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Abstract. Knowledge distillation is a method that trains a student model to ap-

proximate the performance of a teacher model. However, in real-world applica-

tions, the architectural discrepancy between teacher and student models often im-

pedes the comprehensive transfer of knowledge from teacher to student. Moreo-

ver, the reduction in learnable parameters in student models poses challenges in 

acquiring the high-dimensional knowledge from the teacher models. due to the 

complexity and redundancy of the teacher model's high-dimensional features, the 

student model may encounter difficulties in learning these features. To address 

this challenge, this study proposes a knowledge distillation method based on var-

iational autoencoders (VAE). We use VAE to compress the teacher model's high-

dimensional features into low-dimensional robust features, which are extracted 

and transferred to the student model through the variational autoencoder loss 

function. Experimental results show that student models using this method 

achieve significant performance improvements on multiple benchmark datasets. 

Our research indicates that the low-dimensional robust features extracted by 

VAE can effectively enhance the student model's learning process, providing a 

new approach for knowledge distillation tasks. 

Keywords: Knowledge Distillation, Variational Autoencoders, Knowledge 

Transfer 

1 Introduction 

Deep learning has been successful in various fields, including computer vision and nat-

ural language processing. However, these applications encounter significant challenges 

in terms of computational and storage costs. Taking natural language processing (NLP) 

as an example, large pre-trained language models such as BERT [1] and GPT [2] have 

demonstrated excellent performance. However, due to their large number of parame-

ters, their efficient use in low-resource environments such as mobile devices and edge 

computing can be challenging. To promote the widespread use of deep learning appli-

cations in low-resource scenarios, knowledge distillation (KD) [3] has become a highly 

successful approach [3,4,5,6], which involves transferring the "knowledge" from a 

complex teacher model with strong learning capabilities to a simpler student model, 

thereby achieving model simplification. Knowledge distillation trains a smaller model, 



 

called a student model, to imitate the performance of a larger teacher model, reducing 

model size while maintaining performance. 

The current mainstream paradigm of distillation learning is offline distillation, where 

the student model learns from a pre-trained, parameter-fixed teacher model. During the 

distillation process, the teacher model only performs inference without updating pa-

rameters, while the student model receives fixed and unchanged knowledge from the 

teacher model at each training cycle. In offline distillation, large-scale teacher models 

do not require parameter updates, focusing solely on the student model's learning. This 

simplifies and makes the deployment process manageable. However, offline distillation 

cannot guarantee that the learning process of the teacher model matches that of the 

student model, nor can it adjust the knowledge distillation process of the teacher model 

in real-time based on the learning status of the student model. 

One effective approach to dealing with the fixed parameters of large models is to use 

online distillation. Researchers such as [4] train both the teacher and student models 

simultaneously, allowing the student to learn from the optimized path of the teacher 

model and transform it into a competent approximator. For example, [6] and [7] intro-

duced meta-learning principles based on online distillation to optimize the online learn-

ing process [6,7]. Moreover, [6] and [7] further took into account the generalization 

ability of students on their validation sets. [8] also introduces the concept of distillation 

impact in the area of meta distillation.  

Despite the significant developments in deep learning through knowledge distilla-

tion, they all overlooked a problem, which is that they directly transmit the teacher's 

high-dimensional knowledge to students. However, due to the high-dimensional and 

complex feature representations of the teacher model, the student model faces signifi-

cant challenges in learning these high-dimensional features. The complexity and redun-

dancy of these high-dimensional features can make it difficult for the student model to 

effectively extract and utilize the knowledge from the teacher model, thus impacting 

the effectiveness of knowledge distillation. Fig. 1 illustrates our primary motivation: to 

streamline student learning by compressing the teacher’s high-dimensional knowledge 

using variational autoencoders (VAE). We can draw inspiration from the human learn-

ing process. Imagine a young student in a classroom learning mathematics. If the 

teacher directly introduces multiplication, the student might feel confused and over-

whelmed. However, if the teacher starts with addition, thoroughly explaining the basic 

concepts, the student will not only grasp addition but also find it easier to understand 

multiplication. 

