijacking attacks, in-

cluding attack types such as MITM attacks and DE authentication attacks, filling the 

gap in the field of lack of real attack samples on drone WiFi. 

2) We conducted multi-method comparison experiments and verified common ma-

chine learning algorithms and deep learning algorithms on self-built and public da-

tasets. We found that XGBoost achieved the best balance between detection accuracy 

and model lightweight, and finally selected this model as the base model. 

3) We designed a three-level feature screening mechanism (variance threshold fil-

tering → high correlation elimination → Boruta feature selection) to obtain the globally 

optimal features of the association, and innovatively introduced the weighted cross en-

tropy loss function to effectively enhance the learning performance. 

4) The detection system we built realizes real-time detection of multiple types of 

attacks and maintains an accuracy rate of 96.3% in mixed attack scenarios, meeting the 

low latency and high reliability requirements of drone intensive operation scenarios. 

3 Materials and methods 

In this section, we will describe the experimental dataset required for this study and the 

strategy for algorithm improvement. 
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Fig. 2. The detection method diagram of UAV WiFi hijacking. 

3.1 Data preprocessing 

Data preprocessing is the cornerstone of the data integration pipeline, covering data 

consolidation, cleaning, transformation, and normalization. In real - world operations, 

WiFi - enabled UAVs face complex signal interference, causing the collected datasets 

to have many missing values and noise. These issues make the raw data unfit for ma-

chine - learning models and put a heavy computational load on resource - constrained 

UAVs. To solve this, we use pandas' functions to methodically remove missing values 

during the cleaning process. Moreover, the collected UAV WiFi traffic data includes 

unstructured categorical features (such as packet payloads, frame lengths, timestamps, 

MAC/SSID addresses) that are not compatible with standard ML algorithms. We thus 

use one - hot encoding to transform these non - numeric attributes into numerical ones, 

making the dataset ready for subsequent modeling. This preprocessing pipeline effec-

tively improves data quality and computational efficiency for UAV applications. 

3.2 Oversampling for data imbalance 

Existing machine learning classifiers often perform well on balanced datasets, but real-

world data distributions usually show significant class imbalance. In the operational 

context of WiFi-enabled UAVs, there is a severe class imbalance between abnormal 

and normal traffic data. Unprocessed data in this scenario tends to cause overfitting 

during training. Given the limited size of traffic data here, this study uses the Synthetic 

Minority Over-sampling Technique (SMOTE) [16] as the approach after comparing 

various sampling methods, with the implementation details provided in Equation (1). 

 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆 ∙ (𝑥𝑗 − 𝑥𝑖) (1) 

Linear interpolation generates synthetic samples by randomly selecting points along the 

line segment connecting each original minority class sample xi and its k nearest neigh-

bors. The position of the interpolated sample 𝑥𝑗 is controlled by a random parameter λ∈ 

[0,1], which defines the weight between 𝑥𝑖 and its neighbor. Equation (2) is employed 

to identify the k nearest neighbors for each minority sample, ensuring the interpolation 

process maintains the local topological structure of the minority class distribution. 

  𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑛

𝑘=1  (2) 

To tackle data augmentation in UAV WiFi systems while preserving data integrity, we 

propose a framework combining SMOTE-based synthetic interpolation with iterative 



decision tree evaluation. We oversample minority classes via SMOTE to expand da-

tasets while maintaining feature distributions, using a lightweight decision tree to iter-

atively assess sample quality for efficiency and performance. Key innovations include 

tuning SMOTE’s K-values (5–9) via a correlation metric linking feature dimensionality 

to training dynamics, determining K=7 as optimal to balance diversity and noise. Post-

augmentation feature selection uses decision tree scores to refine datasets. Experiments 

show K=7 avoids underfitting (K<5) and noise (K>7), offering a reproducible method 

for efficient, generalizable UAV communication models. 

3.3 Feature selection 

In UAV communication systems, high-accuracy real-time intrusion detection is critical, 

but high-dimensional datasets strain machine learning models with heavy computa-

tional costs. Traditional Boruta-based methods [17] improve prediction via shadow fea-

tures and iterative ranking, yet their resource-intensive cycles cause significant over-

head and latency. We propose a lightweight framework that streamlines Boruta by op-

timizing shadow feature generation and applying hierarchical ranking [18]. This effi-

ciently selects discriminative features, reduces dimensionality, and maintains accuracy 

while cutting computational complexity. Preprocessing datasets with our method ena-

bles resource-efficient inputs for downstream models, ensuring optimal real-time per-

formance in UAV systems. 

