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Abstract. Electrical Cabinet Label Recognition is an important part of robotic 

intelligent inspection. Accurate label recognition is a prerequisite for effectively 

recording inspection anomalies. After the inspection robot takes pictures, OCR 

(Optimal Character Recognition) can detect the location of the electrical cabinet 

labels and recognize the content on the labels. Firstly, We use the oclip method 

to reduce the model training time and reduce the need for dataset size. Secondly, 

In the electrical cabinet label dataset, the text location detection accuracy based 

on the cutting-edge model DBNet++ reaches 96.74%, and the text content recog-

nition accuracy based on ABINet reaches 89.33%. Through comparative experi-

ments, we found that applying only the ABINet visual model can improve the 

text recognition accuracy to 90.58%, indicating that the language model in ABI-

Net does not perform well for this task. The ABINet visual model is better at 

extracting local information from the image text, while the ABINet language 

model excels at recognizing semantic relationships across different parts of the 

text.  Thirdly, Leveraging this characteristic, we designed a distributed hierar-

chical structure for the multi-objective OCR text recognition framework ABINet-

TS. In the first layer, the visual model is used to recognize local information from 

the image, while in the second layer, the language model is applied to correlate 

and correct the predictions made by the visual model. This further improves the 

text recognition accuracy to 91.74%.We further replace the language model in 

ABINet-TS with BERT, which further improved the accuracy of text lines to 

92.16%. 

Keywords: OCR, Text recognition, Text detection,Deep learning. 

1 Introduction 

Substation inspection is one of the daily operation and maintenance tasks at substations. 

By inspecting and checking the status of high-voltage and low-voltage cabinets, faults 

or hidden dangers in the electrical cabinets can be identified immediately, allowing for 



timely repairs and preventive measures, ensuring the safety and stability of the substa-

tion. In actual operations, substation inspections are often carried out manually. How-

ever, manual inspections have many drawbacks: long inspection cycles with extended 

periods of interruption; the possibility of missed or incorrect inspections; and high labor 

costs. 

Robot Intelligent Inspection is a process where a wheeled robot takes pictures along 

a fixed route within a substation. Using hardware and software technologies, the robot 

performs recognition and detection of the status of electrical cabinets in the substation. 

The robot is equipped with optical cameras, infrared cameras, and other devices to cap-

ture images of the electrical cabinets. Using target detection models like YOLOv7 [1], 

it is possible to quickly and efficiently detect the status of components on the electrical 

cabinets, such as the color of indicator lights and the orientation of knobs. Based on the 

status of the various components on the electrical cabinet, it can be determined whether 

the cabinet being photographed has any abnormalities. Through OCR models, the lo-

cation of abnormal electrical cabinets can be quickly pinpointed, and the labels of the 

abnormal cabinets can be recognized. This enables the reading, matching, and record-

ing of the abnormal cabinet and its label, allowing faults to be detected promptly. Com-

pared to traditional manual inspections, intelligent inspections significantly enhance the 

safety and reliability of the inspection process and drastically reduce the labor costs 

associated with inspections. 

Substation Electrical Cabinet Label Detection which can quickly locate abnormal 

labels is a crucial part of intelligent inspection. After the inspection robot captures im-

ages, the OCR text detection model detects the position of the electrical cabinet label 

in the image, and the OCR text recognition model predicts the text characters based on 

the image of the text. This inspection method enables quick, automatic, and precise 

localization of abnormal electrical cabinets. By using the coordinates of the inspection 

robot during image capture and the label on the captured image, a preliminary electrical 

cabinet label database for the substation can be constructed, reducing the cost of man-

ually building the database. The accuracy and speed of OCR recognition have continu-

ously improved in recent years. OCR model frameworks such as PaddleOCR and Tes-

seractOCR can efficiently and accurately detect and recognize text in images across 

many application scenarios. 

Although OCR technology has made significant breakthroughs, directly applying 

existing frameworks in substation scenarios still does not yield satisfactory results. The 

accuracy requirements for electrical cabinet label recognition in substations cannot be 

met. We propose a distributed hierarchical structure for the multi-objective OCR text 

recognition framework ABINet-TS. This framework decomposes complex text recog-

nition tasks, fully leverages the advantages of both visual models and language models 

, and effectively improves the accuracy of text recognition models for electrical cabinet 

label recognition. It efficiently and accurately meets the demands of robotic intelligent 

inspection. The experimental process for electrical cabinet label detection and recogni-

tion is shown in Figure 1. 
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Fig. 1 Electrical Cabinet Label Detection Flowchart 

2 Related works 

OCR can be mainly divided into two models: the text detection model for locating the 

position of text boxes and the text recognition model for recognizing the content of text 

in images. The following will introduce the current research status of OCR from these 

two aspects. 