This process reveals an important principle: learning low-dimensional knowledge is 

the foundation for understanding high-dimensional knowledge. Similarly, in 

knowledge distillation, the teacher model should prioritize imparting low-dimensional 

knowledge that the student model can easily understand and assimilate. This approach 

not only enhances the student model's learning effectiveness but also lays a solid foun-

dation for it to learn high-dimensional knowledge in the future. VAE can compress 

high-dimensional features into low-dimensional robust features through the VAE loss 

function. These low-dimensional features retain the critical information of the teacher 

model while eliminating redundant parts of the features, thereby simplifying the learn-

ing process for the student model. In this way, the student model can more effectively 
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capture the useful knowledge from the teacher model, enhancing its performance in 

various tasks. The basic architecture of the model is shown in Fig. 2. 

 

Fig. 1. The teacher model directly imparts high-dimensional knowledge to the student model, 

but the student model may not learn well. Therefore, the teacher model focuses on imparting 

low dimensional knowledge that students can learn well. 

In summary, our contributions can be outlined as follows: 

• Proposing a knowledge distillation method based on VAE to extract low-dimen-

sional robust features from the teacher model and transfer them to the student model, 

thereby enhancing the generalization ability of the student model. 

• Designing a constraint method to address the structural differences between different 

model architectures. This method provides a more flexible and scalable solution for 

knowledge distillation. 

• Demonstrating the superiority of the proposed Online Knowledge Distillation 

Framework with Feature Disentanglement (KDFD) on 8 benchmark datasets 

through the comparative evaluations against the state-of-art methods in five tasks. 

2 Related Work 

2.1 Online Knowledge Distillation 

Pretrained Language Models (PLMs) have achieved notable success in text representa-

tion [9,10]. Recent studies aim to improve PLM-based models with specific pretraining 

tasks [11,12,13,14]. Knowledge distillation, introduced by [3], converts large models 

into smaller, efficient ones while maintaining generalization power. Traditional 



 

methods use KL divergence-based loss to align teacher and student model logits [15, 

16]. Initially, offline distillation was proposed, where the teacher model is fine-tuned 

and frozen before transferring knowledge [3,17,18]. To address offline distillation's 

limitations, online distillation was introduced, allowing simultaneous teacher-student 

updates in an end-to-end manner [19]. Advanced methods like ProKT [4] enable stu-

dents to learn from the teacher's optimization trajectory, showing how the teacher 

evolves from a random classifier to a strong model. However, challenges persist, such 

as teachers not adapting to students' capabilities [6]. MetaDistil [6] uses meta-learning 

and quiz data to enhance student performance and generalization, leveraging feedback 

on student progress to refine teacher knowledge transfer. LGTM [8] examines how dis-

tillation impacts student learning by evaluating performance on the validation set for 

each training sample. 

2.2 Textual Feature Disentanglement 

The disentanglement of latent space is first explored in the field of computer vision, 

and features of images (such as rotation and color) have been successfully disentangled 

[20]. In NLP tasks, it is used to address the decoupling of latent representations of text, 

such as text style and content [21], syntax and semantics [22], opinions and plots in 

user reviews [23], fairness representation and bias against sensitive attributes [24]. 

They rely on Variational Auto-Encoders or some variations [25], to restore the original 

feature from the space of disentanglement. In addition, there are methods to facilitate 

the separation of specific feature spaces by imposing regularization constraints on dif-

ferent tasks [26]. In this paper, inspired by the above disentangled methods, we promote 

the effect of cross-domain text classification by separating robust and unrobust features. 

The goal of model compression algorithms is to transform large and complex pre-

trained models into more streamlined and compact versions. 