Variance Threshold Filtering 

The Boruta algorithm generates shadow features and compares their importance with 

original ones. In high-dimensional data, doubling feature space raises computational 

costs due to random forest complexity. Many irrelevant features can make shadow fea-

tures spuriously inflate scores, obscuring genuine relevant feature detection, while low-

variance features add noise. Despite this, SMOTE oversampling during preprocessing 

boosts dataset size with synthetic samples, maintaining Boruta’s robustness. Iterative 

shadow feature comparisons stably isolate critical features without manual bias.   

For continuous features, standardization (e.g., Z-score) is vital before variance cal-

culation to eliminate distortions from dimensional disparities. Variance relies on sam-

ple statistical dispersion, as defined in Equation (3). 

  Var(𝑡) =
1

𝑁−1
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1  (3) 

For features represented through one-hot encoding, the variance of a binary feature can 

be calculated using Equation (4): 

  𝑉𝑎𝑟(𝑡) = 𝑝(1 − 𝑝) (4) 

To streamline feature extraction and reduce computational overhead, a median-based 

variance thresholding method is adopted. This approach automatically selects features 

with variance above the median, eliminating the need for manual threshold adjustment 
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and reducing the number of features by half. It serves as an efficient initial dimension-

ality reduction step in dataset preprocessing, laying a solid groundwork for subsequent 

fine-grained feature engineering using the Boruta algorithm. 

High-Correlation Feature Elimination 

In the initial feature screening, the variance filtering method only measures individual 

feature dispersion but ignores their association with the target variable. To address this, 

we use the Pearson correlation coefficient [19] to eliminate irrelevant/redundant fea-

tures, retain critical information, and reduce overfitting risks. This metric systemati-

cally assesses linear relationships by calculating the ratio of the covariance between a 

feature and the target to the product of their standard deviations, providing a robust 

measure of feature-target dependency. For paired sample data, the Pearson coefficient 

𝑟 is computed using formula (5): 

  𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 √∑ ((𝑦𝑖−𝑦̅)2)𝑛

𝑖=1

 (5) 

The correlation coefficient ranges between [-1, 1], where +1 indicates perfect positive 

linear correlation (variables change in the same direction) and -1 represents perfect 

negative linear correlation (variables change in opposite directions). Variables with a 

correlation coefficient absolute value exceeding 0.7 are identified as highly correlated 

to eliminate redundant variables in the UAV WiFi traffic dataset, address explicit col-

linearity issues, and enhance model robustness. The remaining variables undergo a two-

step variance inflation factor [20] (VIF) verification to evaluate their linear dependence 

on other variables, resolve implicit multicollinearity, and ensure all VIF values remain 

below 5. The VIF formula quantifies the degree to which a variable's variance is inflated 

due to multicollinearity in the dataset. The variance inflation factor (VIF) is calculated 

using the formula (6): 

  𝑉𝐼𝐹𝑗  =  
1

1 − 𝑅𝑗
2 (6) 

In the VIF formula, 1  −  𝑅𝑗
2 measures the unexplained variance proportion of the j-th 

predictor by other variables. VIF quantifies how much multicollinearity magnifies the 

j-th coefficient's variance versus a collinearity-free model. Iteratively removing high-

VIF variables and applying Boruta for feature importance ensures a stable model with 

critical features retained. 

Feature importance selection using Boruta algorithm 

In the initial phase, variance thresholding removes low-variance features. Pearson cor-

relation and VIF iteratively eliminate collinear variables. The Boruta algorithm identi-

fies predictive features by capturing nonlinear relationships, systematically removing 

redundancies while preserving critical patterns. 

Boruta, a Random Forest (RF)-based method, generates shadow features for each 

original variable and compares their importance scores. Features with consistently 



higher importance than their shadows are retained; others are discarded, ensuring robust 

selection of uniquely contributive features. 

For an original feature matrix 𝑋 ∈ ℝ𝑛×𝑚, each feature  𝑋𝑗generates a shadow feature 

𝑋𝑗
𝑠ℎ𝑎𝑑𝑜𝑤 , with noise-independent surrogates serving as a control group. In classification 

tasks, feature importance is assessed via Gini impurity reduction during RF splits, with 

scores standardized using formula (7). 

