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Abstract. Diabetes mellitus has emerged as a global health crisis, with its prev-

alence rising sharply and placing significant strain on healthcare systems. Early 

and accurate prediction of diabetes risk is crucial for effective prevention and 

management. While machine learning and deep learning techniques have made 

advancements in diabetes prediction, feature engineering remains an underem-

phasized area and faces several challenges, particularly in terms of interpretabil-

ity, depth, and stability. To address these challenges, this study proposes a novel 

Medical Enhancement Consensus Feature Engineering (MECFE) approach that 

integrates structured medical knowledge with data-driven insights. MECFE con-

sists of two key components: Medical-Data Collaborative Feature Construction 

(MD-CFC), which incorporates clinical knowledge and ClinicalBERT for en-

riched feature generation; and Heterogeneous Model Consensus Feature Selec-

tion (HM-CFS), which employs a three-layer weighted fusion strategy across 

multiple models to improve feature stability and clinical relevance. Experimental 

results show significant improvements in the performance metrics of all models, 

with Bayesian-optimized LightGBM achieving the best results: R2 increasing by 

0.108, RMSE decreasing by 23.66%, MSE reducing by 41.75%, and MAPE 

dropping by 16.42%, demonstrating the effectiveness of the MECFE. Addition-

ally, feature importance analysis in LightGBM is employed to further enhance 

the model’s interpretability, providing deeper insights into the factors influencing 

diabetes risk. 

Keywords: Diabetes Prediction, Feature Engineering, Heterogeneous Model, 

LightGBM, ClinicalBERT, Interpretability. 

1 Introduction 

Diabetes mellitus, a chronic metabolic disorder marked by hyperglycemia, has become 

a pressing global health concern. According to the International Diabetes Federation 

[1,2], the number of diabetic patients is expected to reach 783 million by 2045, with 



 

China experiencing a 56% increase over the past decade alone [3,4]. Diabetes is a major 

driver of complications such as cardiovascular and renal diseases, significantly burden-

ing healthcare systems worldwide [5]. Consequently, improving early diagnosis and 

predictive accuracy is critical for effective disease prevention and healthcare resource 

management. 

Recent advancements in machine learning and deep learning have shown promise in 

diabetes risk prediction. While conventional models such as logistic regression are val-

ued for their interpretability, they often fail to capture complex nonlinear patterns in-

herent in clinical data [6]. In contrast, advanced machine learning algorithms—such as 

Random Forest (RF) [7], XGBoost [8], and Support Vector Machines (SVM) [9]—can 

partially address nonlinearity, whereas deep learning architectures, including Deep 

Neural Networks (DNNs) [10] and Long Short-Term Memory networks (LSTMs) [11], 

are particularly effective in handling large-scale, high-dimensional datasets. However, 

most studies focus on model optimization, often overlooking the foundational role of 

feature engineering in improving prediction quality and clinical applicability. 

Feature engineering—comprising preprocessing, feature construction, and feature 

selection—remains underutilized and insufficiently explored in medical predictive 

modeling. Clinical datasets are typically high-dimensional, heterogeneous, and noisy, 

and inadequately engineered features may mask clinically relevant biomarkers, thereby 

degrading both model performance and interpretability [12]. Current feature engineer-

ing methodologies face three primary challenges: limited interpretability, insufficient 

feature information depth, and instability of selected feature subsets. For instance, tech-

niques like Principal Component Analysis or correlation-based selection [13,14] often 

lack pathological relevance, while inconsistency in selection criteria across models re-

duces feature stability [15]. 

To address these limitations, this study proposes a novel MECFE approach, com-

posed of two synergistic modules: MD-CFC and HM-CFS. MD-CFC integrates struc-

tured medical knowledge and ClinicalBERT [16] with data-driven construction to en-

rich feature representation. HM-CFS employs six model-based scoring methods fused 

via a three-layer strategy—including a self-attention mechanism and medical refine-

ment layer—to select more stable and clinically meaningful features. These features are 

validated across multiple algorithms, with a Bayesian-optimized LightGBM model [17] 

ultimately achieving superior performance. To enhance clinical insight, this study fur-

ther leverage LightGBM’s feature importance and regression tree visualization to ex-

plain model decisions and highlight influential risk factors. 

The main contributions of this study are as follows: 

1. Innovative Feature Engineering Approach: This study proposes MECFE, 

which fuses medical knowledge and data-driven learning through MD-CFC and HM-

CFS for enriched and interpretable feature design. 

2. Improved Predictive Performance: Extensive experiments demonstrate that 

MECFE improves predictive accuracy across various algorithms, with LightGBM 

achieving the best results. 