3 Methodology 

3.1 Revisiting Knowledge Distillation 

Vanilla Distillation. Suppose we have a model representing a teacher, denoted by 𝑇, 

and a model representing a student, denoted by 𝑆. The respective model parameters are 

θ𝑡 and θs, i.e., θ𝑡 ∈ 𝑅|𝑡|×1 and θ𝑠 ∈ 𝑅|𝑠|×1. Given a labelled dataset 𝐷 with 𝑁 samples, 

𝐷 = {(𝑥1, 𝑦1) , … , (𝑥𝑁 , 𝑦𝑁)}. 
During the process of knowledge distillation, a properly trained teacher model is 

established. The parameters of the teacher model are then fixed, and its outputs are used 

to train a student model. The loss functions for the student network can be expressed 

formally as follows: 

ℒ𝑠(𝒟; 𝜃𝑠; 𝜃𝑡) =
1

𝑁
∑[𝛼𝑠ℒ𝑐𝑒(𝑦𝑖 , 𝑆(𝑥𝑖; 𝜃𝑠)) + (1 − 𝛼𝑠)ℒ𝓀𝒹(𝑇(𝑥𝑖 ; 𝜃𝑡), 𝑆(𝑥𝑖; 𝜃𝑠))]

𝑁

𝑖=1

(1) 
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The formula includes two loss functions: cross-entropy loss (ℒ𝑐𝑒) and knowledge 

extraction loss (ℒ𝓀𝒹), which is usually calculated using Kullback-Leibler (KL) diver-

gence. α denotes the weight between the cross-entropy loss and the knowledge extrac-

tion loss. The goal of this loss function is to balance two models: enabling the student 

network to learn effective knowledge from the teacher. 

The update of the student model is expressed as follows: 

𝜃𝑠
𝑚+1 = 𝜃𝑠

𝑚 − 𝜂𝑠𝛻ℒ𝓈(𝒟; 𝜃𝑠; 𝜃𝑡) (2) 

where ηs represents the learning rates for the models. The time steps before and after 

the model parameter updates are denoted as 𝑚 and 𝑚 + 1, tracking the evolution of the 

model parameters during training. 

However, in the vanilla distillation method, the teacher's parameters remain constant 

during the distillation process, limiting the teacher's ability to adjust behavior based on 

student feedback. 

Online Distillation. To increase the flexibility and efficiency of deep learning model 

training, a new technique called online distillation has been proposed [19]. This ap-

proach allows the teacher model to be aware of the learning progress of the student 

model, and adjust its output distribution to match that of the student model: 

ℒ𝑡(𝒟; 𝜃𝑠; 𝜃𝑡) =
1

𝑁
∑[𝛼𝑡ℒ𝑐𝑒(𝑦𝑖 , 𝑇(𝑥𝑖 ; 𝜃𝑡)) + (1 − 𝛼𝑡)ℒ𝓀𝒹(𝑇(𝑥𝑖; 𝜃𝑡), 𝑆(𝑥𝑖 ; 𝜃𝑠))]

𝑁

𝑖=1

(3) 

Updates have been made to the parameters of the training process for both models: 

𝜃𝑡
𝑚+1 = 𝜃𝑡

𝑚 − 𝜂𝑡∇ℒ𝓉(𝒟; 𝜃𝑡
𝑚; 𝜃𝑠

𝑚) (4) 

𝜃𝑠
𝑚+1 = 𝜃𝑠

𝑚 − 𝜂𝑠∇ℒ𝓈(𝒟; 𝜃𝑠
𝑚; 𝜃𝑡

𝑚+1) (5) 

By updating the parameters, the teacher model is made aware of the optimization 

progress of the student model [4], resulting in significant improvements. However, it is 

important to note that online distillation emphasizes the mutual influence between 

teacher and student but does not take into account any upper limit to the capabilities of 

the student model. This limitation may cause the student model to lack a complete un-

derstanding of certain knowledge, which may affect its ability to generalization [27]. 

Therefore, when considering the practical application of online distillation, it is crucial 

to carefully assess the capacity limitations of the student model and explore strategies 

to maximize its generalization capabilities. 

3.2 An Overview of Our Methodology 

The approach comprises two main parts. The first part enhances information interaction 

between models using span constraints. The second part focuses on learning low-di-

mensional information through information compression representations. Fig. 2 illus-

trates the model structure. 