 𝑍𝑗   =  
𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗 − 𝜇𝑠ℎ𝑎𝑑𝑜𝑤

𝜎𝑠ℎ𝑎𝑑𝑜𝑤
 (7) 

 𝜇𝑠ℎ𝑎𝑑𝑜𝑤  and 𝜎𝑠ℎ𝑎𝑑𝑜𝑤 denote the mean and standard deviation, respectively, of the im-

portance scores for all shadow features. 

To prioritize original over shadow features, the critical threshold is set as Zmax =

 max(Zshadow). Features with 𝑍𝑗 < 𝑍𝑚𝑎𝑥 are dynamically pruned in each iteration to 

avoid loops and boost efficiency, while remaining features generate new shadow fea-

tures for subsequent rounds. The algorithm stops when feature states remain unchanged 

for three consecutive iterations or after 100 iterations, outputting importance scores and 

history data, and identifying the top feature as visualized. 
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Fig. 3. Feature Importance of selected features 

3.4 Attack Classification with Modified Loss Function 

The benchmark model in this method, Gradient Boosting Decision Tree (GBDT), is an 

iterative ensemble model aggregating weak learners to generate classification results. 

By residual transfer and gradient fitting, it uses the previous tree's output as the next 

input. Residual calculation, the core iterative step in GBDT, directly affects training 

speed. The proposed optimization accelerates it: simplifying loss function computation 

significantly reduces the model's training time.   

As enhancements, XGBoost adds a regularization term to the objective function to 

address GBDT's overfitting issue. LightGBM, another improved variant, boosts train-

ing efficiency via Gradient-based One-Side Sampling (GOSS), simplifies high-dimen-

sional features with Exclusive Feature Bundling (EFB), and adopts a leaf-wise tree 

growth strategy to reduce computational complexity compared to XGBoost's level-wise 

approach.   

In WiFi drone intrusion detection, real-time demands are extremely high. The tradi-

tional GBDT [21]  model uses a logarithmic loss function (Formula 8), while XGBoost 

dynamically calculates second-order derivatives during loss computation. Both fail to 

meet millisecond-level response requirements. 
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 Log Loss  =   −
1

𝑁
∑ [𝑦𝑖𝑙𝑜𝑔(𝑦𝑖̂) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖̂)]𝑁

𝑖=1  (8) 

In real - time scenarios with limited computational resources on edge devices, cross - 

entropy replaces the logarithmic function as the loss function. Its fast convergence cuts 

iterations, saving resources and time for forward propagation and gradient calculation. 

Yet, standard cross - entropy uniformly computes losses, letting majority [22] - class 

simple samples dominate gradient updates and hindering minority - class learning. In 

severe imbalance, majority - class gradient accumulation masks the minority - class 

optimization direction. Weighted cross - entropy assigns class - specific weights to 

tackle imbalance and improve minority - class recognition. Its loss formula is (9)： 

 H = −
1

𝑁
∑ [𝑤1 ∙ 𝑦𝑖𝑙𝑜𝑔(𝑝𝑖) + 𝑤0 ∙ (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)]𝑁

𝑖=1  (9) 

In this formulation, yi represents the binary true label (0 or 1), 𝑝𝑖  denotes the predicted 

probability of the positive class. For classifying rare abnormal classes in intrusion de-

tection, we assign higher weights to low-frequency samples to balance data distribution. 

We adopt a computationally efficient class reciprocal method: 𝑤𝑖 =
1

𝑁𝑖
. In our hijacked 

traffic dataset, abnormal traffic samples constitute 20% of the total, so their initial 

weight is set to 5, with weights dynamically tuned based on experimental results. 

Algorithm 1 briefly introduces the training process of the model. 

Algorithm 1: Algorithm for Light-WIDS 

Input: Train Data {(𝑥𝑖 , 𝑦𝑖)}  𝑖=1 to N 

Output: Light-WIDS Trained Model 𝑦𝑖̂
(𝑡)

 

1: Initialize the first tree as a constant: 

𝑦𝑖̂
(0)

= f0 = 0 

2: while t<maxRuns or 𝐿(𝑡) < 𝜖 do 

3:   Train the next tree by the loss of weighted cross entropy: 

4:       ft(xi) = argft
wce L(t) 

5:    𝑓𝑡(𝑥𝑖) = 𝑎𝑟𝑔𝑓𝑡
𝑤𝑐𝑒 𝐿 (𝑦𝑖 , 𝑦𝑖̂

(𝑡−1) + 𝑓𝑡(𝑥𝑖)) 