2.1 OCR Text Detection Model 

OCR text detection is the task of detecting and marking the location of the target text 

regions in an image. Traditional text detection methods usually rely on handcrafted 

features to detect character regions. Epshtein et al. [2] proposed the Stroke Width 

Transform (SWT) to detect characters. Neumann and Matas [3] proposed a method for 

locating characters by classifying Extremal Regions. They see the character detection 

problem as the process of selecting valid sequences from a set of extreme regions. The 

detected extreme regions are then combined into words. FASText [4] is a fast text de-

tection system that applies the FAST key point detector to stroke detection. In recent 



years, deep learning-based methods have significantly outperformed traditional meth-

ods in terms of speed and adaptability. Especially in challenging scenarios, such as low 

resolution and geometric distortion, deep learning models can greatly improve recog-

nition accuracy and are more robust to environmental changes. Deep learning-based 

text detection methods are mainly divided into two categories: regression-based text 

detection methods and segmentation-based text detection methods. 

Regression-based methods 

The TextBoxes method proposed by Liao et al.[5] modifies the anchor and scale of 

convolutional kernels to achieve text detection. TextBoxes++ [6] applies a quadrilateral 

regression method to detect text with multiple orientations. SSTD[8] applies attention 

mechanisms to roughly identify areas of text. EAST [9] proposes a two-stage text de-

tection method: a fully convolutional neural network and Non-Maximum Suppression 

(NMS). 

Segmentation-based methods 

 

Segmentation-based methods typically first perform pixel-level predictions, then use 

some post-processing algorithms to combine the predicted pixels into predicted regions. 

These post-processing algorithms are often more complex and time-consuming. Zhang 

et al. [11] by semantic segmentation and based on the most stable extreme region. The 

algorithm of the domain detects text in multiple directions. Xue et al. [12] proposed 

text edges Text border semantics and a kind of bootstrapping Technical segmentation 

of text instances. PSENet [13] introduced generating kernels of different scales for each 

text instance and progressively expanding the smallest scale kernel to form the final 

complete text prediction. Due to the large gaps between the smallest scale kernels, this 

method can efficiently separate neighboring text instances, making segmentation-based 

methods more suitable for detecting text instances of arbitrary shapes. SegLink++[16] 

enables dense and arbitrarily shaped scene text detection with instance-aware compo-

nents and minimal spanning trees. DBNet++ [15] proposed a differentiable binarization 

method that performs binarization operations in the segmentation network, allowing 

the network to adaptively adjust the binarization threshold. The proposed adaptive scale 

fusion module can reuse multi-scale feature maps adaptively. 

2.2 OCR Text Recognition Model 

OCR text recognition aims to identify the text content in an image, which is a task of 

inferring text from images. OCR text recognition can primarily be divided into two 

approaches: vision-based methods and vision-language model-based methods. 

Vision-based models 

Vision-based models typically consist of two parts: the visual model that extracts 

features from the image, and the translation method that converts the model's predicted 
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characters into text. Shi et al. [17] extracted features using CNN and LSTM, and then 

used the CTC method [18] to obtain the predicted sequence. He et al. applied a deep 

text recurrent network [21], while Hu et al. proposed a CTC decoder guided by a graph 

convolutional network.[23]. Du et al. proposed an encoder similar to ViT [24]. Models 

based on visual frameworks do not fully consider the relationships between context in 

the text, resulting in lower recognition accuracy. 

Vision-Language methods 

Vision-Language based models [30] leverage semantic information from the text to 

correct the features extracted by the visual model. Lee et al. [31] were the first to intro-

duce the attention module into the text recognition task. Cheng et al.[33] added some 

attention modules to allow the model to learn more features.  

Cheng et al.[34] extracted text features in four directions. Wojna et al.[35] added posi-

tional coding of feature maps to enhance sequence order. Lyu et al.[36] replaced RNN 

with Transformer[32] to improve the recognition accuracy of the model. VisionLAN 

[37] introduced a word-by-word masking learning method to endow the visual model 

with language capabilities. During inference, only the visual model is applied, which 

improves the model's inference speed. Atienza et al. [39] proposed that ViT could be 

used as a feature extractor for visual models. SVTR [40] first decomposes text images 

into small blocks, and after blending these blocks, it uses both global and local mixed 

attention to capture patterns between and within characters. 