 

 

Fig. 2. Overview of the KDFD Framework. The KDFD framework initially imposes constraints 

on the spans between models, followed by emphasizing compressed information in the final 

module. The output features of the base model are fed into VAE for disentanglement. The ro-

bust feature 𝑧μ is used to predict the sample labels. Finally, cross-entropy loss ℒ𝑐𝑒 , VAE loss 

ℒ𝓋𝒶ℯ and knowledge extraction loss ℒ𝓀𝒹 are used to co-optimize the model. 

We expect that the model can disentangle robust features in the continuous latent 

feature space, and it is used for effective model generalization. Inspired by some related 

work on textual feature disentanglement [21, 22], we adopt VAE to separate robust and 

unrobust features from sample feature space [25]. Specifically, we use a probabilistic 

latent variable 𝑧 to encode the representation ℎ, and then decode ℎ from 𝑧. 

Firstly, ℎ𝑗 represents the outputs of the hidden layer 𝑗, where 𝑘 is the number of hid-

den layers. The representation of the hidden layers is as follows: 

𝑝(ℎ) = ∫𝑝(𝑧)𝑝( ℎ ∣ 𝑧 )d 𝑧 (6) 

ℒ𝓋𝒶ℯ = −𝐸𝑞(𝑧∣∣ℎ )
[log 𝑝 ( ℎ ∣ 𝑧 )] + 𝐾𝐿(𝑞( 𝑧 ∣ ℎ )|𝑝(𝑧)) (7) 

where 𝑞(𝑧|ℎ) is the posterior given by the decoder, which is formed by 𝑁(μ,diag σ2). 

KL is Kullback-Leibler divergence. Here, μ and σ2 can be regarded as independent of 

each other under the premise of the standard normal, we present the relevant proof in 

the Appendix. Therefore, we use their corresponding representations to represent robust 

and unrobust features, instead of a simple feature split of 𝑧 [22]. In practice, they can 

be modeled by two independent linear transformations and represented as 𝑧μ, 𝑧σ. Next, 

to ensure the robustness of 𝑧μ, it should be able to help the model make correct predic-

tions. Therefore, a classification head is used to predict the label of the current sample, 

from 𝑧μ by cross entropy (CE): 

ℒ𝒸ℯ = 𝐶𝐸 (𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐻𝑒𝑎𝑑(𝑧𝜇))) (8) 

where 𝐻𝑒𝑎𝑑(⋅) is modeled using a linear transformation, which maps the input repre-

sentations to the latent label space. By optimizing the above loss, it is possible to ensure 

the effectiveness of robust features for the classification task. 
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3.3 Training and Inference 

Finally, the main body of training is the student model, so the overall loss function is 

the joint loss of three different loss functions: 

ℒ𝒶ℓℓ_𝓉 = λℒ𝓋𝒶ℯ
𝓂 + ℒ𝑡(𝒟; 𝜃𝑠

𝑚; 𝜃𝑡
𝑚) (9) 

ℒ𝒶ℓℓ_𝓈 = ℒ𝑠(𝒟; 𝜃𝑠
𝑚; 𝜃𝑡

𝑚+1) (10) 

where λ are the weighted coeffcient. Throughout the training process, all parameters of 

the teacher are frozen as it only provides prior knowledge of unrobust features. The 

following pseudocode details the training loop: 

Require: student 𝜃𝑠,teacher θ𝑡,train set 𝐷 

Require: η𝑠,η𝑡: learning rate for the student and the 

teacher 

Require: 𝑀:the maximum number of the training steps 

while not done do 

 while 𝑚 <  𝑀 do 

  Calculate the ℒ𝒶ℓℓ_𝓉 

  Update θ𝑡:θ𝑡
𝑚+1 = θ𝑡

𝑚 − η𝑡∇ℒ𝒶ℓℓ_𝓉
 

  Calculate the ℒ𝒶ℓℓ_𝓈 

  Update θ𝑠:θ𝑠
𝑚+1 = θ𝑠

𝑚 − η𝑠∇ℒ𝒶ℓℓ_𝓈
 

  𝑚 ← 𝑚 + 1 
 end while 

end while 

In the process of inference, the encoder part of the student model is used to predict 

the label of a new sample by the robust feature zμ. 