6: Get the Next Model: 

7:        𝑦𝑖̂
(𝑡) = 𝑦𝑖̂

(𝑡−1) + 𝑓𝑡(𝑥𝑖) 

8: end while 

9: Get Final Trained Model: 

10:       𝑦𝑖̂
(𝑡) = ∑ 𝑓𝑡(𝑥𝑖)

𝑀−1
𝑡=0  

11: return 𝑦𝑖̂
(𝑡)

 

At the start of the algorithm, the model initializes the first tree with a constant value for 

backward training. A stopping criterion is defined based on either reaching the maxi-

mum number of trees or reducing the loss below a threshold. Subsequent trees are 

trained using a weighted cross-entropy loss function. The iterative training process up-

dates the model predictions through sequential tree additions, where: 

•  𝑦𝑖̂
(𝑡)

represents the prediction for sample 𝑖 at iteration 𝑡 

• 𝑓𝑡(𝑥𝑖) is the decision function of the 𝑡-th tree 

• L(t)=∑ (𝑦𝑖̂
(𝑡)

−yi
(t)

) is the loss at iteration 𝑡 

• 𝜖 is the minimum error threshold 



Training proceeds for M iterations or until 𝐿(𝑡) < 𝜖 , returning the final ensemble 

model after satisfying the stopping condition. 

4 Experiments 

4.1 Experimental Environment and Evaluation Metrics 

To validate the effectiveness of the proposed intrusion detection method, a series of 

experiments were designed and verified using a WiFi drone hijacking attack dataset 

collected through the following hardware configuration: (a) Parrot ANAFI Ai, (b) DJI 

Neo, (c) Raspberry Pi 4, (d) WiFi Pineapple Nano, (e) Alfa AWUS036NHA, alongside 

a laptop running an Ubuntu-based operating system. The Raspberry Pi 4 serves as the 

automated attack platform, while the WiFi Pineapple Nano both analyzes drone com-

munications and participates in automated attacks. The AWUS036NHA supports mon-

itoring mode and packet injection while being compatible with penetration testing sys-

tems like Kali Linux. The flow chart is presented below. 

Once the Parrot drone is powered on, it will activate its WiFi access point (AP), with 

the remote controller functioning as the client. Use Vis tumbler to identify both the 

WiFi channel and the AP MAC address of the drone. Locate the WiFi network starting 

with "ANAFI-" and record the corresponding MAC address of the drone's WiFi signal. 

Start Alfa AWUS036NHA in monitor mode to scan 2.4GHz for active chan-

nels/drone MACs. Find the MAC address of the drone's connected remote controller 

using its active WiFi address. 
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Fig. 4. UAV WiFi traffic collection and detection 

Use aireplay-ng to conduct an attack on the remote control and capture packets on spe-

cific channels with Wireshark. Extract MACs (SA/DA/TA/RA), frame types, packet 

length, timestamp, duration from captured S802.11 packets. Group by SA, compute 

TN, AL, RF, RD per unit time. Build traffic dataset for ML input. 

This dataset encompasses representative WiFi drone hijacking attacks [23], with de-

tailed descriptions provided below. 

1)Deauth Attack: To hijack drone control, attackers DE authenticate the pilot, forc-

ing the drone to stop. A rogue controller (running the official app) then reconnects im-

mediately.  
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2)MITM: Use WiFi Pineapple Nano to perform man-in-the-middle attacks (MITM) 

on drones that support WiFi control, mainly by forging an SSID with the same name as 

the target drone, inducing it to connect to the forged malicious AP.  

3)Kr00K: The attacker used Air crack-ng to send fake disassociation frames to the 

drone, causing it to repeatedly disconnect and reconnect. During this process, the at-

tacker captured encrypted data packets via a wireless network card and decrypted them. 

4)DoS: By launching a simple ping flood using hping3 without waiting for any re-

plies, the target was inundated with requests, rendering it unable to make any other 

communications. 

5) (Re)Assoc: After a DE authentication attack severs the drone-ground station link, 

Aircrack-ng floods the target AP with high-density association requests, blocking le-

gitimate connections. 

6)KRACK Attack: Attackers replay the third handshake message during the process, 

forcing the drone to reinstall an already used key. This directly disrupts the protocol 

mechanism, enabling decryption of traffic without obtaining the WiFi password. 

Table 1 presents the composition of the drone WiFi hijacking traffic dataset, detail-

ing attack types alongside the counts of normal and malicious traffic packets. 