3 Proposed methods 

The model for recognizing text labels is based on the ABINet [41] framework. ABINet 

is the best-performing model among state-of-the-art models for recognizing images of 

electrical cabinet labels in substations. ABINet consists of two parts: a visual model 

and a language model. The vision model extracts feature from the image, then the lan-

guage model corrects the predictions made by the visual model through a multi-head 

attention module with masking. Finally, the probability matrices predicted by the visual 

model and the language model are combined through weighted averaging to generate 

the final fused prediction result. The language model is autoregressive, meaning its 

output can be fed back as input multiple times to iteratively refine and correct the pre-

dictions. ABINet is very good at predicting images that contain natural language. 

3.1 ABINet-V 

ABINet-V retains the visual model part of ABINet but modifies the loss function to a 

cross-entropy loss function. The visual model part is composed of ResNet [42] and 

position attention module. ResNet extracts features from the image, the features ex-

tracted by the multi-layer ResNet are then combined, and the features extracted from 

different layers of ResNet are merged using a multi-scale fusion module. The positional 

attention module focuses on the positional information of the predicted features and 



further extract features. The linear layer then generates the predicted sequence.The vis-

ual model part of ABINet does not consider the semantic information of the text in the 

image, instead extracting features from the image and predicting the text sequence. In 

cases where the semantic correlation between text characters is low, the correction ef-

fect of the language model is weakened, making the visual model's prediction results 

particularly important. In the substation electrical cabinet label dataset, the text in the 

images contains limited semantic information, such as "4kW 8.2A". Therefore, on this 

dataset, ABINet-V is likely to perform better. 

3.2 ABINet-TS 

ABINet-TS (Two-Stage) is a two-stage model, as shown in Figure 2. First stage: ABI-

Net-V simultaneously recognizes multiple individual text images, using ResNet and the 

Positional Attention module to extract features, and finally predicts the text sequences. 

Second stage: The model recognizes and corrects the contextual relationships of the 

visual model's predictions, predicting the sequence of associated text. In the first stage, 

ABINet-V is trained on a single-label dataset, while in the second stage, ABINet-L is 

trained on a concatenated image dataset. The two-stage model ensures that the visual 

model part of ABINet and the language model part do not interfere with each other. 

The visual model is responsible for predicting individual label images, ensuring high 

accuracy for predictions of single-label images. The language model is responsible for 

correcting the predictions of the visual model by considering the semantic relationships 

between the label texts. 

The input to the language model comes entirely from the output of the visual model, 

so the accuracy of the visual model's predictions is crucial to the final model's output. 

The loss function of ABINet includes the loss functions of the visual model, the lan-

guage model, and the fusion module. The concatenated image dataset contains more 

information, which makes it difficult for the visual model in ABINet to predict accu-

rately on the concatenated image dataset. The visual model of ABINet-TS is first 

trained on a single-label dataset. The prediction results of the visual model do not need 

to consider the semantic context of the labels, ensuring high accuracy in recognizing 

individual labels. In ABINet-TS, the language model builds on the accurate predictions 

of individual labels from the visual model. It then incorporates the semantic relation-

ships of contextual labels, enabling more accurate prediction of concatenated label text 

sequences. Furthermore, the iterative correction process of the language model also 

allows the model to more fully learn the contextual relationships between labels. 

The language model and visual model in ABINet-TS are decoupled, meaning that 

different model combinations can be used for each, providing greater flexibility and 

generalization of the model. The performance of the language model depends on the 

input from the visual model. Therefore, using a visual model with better recognition 

performance will improve the recognition accuracy of ABINet-TS. Similarly, selecting 

a language model with stronger semantic analysis capabilities can help the model learn 

more about the contextual semantic relationships. 
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Fig. 2 Architecture of ABINet-TS 

3.3 Oclip 

Oclip[43] is a pre-training method for OCR model parameters. This approach reduces 

the time it takes to train the model and the dataset required for model training. 