4 Experiment 

4.1 Baseline Models 

The study compares KDFD with eight baselines: 1) BERT-PKD [28] 2) TinyBERT 

[29] 3) ProKT [4] 4) TBERT-of-Theseus [30] 5) PESF-KD [31] 6) Meta Distill [6] 7) 

ReptileDistil [7] 8) LGTM [8]. 

4.2 Experimental Settings 

In previous works, models like BERT-PKD [28] and MetaDistill [6] have initialized 

their student models by truncating certain layers of the pre-trained BERT𝑏𝑎𝑠𝑒  model. 

Unlike the aforementioned methods, TinyBERT [29] and ReptileDistill [7] models 

have utilized a general TinyBERT1 for student initialization, which learns domain-

 
1  https://huggingface.co/huawei-noah/TinyBERT_General_6L_768D 



 

agnostic knowledge from intermediate layers of the pre-trained BERT𝑏𝑎𝑠𝑒  model. 

Therefore, we opt for the general TinyBERT6 to initialize the student model, aiming for 

improved generalization capability and performance. we can obtain a teacher model 

with comparable performance with BERTBASE reported on the GLUE official leader-

board2. 

4.3 Training Details 

We train our experimental teacher and student models simultaneously. The teacher 

model takes BERT and is individually tuned for each task. We set the maximum se-

quence length to 128 and the batch size to 32. The parameters at α𝑠 and α𝑡 are set to 

0.4 and 0.9 respectively. Using a grid search strategy, we adjust the learning rates for 

the teacher model η𝑡 from the set {1e-5, 3e-5, 5e-5} and for the student model ηs from 

the set {1e-5, 3e-5, 5e-5} under temperature settings of 1 and 1.5. 

Moreover, to ensure the reliability of the experimental results, we conducted multiple 

experiments using different random seeds to validate the stability of the model's per-

formance. By meticulously documenting various parameter settings and outcomes 

throughout the experimental process, we can comprehensively evaluate the effective-

ness of the proposed KDFD and its applicability across different tasks. 

5 Results and Analysis 

5.1 Main Results 

Based on the results presented in Table 1, we performed a comprehensive analysis of 

the performance of different methods on the GLUE dataset test set. The results show 

that KDFD achieved clear improvements in 6 out of 8 tasks. In particular, its perfor-

mance on the smaller datasets of CoLA, MRPC, RTE, and STS-B was commendable. 

However, there was no significant improvement on larger datasets such as QQP and 

MNLI. This could be due to the large amount of data in large datasets, allowing suffi-

cient time and resources for the learning process to capture the transfer of this low-

dimensional information. Nevertheless, KDFD was still close to the optimal perfor-

mance level. It showed optimal performance on the CoLA dataset, probably due to the 

nature of the task and the use of the Matthews correlation coefficient as an evaluation 

metric. When compared to online distillation methods, KDFD showed superior overall 

performance to methods such as ProKT and PESF-KD. This highlights the importance 

of transferring low-dimensional information that students can understand. Overempha-

sizing the comprehensive learning of teacher knowledge may lead students to over-fit 

teacher output, thereby reducing their generalization ability. 

 
2  https://gluebenchmark.com/leaderboard 
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Table 1. Experiment results on the test sets of GLUE. All of the listed student models have 

identical architectures, consisting of 6 Transformer layers, 66 million parameters, and 1.94x ac-

celeration. The best results for each dataset are highlighted in bold, while the second-best re-

sults are underlined. 