3. Enhanced Model Interpretability: Feature importance analysis offers transpar-

ent insights into diabetes risk, aiding clinical decision-making. 
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2 Materials and Methods 

2.1 Dataset 

The dataset employed in this study is sourced from the Tianchi Precision Medicine 

Competition, a publicly available clinical dataset comprising 6,768 samples. The fea-

ture space consists of 39 biomedical indicators, categorized into nine distinct groups: 

four liver function indicators, four serum protein indicators, four lipid-related indica-

tors, three renal function markers, five hepatitis B-related indicators, eight hematolog-

ical cell counts, four platelet-associated indicators, five immune cell proportions, and 

one demographic attribute. The target variable is the Blood Glucose (BG), which serves 

as a clinical proxy for diabetes risk.  

 

2.2 LightGBM 

LightGBM is adopted as the core prediction model in MECFE for its efficiency and 

scalability in high-dimensional biomedical data. It is based on Gradient Boosted Deci-

sion Trees (GBDT), and its objective function combines prediction loss with a regular-

ization term: 

  𝐿 = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , 𝑦̂𝑖) + ∑  𝑇

𝑡=1 Ω(𝑓𝑡)  (1) 

At each iteration, gradients and Hessians are computed as: 

 𝑔𝑖 =
∂𝑙(𝑦𝑖,𝑦̂𝑖)

∂𝑦̂𝑖
, ℎ𝑖 =

∂2𝑙(𝑦𝑖,𝑦̂𝑖)

∂𝑦̂𝑖
2  (2) 

A greedy algorithm is then used to build decision trees by maximizing information 

gain. Bayesian Optimization with Expected Improvement is employed to fine-tune hy-

perparameters, ensuring optimal model performance. 

 

2.3 ClinicalBERT 

ClinicalBERT, a Transformer-based model pretrained on large-scale medical texts. It 

employs the standard self-attention mechanism: 

   Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉 (3) 

and multi-head attention: 

   MultiHead(𝑄, 𝐾, 𝑉) = Concat(head1, … , headℎ)𝑊𝑂 (4) 

In this study, ClinicalBERT contributes in two ways: (1) during feature construction, 

it interprets clinical narratives to extract medically relevant features, mitigating the lim-

itations of manual or rule-based approaches; and (2) during model training, attention 

weights from the fine-tuned ClinicalBERT—capturing the interactions between BG 

and 38 biomedical indicators—are leveraged as adaptive importance scores to inform 

feature selection. 



 

3 Overview 

MECFE encompasses a multi-stage pipeline of data preprocessing, feature engineering, 

model optimization, and interpretability analysis, as illustrated in Fig. 1. The pipeline 

begins with systematic data preprocessing to ensure data quality and consistency for 

subsequent modeling tasks. The MECFE consists of two core components: 1) MD-

CFC, which integrates exploratory data analysis with domain-informed feature con-

struction by combining structured clinical knowledge and semantic representations ex-

tracted via ClinicalBERT; 2) HM-CFS, which leverages multiple learning algorithms 

to evaluate feature importance from diverse perspectives. These features are then re-

fined through a three-layer process: a feature evaluation layer, a weighted fusion layer, 

and a medically-informed refinement layer. A self-attention mechanism is introduced 

to enhance the interpretability and relevance of selected features. The resulting feature 

subset is passed into a LightGBM model, with its hyperparameters optimized via 

Bayesian methods. Finally, interpretability analysis is conducted to provide insight into 

the model's decision process, ensuring clinical relevance and transparency. 

 

Fig. 1. Overview of Prediction Process. 

4 Medical-Enhanced Consensus Feature Engineering 

4.1 Medical-Data Collaborative Feature Construction 

Data Preprocessing. To ensure modeling quality, raw data undergo systematic prepro-

cessing. Missing values are imputed with the mean, and outliers are normalized via Z-

score transformation. The dataset is split into 5,414 training and 1,354 test samples 

using an 8:2 ratio. To address class imbalance, oversampling is applied to create a bal-

anced 1:1 distribution between diabetic and non-diabetic samples in the training set. 
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Feature Construction Based on Data Mining. This study conducts exploratory data 

analysis (EDA) using Pearson correlation and scatterplot matrices to identify redun-

dancy and relevance among features.  

Fig. 2 shows that certain indicators exhibit strong mutual correlations. For example, 

red blood cell count correlates highly with hemoglobin (r = 0.80) and hematocrit (r = 

0.87), indicating strong collinearity due to their common role in reflecting oxygen-car-

rying capacity. Platelet count and plateletcrit exhibit a very high correlation (r=0.92), 

highlighting a linear relationship between platelet count and total platelet volume. 