Table 1. Dataset Information 

Attack Type Normal Traffic Attack Traffic Total Traffic 

Deauth 9705 1487 11192 

MITM 5797 313 6110 

Kr00k 2873 683 3556 

DoS 2468 288 2756 

(Re)Assoc 1843 155 1998 

KRACK 1349 249 1598 

This dataset focuses on the most severe drone WiFi hijacking attacks, generating attack 

data through 2-second bursts of malicious packets every 20 seconds. 

To evaluate WiFi Intrusion Detection Systems (WiFi IDS), we use a comprehensive 

metric framework covering both detection accuracy and operational efficiency. Preci-

sion and recall quantify the system’s ability to correctly identify attacks and classify 

legitimate traffic: true positives (TP) denote accurate attack detections, while true neg-

atives (TN) represent correct normal traffic classifications. False positives (FP) signify 

misclassifying legitimate traffic as attacks, and false negatives (FN) indicate undetected 

actual attacks. 

Supplementing these accuracy metrics are timing measurements: training time 

measures model-building duration, test time assesses dataset validation efficiency, and 

inference time gauges real-time processing speed. This integrated approach ensures a 

balanced evaluation of detection reliability and system responsiveness for practical de-

ployments. 

Accuracy is the number of successfully predicted samples to the total number of 

samples. 



  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 (10) 

Recall R is the detection rate or true positive rate (TPR). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

Training time Ta defines how much time a method is utilized to train and build the 

model using the whole training dataset. 

 𝑇𝑎 = 𝐸𝑛𝑑𝑡𝑟𝑎𝑖𝑛_𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑡𝑟𝑎𝑖𝑛_𝑡𝑖𝑚𝑒 (12) 

Testing time Tb specifies the amount of time it takes for a method to predict the full 

testing dataset. 

 𝑇𝑏 = 𝐸𝑛𝑑𝑡𝑒𝑠𝑡_𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑡𝑒𝑠𝑡_𝑡𝑖𝑚𝑒  (13) 

Inference time Tc refers to the time taken by a method to process the entire reasoning 

dataset through its inference process. 

 𝑇𝑐 = 𝐸𝑛𝑑𝑖𝑛𝑓𝑒𝑟_𝑡𝑖𝑚𝑒 − 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑓𝑒𝑟_𝑡𝑖𝑚𝑒  (14) 

4.2 Comparison Experiments on Our dataset 

Multi-Attack Detection 

Given the frequent hybrid attack scenarios in drone WiFi communications, assessing 

the detection performance of the proposed method against multiple hybrid attacks is 

essential. 
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Fig. 5. Multi-classification confusion matrix 

Table 2. Multiple attack detection results 

Attack Type Accuracy Recall F1 
Normal 0.9541 0.9421 0.9667 

Deauth 0.9814 0.9765 0.9721 

MITM 0.9513 0.9497 0.9536 

Kr00k 0.9843 0.9827 0.9852 

DoS  0.9767 0.9675 0.9777 

(Re)Assoc 0.9911 0.9865 0.9873 

KRACK 0.9901 0.9887 0.9897 
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The confusion matrix results of multi-class classification between predicted and true 

labels offer a comprehensive assessment of each category's classification performance. 

The method demonstrates excellent detection performance for normal data and various 

attack types. Notably, under mixed attack scenarios, the overall detection accuracy 

reaches 96.3%, validating the proposed intrusion detection system's ability to effec-

tively identify attacks in complex environments with simultaneous multiple threats and 

highlighting its robustness in real-world applications. 

Comparison with Traditional Algorithms 

This paper evaluates multiple classical machine learning algorithms (DT[24], RF[24], 

XGBoost[25]) for detecting drone WiFi traffic attack datasets. The accuracy compari-

sons in the figure demonstrate that among traditional models, our proposed method and 

XGBoost emerge as top performers. Notably, our approach achieves the highest accu-

racy of 96.3%. These results validate the feasibility of our method, which demonstrates 

superior accuracy and robustness across diverse attack types. 
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Fig. 6. Comparative analysis of traditional ML algorithms using accuracy metrics 

In practical scenarios, addressing strict real-time constraints for drone WiFi traffic de-

tection requires prompt responses to malicious WiFi attacks. We employ a 5:2:3 split 

for training, testing, and inference validation sets. Comparative experiments are con-

ducted with four classic algorithms under identical conditions, evaluating their real-

time performance across training, testing, and inference times. 