Methods 

CoLA 

(8.5k) 

Mcc 

SST-

2 

(67k) 

Acc 

MRPC 

(3.7k) 

F1/Acc 

STS-B 

(5.7k) 

Pear/Spea 

QQP 

(364k) 

F1/Acc 

MNLI 

(393k) 

Acc m/mm 

QNLI 

(105k) 

Acc 

RTE 

(2.5k) 

Acc 

BERT𝑏𝑎𝑠𝑒(Teacher) 52.1 93.5 88.9/84.8 87.7/85.8 71.2/89.2 84.6/83.4 90.5 66.4 

TinyBERT6(Student)         

BERT-PKD [28] 43.5 92.0 85.0/79.9 83.4/81.6 70.7/88.9 81.5/81.0 89.0 65.5 

TinyBERT [29] 51.1 93.1 87.3/82.6 85.0/83.7 71.6/89.1 84.6/83.2 90.4 70.0 

ProKT [4] - 93.6 88.1/83.8 - 71.2/89.2 84.2/83.4 90.9 - 

BERT-of-Theseus 

[30] 
47.8 92.2 87.6/83.2 85.6/84.1 71.6/89.3 82.4/82.1 89.6 66.2 

PESF-KD [31] - 91.5 86.0/80.6 - 70.3/88.7 81.5/80.6 87.6 65.1 

Meta Distill [6] 50.7 93.5 88.7/84.7 86.1/85.0 71.1/88.9 83.8/83.2 90.2 67.2 

ReptileDistil [7] 47.9 92.8 89.2/85.4 87.1/85.9 71.0/89.0 83.6/82.9 90.4 73.5 

LGTM [8] - 93.4 88.1/83.3 - 71.7/89.3 83.6/82.5 90.2 67.4 

ICR-KD [32] 46.5 93.1 89.4/85.7 87.5/86.7 71.4/89.2 84.7/83.6 91.3 73.5 

KDFD 51.4 92.4 89.7/86.1 87.9/87.0 71.2/89.4 84.3/83.6 91.5 73.6 

5.2 Impact of Different Features Compress 

In experimental settings, a structure known as an autoencoder (AE) is used. AE is a 

specialized neural network in which the input and output dimensions are equivalent 

[25]. Consisting of two main components, an encoder and a decoder, the encoder is 

used to encode the high-dimensional input 𝑧 into low-dimensional latent variables ℎ, 

thereby encouraging the neural network to learn the most informative features. Con-

versely, the decoder aims to reconstruct the hidden layer latent variables ℎ back to the 

original dimensionality, ideally achieving a perfect or approximate restoration of the 

original input. Based on this research, we decided to use the method of capturing com-

pressed representations of models for knowledge distillation. To achieve this, we have 

used AE to capture effective low-dimensional features from the teacher model and to 

capture the primary variance in the data. The comparison results of the AE and VAE 

based on the GLUE test set are shown in Table 2. 

Table 2. Autoencoder and vae based on the GLUE test set. 

Methods 

CoLA 

(8.5k) 

Mcc 

SST-

2 

(67k) 

Acc 

MRPC 

(3.7k) 

F1/Acc 

STS-B 

(5.7k) 

Pear/Spea 

QQP 

(364k) 

F1/Acc 

MNLI 

(393k) 

Acc m/mm 

QNLI 

(105k) 

Acc 

RTE 

(2.5k) 

Acc 

AE 43.8 92.8 88.3/84.0 86.8/85.9 71.0/88.6 84.0/83.2 91.0 72.5 

VAE 43.2 92.9 88.1/84.2 86.7/85.6 71.4/88.8 83.7/83.3 90.9 72.8 



 

5.3 Ablation Analysis 

To validate the effectiveness of our approach, we performed ablation experiments. The 

results are presented in Table 3. We analyzed the role of the variational autoencoder in 

model distillation (denoted as Vanilla VAE). The results of the distillation experiments 

show a significant improvement in performance when the VAE is used. Compared to 

models without the use of the VAE, the performance of models with the Variational 

autoencoder is more robust. This highlights the effectiveness of the VAE in facilitating 

the student model to capture important feature information. 

Table 3. Ablation results based on the GLUE test set. 

Methods 

CoLA 

(8.5k) 

Mcc 

SST-

2 

(67k) 

Acc 

MRPC 

(3.7k) 

F1/Acc 

STS-B 

(5.7k) 

Pear/Spea 

QQP 

(364k) 

F1/Acc 

MNLI 

(393k) 

Acc m/mm 

QNLI 

(105k) 

Acc 

RTE 

(2.5k) 

Acc 

Vanilla KD 43.7 92.0 88.8/84.8 86.4/85.6 70.8/88.6 84.0/83.2 90.8 72.5 

KDFD 51.4 92.4 89.7/86.1 87.9/87.0 71.4/89.4 84.3/83.6 91.5 73.6 

 

5.4 Feature Correlation Analysis 

To analyze the correlation between the original features and those extracted by the 

KDFD model, we calculate the covariance matrix for each dimension in RTE dataset. 