Globulin is also strongly correlated with total protein (r=0.76), reflecting physiological 

relationships in plasma composition. A strong negative correlation(r=0.95) is observed 

between neutrophils and lymphocytes, suggesting an immune dynamic balance. Im-

portantly, over 70% of the features exhibit weak correlations (|r|<0.5), suggesting low 

redundancy across most features. This indicates a strong potential for feature engineer-

ing to enhance the representational capacity of the feature space and improve model 

generalizability. 

 

Fig. 2. Pearson Correlation Coefficient Matrix. 

The scatterplot matrix is used to analyze the linear relationship between each feature 

and the target variable BG. As shown in  Fig. 3, the overall linear correlation between 

most features and BG levels is weak. Certain features, such as globulin, triglycerides, 

and hepatitis B core antibody, show no clear correlation with BG levels. In contrast, 

features like platelet count, red blood cell indicators, and age exhibit a more noticeable 

relationship with BG. These findings suggest that subsequent feature engineering 

should focus on strengthening the relevant features while eliminating weakly associated 

ones, in order to optimize the feature set and enhance model performance. 



 

 

Fig. 3. Linear Correlation Scatter Matrix. 

Based on these observations, this study applies arithmetic operations—such as addi-

tion, subtraction, multiplication, and division—as well as advanced transformations 

like feature crossing and polynomial expansion. These methods generate 51 composite 

features that aim to capture nonlinear interactions and latent physiological relationships 

within the data. 

Feature Construction Based on Medical Knowledge. To integrate domain 

knowledge, this study utilizes ClinicalBERT to extract semantic embedding from med-

ical text  𝑇: 

   𝐸 = ClinicalBERT(𝑇),      𝑋gen = ℎ(𝐸) (5) 

These embeddings encode contextualized medical semantics, which are then trans-

formed into candidate features via a nonlinear mapping function ℎ(·). To ensure clini-

cal validity, a domain knowledge filter 𝑀—constructed based on structured ontologies 

and rule-based constraints—is applied. This filter selects feature pairs (𝑥𝑖 , 𝑥𝑗) with con-

firmed clinical associations. The final refined feature set is computed as: 

   𝑋final = {𝑥𝑖 × 𝑥𝑗 ∣ (𝑥𝑖 , 𝑥𝑗) ∈ 𝑀} (6) 

This dual construction strategy combines data-driven derivation with domain-guided 

validation. It yields 37 clinically meaningful composite features that improve both the 
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expressiveness and interpretability of the model input space. As a result, the proposed 

features enhance the performance of diabetes risk prediction and provide a more relia-

ble basis for clinical decision-making. 

 

4.2 Heterogeneous Model Consensus Feature Selection 

To ensure stable, interpretable and clinically relevant feature selection, this study intro-

duces the HM-CFS mechanism that integrates statistical, machine learning, and large 

language model–driven perspectives. 

Heterogeneous Model Feature Importance Estimation Approach. This section in-

troduces the feature importance estimation methods based on a set of heterogeneous 

models, including least absolute shrinkage and selection operator (LASSO) [18], SVM, 

classification and regression tree (CART) [19], RF, neural network (NN) [20]. 

LASSO: Performs linear regression with L1 regularization to enforce sparsity. 

   𝑚𝑖𝑛
𝑤

 
1

2𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − 𝑤⊤𝑥𝑖)2 + 𝜆 ∥ 𝑤 ∥1 (7) 

Features with zero coefficients are excluded, making LASSO particularly effective 

for high-dimensional data where interpretability and parsimony are critical. 

SVM: Incorporates L1 regularization into its margin-based objective: 

   𝑚𝑖𝑛
𝑤,𝑏,𝜉

 
1

2
∥ 𝑤 ∥2

2+ 𝐶 ∑  𝑁
𝑖=1 𝜉𝑖 + 𝜆 ∥ 𝑤 ∥1 (8) 

Only features that influence the optimal separating hyperplane retain non-zero 

weights. Kernelized versions further capture complex, nonlinear dependencies relevant 

to biomedical prediction tasks. 

CART: Selects features based on their ability to reduce mean squared error (MSE) at 

each split: 

   ΔMSE = MSE𝑡 −
|𝐷𝐿|

|𝐷𝑡|
MSE𝐿 −

|𝐷𝑅|

|𝐷𝑡|
MSE𝑅 (9) 

This recursive partitioning yields interpretable decision rules and naturally handles 

mixed data types. 