As shown in Fig 3, the visual encoder part of the OCLIP extracts features from the 

image and generates a sequence of image features. After the text sequence with some 

characters occluded is positionally encoded, the features are extracted by the oclip lan-

guage encoder to generate a text feature sequence. The image feature sequence is input 

into the visual-text decoder as Q (Query), and the text feature sequence is input into the 

visual-text decoder as K (Key) and V (Value), and finally the predicted occluded char-

acters are generated. The sum of losses is lost by the comparison of the text feature 

sequence with the text feature sequence. The classification loss of the predicted oc-

cluded character vs. the actually occluded character to update the model parameters. 

The parameters of some models can be migrated to other models for direct use. 

The oclip method makes the backbone of the model pay more attention to the text 

information in the image, which allows the model to extract more. The features of the 

picture Chinese book are helpful for subsequent OCR model training and save the 

amount of data required for model training. Compared with other pre-training methods, 

the oclip pre-training strategy pays more attention to the correlation between images 

and text, and the OCR text recognition task is to recognize the text in the image from 

the image, so the oclip model parameter pre-training strategy is more suitable for the 

actual needs. 



 

Fig. 3 Architecture of oclip 

3.4 ABINet-TSB 

The prediction results of the ABINet-TS model rely too much on the prediction results 

of the first tag in a series of tags, which may lead to the prediction results of subsequent 

texts being subject to the prediction results of the first word. In order to solve the prob-

lem of contextual association of label text, we introduce the BERT model. Implemented 

a "cloze in the blank" style of contextual text line prediction reference. We call the 

model in which the language model in ABINet-TS is replaced by the BERT method as 

ABINet-TSB. 
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Fig. 4 Architecture of BERT 

As shown in Figure 4, the Masked Multi-Head Attention module will make the 

BERT model mask some characters during training. Let the Transformer model predict 

occluded characters, so that the model learns the features of the context and completes 

a cloze task. With the help of the contextual association features learned by the model,  

the BERT language model can learn the association between the learned labels in the 

substation label prediction task, and correctly predict the labels before and after. The 

prediction results of the ABINet-TS model are overly dependent on the prediction re-

sults of the first label in a series of labels, which may lead to the prediction results of 

subsequent texts being subject to the predictions of the first word. In order to solve the 

problem of contextual association of label text, we introduce the BERT model. imple-

ments a "cloze in the blank" style of contextual text line prediction reference. 

 

4 Experiments 

To meet the needs for identifying abnormal electrical cabinets during inspections, the 

experiments compare the accuracy of several state-of-the-art object detection models 

(MaskRCNN, PSENet, DBNet, and DBNet++) for detecting text boxes on a text detec-

tion dataset. For label recognition accuracy, the comparison includes cutting-edge mod-

els such as CRNN, SVTR, SATRN, MASTER, SAR, ASTER, ABINet, and ABINet-

V on a single-label dataset. Finally, for text recognition accuracy on a concatenated 

image dataset, the models ABINet, ABINet-V, and ABINet-TS are compared. 



4.1 Datasets and Implementation Details 

Table. 1 Experimental Environment 
 

Operating system Ubuntu 18.04.1 

GPU NVIDIA GeForce RTX 2080Ti * 2 

CPU Intel(R)Core(TM)i9-9820X CPU 

Technical Framework Pytorch 

Experiment Platform JupyterLab 

Coding Language Python 

 

 

Table. 2 Datasets 

Dataset Type Training images Validation images 

Text Detection Dataset 354 
89 

Single Label Dataset 3705 
1040 

Joined-Label Dataset 466 
140 

 

Table II shows that the text detection dataset is used to train the text detection mod-

els, enabling the models to locate the target text box positions from the images captured 

by the inspection robot. Each image in the single-label dataset contains a single text 

label. The concatenated image dataset is created by combining images from the single-

label dataset, where the images are concatenated horizontally in an increasing order of 

label numbers. The images from the three datasets are shown in Figure 5. 

The backbone network of the text detection model uses the Oclip pre-trained net-

work with a training batch size of 8. The poly learning rate strategy is adopted, with an 

initial learning rate set to 0.007, power set to 0.9, weight decay set to 0.0001, and mo-

mentum set to 0.9.The data augmentation techniques applied during training include: 

(1)Random rotation within a range of ±10 degrees(2)Random cropping(3)Random flip-

ping. All preprocessed images are resized to 640*640 to speed up training. During the 

inference phase, the aspect ratio of the test images is preserved. 

The model channel size for the text recognition model is set to 512 for all layers.  