As depicted in Fig. 3, the representations generated by the KDFD model exhibit low 

correlations across all dimensions, indicating that KDFD facilitates the learning of a 

more disentangled representation. 

 

Fig. 3. The covariance matrix of the student model’s representation. The darker color denotes a 

large correlation value. Due to space limitation, we only report the results for the first 16 di-

mensions. 
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5.5 Visualization 

Further, through the visualization of the representations, we determine the impact of 

feature disentanglement. Specifically, tSNE is used to project 64-dimensional features 

into latent space. In Fig. 4, we show the visualization results, the representation 𝑧µ of 

the VAE model is used for classification so that smooth clusters can be obtained with 

model optimization, which can be observed in Fig. 4, the purple clusters on the 

right(origin) are not as smooth and compact as left(VAE), suggesting that VAE can 

enhance the results of label classification. 

 

Fig. 4. Feature visualization results of 𝑧μ(VAE compressed feature) and 𝑧(original features). 

5.6 Impact of different compression dimensions and loss balance value 

In order to verify the validity of the VAE module, several experimental groups were 

designed, using three different data sets and employing different compression dimen-

sions for model distillation. The performance of these experimental groups was then 

compared in Fig. 5. 

We first study the effects of compression dimensions by varying them in {768, 512, 

256, 128,64}. The experimental results indicate that when information is emphasized 

by compression dimensions, the performance of the student model improves compared 

to the baseline experimental group. However, it is important to note that the effective-

ness of this improvement can vary across different datasets, and reducing dimensions 

does not necessarily lead to better results. Therefore, when selecting compression di-

mensions, it is crucial to strike a balance between performance improvement and infor-

mation loss in order to identify the optimal compression dimensions and thereby 

achieve the best balance between performance and efficiency. 

Then we performed experiments by varying λ in {0.001, 0.002, 0.005, 0.010}. The 

results on four datasets are shown in Fig. 5. From them, we can see that the model 

performance exhibits a trend of initially increasing and then decreasing as λ increases. 

We can conclude that when the VAE loss function is too large, it may lead to difficulties 

in model convergence and overfitting issues, while when the loss function is too small, 

underfitting and poor feature disentanglement effects may occur. Adjusting the size of 

the loss function requires adjustments in hyperparameters, model architecture, and 



 

optimizer settings to ensure that the model can learn the underlying structure of the data 

within an appropriate range and achieve good results in feature disentanglement tasks. 

 

Fig. 5. FDKD Performance with different dimensions and VAE loss balance factor. 

6 Conclusion 

In this paper, we present a new approach for distilling knowledge in text representation 

called KDFD. Our technique is created to address the performance gap between large-

scale pre-trained models and smaller ones. Drawing inspiration from the Information 

Bottleneck principle, KDFD selectively retains crucial information for the student 

model while discarding irrelevant information. This assists the student model in avoid-

ing over-fitting and achieving a more disentangled representation. Through empirical 

experiments conducted on two text representation tasks, we demonstrate the effective-

ness of KDFD in terms of accuracy and efficiency. These results establish KDFD as a 

promising technique for real-world applications. 
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Appendix 

Suppose a set of independent samples {𝑋1, 𝑋2, … , 𝑋𝑛} follow the normal distribution 

𝑁(𝜇,diag 𝜎2). The mean and variance of the samples are independent of each other. 