RF: Computes feature importance by measuring the increase in out-of-bag (OOB) error 

when a feature is randomly permuted: 

   𝐼𝑗 =
1

𝑇
∑  𝑇

𝑡=1 (MSEOOB,𝑡 − MSEOOB,𝑡
(𝑗)

) (10) 

This ensemble-based approach stabilizes selection across resampled subsets and cap-

tures nonlinear interactions missed by individual trees. 



 

NN: Estimates feature relevance based on the input-layer weights, typically using the 

weight matrix  𝑊(1)from the input to the first hidden layer: 

 𝐼𝑗 = ∑  𝐻
𝑖=1 |𝑊𝑖𝑗

(1)
| (11) 

Larger cumulative weights indicate greater influence on the output. The capacity of 

NNs to model high-order dependencies makes them valuable in uncovering latent in-

teractions in complex clinical datasets. 

Hierarchical Multi-Perspective Weighted Fusion Mechanism. To consolidate the 

diverse feature importance scores derived from heterogeneous models, this study pro-

poses a Hierarchical Multi-Perspective Weighted Fusion Mechanism (HMP-WFM), as 

illustrated in Fig. 4. This three-layer framework integrates model-derived importance, 

consistency-based weighting, attention-guided medical relevance, and external clinical 

validation, yielding a robust and interpretable feature subset for downstream modeling. 

 

Fig. 4. Heterogeneous Model Consensus Feature Selection Process. 

Feature Evaluation Layer. This study first computes a raw importance matrix 𝑊raw ∈
ℝ𝑀×5, where each entry corresponds to the score of feature 𝑥𝑗 as determined by one of 

five models. 

Weighted Fusion Layer. To account for model agreement and medical relevance, this 

study designs two complementary weighting schemes: 

1) Model Consistency is assessed by computing the average rank and variance of 

each feature across models. Features with high mean rank and low variance are empha-

sized using a stability-enhancing weight: 

 𝑊𝑗
stability

∝ exp (−Var𝑗) ⋅ RankScore𝑗 (12) 
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2) Clinical Relevance is derived using ClinicalBERT, which estimates the attention 

score 𝛼𝑗  between each feature and BG. These scores are normalized and enhanced 

based on a confidence threshold: 

 𝑊𝑗
BERT =

exp (𝛼𝑗)

∑  𝑀
𝑘=1 exp (𝛼𝑘)

,      𝑊𝑗
BERT−adjusted

= 𝑊𝑗
BERT ⋅ (1 + 𝜂 ⋅ Δ𝛼𝑗) (13) 

Medical Refinement Layer. Features verified through biomedical ontologies or litera-

ture receive an additive adjustment: 

 𝑊𝑗
medical = 𝑊𝑗 ⋅ (1 + 𝜌𝑗) (14) 

where 𝜌𝑗 reflects the strength of external clinical evidence. 

Final Feature Importance Calculation. The final importance score of feature 𝑥𝑗 is com-

puted by weighted summation across all layers: 

 𝑊𝑗
final = 𝜆 ⋅ 𝑊𝑗

raw + 𝜇 ⋅ 𝑊𝑗
stability

+ 𝜈 ⋅ 𝑊𝑗
BERT-adjusted

+ 𝜏 ⋅ 𝑊𝑗
medical (15) 

The weight 𝜆, 𝜇, 𝜈, 𝜏 are hyperparameters tuned via grid search. 

Features with 𝑊𝑗
final > 𝜃 (threshold determined via cross-validation) form the se-

lected subset: 

 𝑋selected = {𝑥𝑗 ∣ 𝑊𝑗
final > 𝜃} (16) 

By fusing quantitative evaluation, model consensus, language-model insight, and 

domain knowledge, HMP-WFM enables interpretable, stable, and clinically grounded 

feature selection—laying a strong foundation for accurate diabetes risk modeling. 

5 Experiments 

5.1 Settings 

To enable fine-grained diabetes risk modeling, this study adopts BG as a continuous 

predictive target, rather than a binary label. As a richer signal, BG better captures non-

linear relationships with features and supports more informative risk assessment. 

Two comparative experiments are designed: (1) evaluating performance before and 

after MECFE-based feature enhancement under the same model, and (2) comparing 

multiple mainstream models post-enhancement to identify the optimal architecture. 

Models include LR, SVM, DT, RF, NN, XGBoost, CatBoost, and LightGBM. All mod-

els are trained using five-fold cross-validation on an 8:2 train-test split, with input fea-

tures standardized. 