Table 3. Time consumption comparison results table 

Model Training time  Test time Inference time 

DT 201 110 177 

SVM 830 100 198 

RF 460 100 120 

XGBoost 1669 70 88 

Ours 181 51 71 

The table shows that traditional models have similar test and inference performance 

under the same conditions, but their training times differ due to algorithm complexity. 

XGBoost achieves efficient testing and inference via gradient boosting and hyperpa-

rameter tuning, though it requires significantly longer training than other models. Our 

method, which adds a feature selection module and modifies the loss function, outper-

forms all baselines in training, testing, and inference. Notably, it cuts training time by 

89% compared to XGBoost, demonstrating the effectiveness of our feature selection 

and weighted cross-entropy loss in improving computational efficiency. 



4.3 Comparison Experiment on Lightweight of Algorithm 

This study evaluates WiFi drone intrusion detection algorithms under real-world oper-

ational constraints, emphasizing high real-time requirements and limited onboard com-

puting resources. The comparison framework assesses algorithms across five dimen-

sions: detection accuracy, recall rate, computational complexity, parameter count, and 

model size - ensuring a comprehensive balance between detection performance and 

operational feasibility for resource-constrained UAV systems. 

Table 4. Algorithm performance comparison experiment 

Model Accuracy /% Recall /% Parameters /106 FLOPs(G) Size(M) 

DT 88.1 82.3 2.6 2.9 3.1 

SVM 92.2 87.4 4.5 3.5 6.2 

RF 94.5 89.3 14.5 7.8 15.2 

XGBoost 95.1 90.6 6.7 5.4 8.3 

FED-IDS 95.5 91.3 32 10.6 43 

CGAN-IDS 96.6 92.4 41 13.3 56 

Ours 96.3 93.5 0.9 1.3 1.5 

Results show this model achieves 96.3% accuracy/93.5% recall (2nd to CGAN-IDS), 

outperforming DT/SVM [24]. While matching CGAN-IDS' performance [13], it uses 

35× fewer parameters and 10× less compute, enabling cost-effective deployment. Tra-

ditional models lag in accuracy/recall despite lower parameters. Ideal for lightweight 

scenarios like low-power drones, balancing high performance with minimal resource 

use. 
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Fig. 8. Comparative experiment on lightness 

4.4 Ablation Experiments 

To systematically evaluate the contribution of each enhanced component to the algo-

rithm's overall performance and validate the cumulative improvements, an ablation 

study was designed. This experiment systematically isolated the impact of three key 

modules: 1) an optimized data preprocessing pipeline, 2) a novel lightweight feature 

selection mechanism, and 3) a weighted cross-entropy loss function replacing the orig-

inal loss function. By analyzing performance across different module combinations, 

this study quantifies the individual impacts of each optimization and reveals their syn-

ergistic effects on detection accuracy and computational efficiency. 
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Fig.9. Compare the various improvement modules 

Ablation studies showed that optimized data preprocessing slightly increased inference 

latency but significantly boosted detection accuracy. Other modules delivered mixed 

improvements in accuracy or efficiency. The fully integrated model achieved 96.3% 

top accuracy (+1.2% over baseline) with a minimized inference time of 35 seconds 

(50% faster than the original design). The Light-FSM and WCE modules demonstrated 

strong synergy: Light-FSM enhanced detection precision, while WCE effectively re-

duced computational costs. These results validate the proposed modules' effectiveness 

in detecting drone-based WiFi hijacking intrusions through complementary perfor-

mance gains. 

5 Conclusions 

This paper introduces a lightweight real-time detection algorithm for drone WiFi intru-

sion and hijacking attacks, tailored for drones with limited computing resources and 

strict real-time communication demands. Experimental results show that the proposed 

model surpasses traditional machine learning methods in detection accuracy. Compared 

with high-accuracy deep learning-based intrusion detection models, it achieves superior 

efficiency with significantly lower computational overhead. The optimized feature se-

lection mechanism and simplified loss function enhance time efficiency, ensuring real-

time traffic analysis capabilities. This work confirms the feasibility of the proposed 

method for drone WiFi security, providing a novel solution to protect unmanned aerial 

vehicle (UAV) communication systems.   

Future research will explore other challenges in UAV communication scenarios, fo-

cusing on improving the model's generalization ability and integrating dynamic learn-

ing algorithms to address emerging network threats. 
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