For the above samples, the mean and variance can be expressed as: 𝑋̅ =
1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1  

and 𝑆2 =
1

𝑛−1
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1 . To prove that  𝑋̅ and 𝑆2 is independent of each other, an 

orthogonal matrix A is constructed as follow: 

𝐴 =

[
 
 
 
 
 
 
 
 
 

1

√𝑛

1

√𝑛

1

√n 
⋯

1

√𝑛

1

√𝑛
1

√2 ⋅ 1

−1

√2 ⋅ 1
0 ⋯ 0 0

1

√3 ⋅ 2

1

√3 ⋅ 2

−2

√3 ⋅ 2
⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

√𝑛(𝑛 − 1)

1

√𝑛(𝑛 − 1)

1

√𝑛(𝑛 − 1)
⋯

−1

√𝑛(𝑛 − 1)

−(𝑛 − 1)

√𝑛(𝑛 − 1)]
 
 
 
 
 
 
 
 
 

(1) 

𝑋  can be transformed into 𝑌  by the orthogonal transformation 𝑌 =  𝐴𝑋 , 𝑌 =
[𝑌1, 𝑌2, … , 𝑌𝑛]𝑇, Since 𝑌 can be represented by 𝑋, the probability density function for 

both can be written as: 
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𝒫(𝑌) = 𝒫(𝑋) = 𝒫(𝑋1)𝒫(𝑋2)… 𝒫(𝑋𝑛)

= ∏
1

√2𝜋𝜎

𝑛

𝑖=1

𝑒
−

(𝑋𝑖−𝜇)2

2𝜎2

= (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2 ∑ (𝑋𝑖−𝜇)2𝑛
𝑖=1 (2)

= (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2 ∑ (𝑋𝑖
2−2𝑋𝑖𝜇+𝜇2)𝑛

𝑖=1

= (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2(∑ 𝑋𝑖
2𝑛

𝑖=1 −2𝑛𝑋̅𝜇+𝑛𝜇2)

 

For 𝑌 , we have 𝑌𝑇𝑌 = (𝐴𝑋)𝑇(𝐴𝑋) = 𝑋𝑇𝐴𝑇𝐴𝑋 = 𝑋𝑇𝑋 and 𝑌𝑇𝑌 can be calculated 

by [𝑌1, 𝑌2, … , 𝑌𝑛] × [𝑌1, 𝑌2, … , 𝑌𝑛]𝑇 = ∑ 𝑌𝑖
2𝑛

𝑖=1  , so ∑ 𝑌𝑖
2𝑛

𝑖=1 = ∑ 𝑋𝑖
2𝑛

𝑖=1 , Besides 𝑌1 =

√
1

𝑛
(𝑋1, 𝑋2, … , 𝑋𝑛) = √𝑛𝑋̅ ,So 𝑋̅ = √

1

𝑛
𝑌1, replace 𝑋 in Eq 2 with 𝑌 , we get: 

𝒫(𝑌) = (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2(∑ 𝑌𝑖
2𝑛

𝑖=1 −2√𝑛𝑌1𝜇+𝑛𝜇2)

= (2𝜋𝜎2)−
𝑛
2𝑒

−
1

2𝜎2(∑ 𝑌𝑖
2𝑛

𝑖=2 +𝑌1
2−2√𝑛𝑌1𝜇+𝑛𝜇2)

= (2𝜋𝜎2)−
𝑛
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−
1
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We can infer that 𝑌 is independent of each other as Eq 3 proves that the probability 

density function of 𝑌 can be written as the product of the density functions of its varia-

bles. Then, for 𝑆2, we have: 

(𝑛 − 1)𝑆2 = ∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

= ∑(𝑋𝑖
2 − 2𝑋𝑖𝑋̅ + 𝑋2̅̅̅̅ )

𝑛

𝑖=1

= ∑𝑋𝑖
2

𝑛

𝑖=1

+ ∑ 𝑋̅(𝑋̅ − 2𝑋𝑖)

𝑛

𝑖=1

= ∑𝑋𝑖
2

𝑛

𝑖=1

− 𝑛𝑋2̅̅̅̅ (4)

= ∑𝑌𝑖
2

𝑛

𝑖=1

− 𝑌1
2

= ∑𝑌𝑖
2

𝑛

𝑖=2

 

Therefore, 𝑋̅ is only affected by 𝑌1, while 𝑆2 is affected by 𝑌2 to 𝑌𝑛. 