In the BCN (Bidirectional Contextual Network), the four layers each have 8 attention 

heads. 

 The balancing factors𝜆𝑣 and 𝜆𝑙 are both set to 1, and the maximum prediction sequence 

length is set to 26. The images are resized to 32*128. The data augmentation techniques 

used during training include: (1)Geometric transformations (e.g., rotation, affine trans-
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formations) (2)Color transformations (3)Image quality degradation, among other meth-

ods. The batch size for the text recognition model is set to 384. The Adam optimizer is 

used, with an initial learning rate of 𝑒−4, which decays to 𝑒−6after 6 epochs. 

In the training phase, the images from the concatenated image dataset are resized to 

512 * 64. The model's maximum prediction sequence length is set to 80. The Xavier 

initialization is used for weight initialization, and the learning rate is adjusted accord-

ingly during training. 

 

Fig. 5 Illustration of the three datasets. Left: Text detection dataset image, Middle: Single-label 

dataset image, Right: Concatenated label dataset image 

5 Ablation Study 

5.1 Text Detection 

As shown in Table 3, the detection accuracy of DBNet++ for target bounding boxes 

reaches 0.9694, which is already sufficient for industrial scene requirements. DBNet 

uses a differentiable binarization method, which provides good detection results for the 

boundary regions of text labels. DBNet++ builds on DBNet by adding an adaptive scale 

fusion module, which effectively improves the model's robustness in detecting images 

at different scales. The detection accuracy of DBNet++ is now more than adequate to 

meet the needs of robotic inspections in substations. 

Table. 3 Accuracy of the text detection models on the detection dataset  
Models Precision Recall Avg of precision and recall 

MaskRCNN 0.8754 0.8931 0.8843 

PSENet 0.8037 0.8462 0.8244 

DBNet 0.9579 0.9635 0.9607 

DBNet++ 0.9630 0.9760 0.9674 

 

Table. 4 Accuracy of the text recognition models on the single-label dataset 
Models Word Accuracy Char Precision Char Recall 

CRNN 0.1923 0.7370 0.6584 

SVTR 0.3865 0.8702 0.7998 

SATRN 0.6587 0.8925 0.8845 

MASTER 0.7385 0.9122 0.9053 



SAR 0.7712 0.9152 0.9163 

ASTER 0.8644 0.9663 0.9615 

ABINet 0.8933 0.9672 0.9619 

ABINet-V 0.9058(+1.25%) 0.9750(+0.82%) 0.9683(+0.64%) 

Table 4 compares the recognition accuracy of different text recognition models on 

the single-label validation set. This table typically includes the accuracy metrics (such 

as Word Accuracy, Char Precision and Char Recall) for each model, which are used to 

evaluate how well each model performs in recognizing text labels on the validation set. 

As shown in Table 4, ABINet-V achieves the highest recognition accuracy, with a 

character precision of 0.9750 and a text line accuracy of 0.9058. In contrast, the ABINet 

model, which incorporates a language model on top of ABINet-V, shows a decrease in 

recognition accuracy. This indicates that the semantic relationships between individual 

text labels are minimal, and the features extracted by the language model do not im-

prove the predictions made by the visual model. Furthermore, since the loss function in 

ABINet includes losses from the visual model, the language model, and the fusion mod-

ule, the visual model's predictions are influenced by the other loss functions, which may 

degrade its performance. This suggests that the visual model in ABINet performs well 

in recognizing the local information of text in images, while the language model excels 

at understanding contextual relationships between text labels. However, if the task 

goals for the visual and language models are not properly distinguished, it may lead to 

a "Crab Syndrome", where the performance is reduced due to conflicting objectives 

between the models.  

In Figure 6, <UKN> represents 'UNKNOWN', indicating characters that the model 

failed to recognize. Among the models, ABINet-V delivers the best recognition perfor-

mance, only mistaking PU275B as PU275, and demonstrates good performance in rec-

ognizing blurred labels. 

 

Fig. 6 The text recognition model experiment results comparison figure shows the following 

sequence from left to right: Original Image, ABINet-V, ABINet, ASTER, CRNN, MASTER, 

SAR, SATRN and SVTR recognition result 

Table. 5 Oclip pretraining for ABINet-V and ABINet-TS 
Models Word Accuracy Char Precision Char Recall 

ABINet-V 0.8957 0.9622 0.9676 

ABINet-V(oclip) 0.9058 0.9750 0.9683 

ABINet-TS 0.9122 0.9864 0.9875 

ABINet-TS(oclip) 0.9174 0.9861 0.9892 
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Table. 6 Accuracy of the text recognition models on the joined-label dataset 
Models Word Accuracy Char Precision Char Recall 

ABINet-V 0.8440 0.9801 0.9833 

ABINet 0.8624 0.9834 0.9866 

ABINet-TS 0.9174(+4.5%) 0.9844(+0.1%) 0.9877(+0.11%) 

ABINet-TSB 0.9216(+4.92%) 0.9861(+0.33%) 0.9892(+0.26%) 

 

Table VI compares the recognition accuracy of ABINet-V, ABINet, and ABINet-TS 

on the joined-label image validation set. From Table VI, it can be observed that ABI-

Net-V, which performs better on single-label images, actually shows lower accuracy 

on concatenated images compared to ABINet. This indicates that the language model 

in ABINet is effective in recognizing the relationships between text labels. The ABI-

Net-TS model, by separating the tasks of the visual model and the language model, 

allows both to focus more effectively on their respective recognition tasks. Specifically, 

the visual model extracts features and predicts text for individual images, while the 

language model corrects the predictions based on the context. The visual model focuses 

on recognizing local text information, and the language model focuses on the relation-

ship between individual recognition results. These are two distinct task goals for each 

layer. Compared to ABINet-V in Table IV, ABINet-TS shows an improvement of 

1.44\% in character precision and character recall, and a 1.16% increase in text line 

accuracy. This suggests that the separation of tasks in ABINet-TS leads to better overall 

performance when handling concatenated images. Compared with the ABINet-TSB 

model, the accuracy of the ABINet-TSB model is improved by 0.42%, which indicates 

that the BERT model improves the ability to extract contextual features, so that the 

ABINet-TS model is not affected by the pre-predicted text characters. 

 

 
Fig. 7 The recognition results of three models 

 

As depicted in Figure 7, All individual labels ABINet predict are incorrect. This 

indicates that ABINet's language model, while considering the relationships between 

the labels, does not perform well on concatenated images. The autoregressive nature of 

the language model can cause errors from earlier predictions to propagate and affect 

the recognition of subsequent characters. ABINet-V: Only the first label is correctly 

recognized. This demonstrates that ABINet-V focuses more on local character predic-

tion and does not take into account the semantic relationships between the labels. It 



works well for individual labels but struggles when those labels are concatenated into 

a single image. ABINet-TS: ABINet-TS ensures that the visual model's local predic-

tions are not disturbed by the language model. It successfully handles the recognition 

task by allowing the visual model to focus on extracting features for individual labels, 

while the language model uses context to correct the predictions. The final result shows 

the correct label combinations, as the language model is able to integrate the semantic 

information from the visual model's predictions. This comparison highlights the im-

portance of task separation in ABINet-TS, which balances the strengths of both the 

visual and language models, resulting in more accurate recognition of concatenated im-

ages. ABINet and ABINet-V show limitations in handling multi-label images, as their 

models either lack contextual information (ABINet-V) or suffer from error propagation 

due to the autoregressive mechanism (ABINet). 

6 Conclusion 

Accurate recognition of electrical cabinet labels is essential for intelligent recording of 

inspection anomalies. In this paper, we applied DBNet++ for precise detection of ab-

normal electrical cabinet label locations, achieving a text line recognition accuracy of 

89.33\% using ABINet. With the help of pre-training of the oclip model, the visual 

model of ABINet improves the text line recognition accuracy to 90.58\%, indicating 

that the visual model is proficient at recognizing local text information in images. The 

language model in ABINet, on the other hand, excels at recognizing the contextual re-

lationships between the text. Both models are constrained by a joint loss function, 

which balances their contributions. To address identified issues, we propose a distrib-

uted hierarchical structure for the multi-objective OCR text recognition model frame-

work, ABINet-TS. With this framework, the text line recognition accuracy reaches 

91.74\%, better meeting the needs of robotic intelligent inspection tasks for the auto-

matic reading and recording of electrical cabinet labels. The language model in ABI-

Net-TS was replaced with BERT, which further improved the accuracy of text lines to 

92.16\%. This improvement ensures more reliable performance in the robotic inspec-

tion process, enabling efficient automation in labeling and anomaly detection within 

electrical substations. 
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