Model performance is evaluated using the coefficient of determination (R²), mean 

squared error (MSE), root mean squared error (RMSE), and mean absolute percentage 

error (MAPE). Hyperparameters are tuned individually: LightGBM uses Bayesian op-

timization; XGBoost and CatBoost apply grid search with cross-validation; SVM and 



 

NN undergo targeted adjustments to kernels, regularization, and architecture. Experi-

ments are executed on Ubuntu 22.04 with an NVIDIA RTX 3090 GPU and CUDA 

12.3, using frameworks such as scikit-learn, XGBoost, LightGBM, and CatBoost. 

To enhance interpretability, the final model is analyzed via feature importance rank-

ings, offering insights into key predictive factors and further validating MECFE’s abil-

ity to select clinically relevant features. 

 

5.2 Results 

The dataset is preprocessed through outlier removal, missing value imputation, and 

standard normalization to ensure consistency across numerical features. Beyond the 

original variables, 51 features are derived via data-driven methods and 37 are con-

structed based on medical domain knowledge, resulting in 126 candidate features. The 

HM-CFS module is employed to quantify feature importance and select the top 40 in-

formative features. Finally, a Bayesian-optimized LightGBM model is trained on the 

refined feature set to achieve improved predictive performance. 

Feature Engineering Effectiveness Evaluation. To evaluate the effectiveness of 

MECFE, this section compares model performance under scenarios with and without 

the proposed feature engineering approach. 

 

Fig. 5. Comparative Assessment Before and After Feature Engineering. 
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As shown in Fig. 5(a), the R² values of most models increase after applying MECFE, 

with notable improvements observed in DT, CatBoost, and LightGBM, whose R² val-

ues rise by 0.043, 0.031, and 0.108, respectively. It indicates that the feature enhance-

ment process substantially improves model fitting. Meanwhile, Fig. 5(b) and Fig. 5(c) 

show consistent reductions in RMSE and MSE. Specifically, the RMSE of LightGBM 

decreases by 23.67%, while its MSE drops by 41.75%. On average, the RMSE across 

all models reduces by 12.24%, and MSE by 40.67%, demonstrating that MECFE effec-

tively lowers prediction errors. Fig. 5(d) further reveals improvements in MAPE, with 

LightGBM achieving a reduction of 16.42%, while SVM shows the smallest change 

with a 0.96% decrease. The average MAPE reduction across models is 11.85%. The 

results highlight MECFE’s effectiveness in reducing prediction errors and mitigating 

model bias. 

Model Comparison Evaluation. In this section, a comprehensive evaluation of vari-

ous models' performance is conducted. 

Table 1. Model Prediction Results. 

Algorithm Name R2 RMSE MSE MAPE 

LR 0.138 1.385 1.918 0.117 

SVM 0.018 1.478 2.185 0.103 

DT -0.636 1.909 3.645 0.167 

NN -0.230 1.655 2.741 0.126 

RF 0.090 1.362 1.855 0.112 

XGBoost 0.108 1.239 1.536 0.117 

CatBoost 0.118 1.465 1.465 0.117 

LightGBM 0.165 1.200 1.440 0.112 

Table 1 shows that LightGBM achieves the highest R² score of 0.165, indicating the 

strongest fitting capability. It also records the lowest RMSE and MSE values, at 1.200 

and 1.440 respectively, reflecting minimal prediction error. CatBoost and XGBoost 

also demonstrate competitive performance, particularly in error control. In contrast, 

Decision Tree and Neural Network models perform poorly, with negative R² values and 

relatively high RMSE and MSE, suggesting weak predictive capability. In terms of 

MAPE, SVM achieves the best performance, followed closely by LightGBM and Ran-

dom Forest. Overall, LightGBM offers the most balanced and reliable performance, 

making it the optimal choice for downstream analysis of diabetes-related risk factors. 

Interpretability Analysis. To better understand and analyze the intermediate process 

of model prediction and identify the key features in diabetes risk prediction, an in-depth 

analysis of the feature importance plot of the LightGBM model is conducted. 



 

 

Fig. 6. LightGBM Feature Importance Results. 

Fig. 6 presents the feature importance distribution derived from the LightGBM 

model, highlighting the relative contribution of each variable to the final prediction. 

Notably, the Gamma-Glutamyl Transferase Cholesterol Product exhibits the highest 

importance, underscoring its critical role in reflecting liver metabolic dysfunction. 

Other top-ranking features such as Triglycerides, Aspartate Aminotransferase Propor-

tion, and Red Blood Cell Hemoglobin Product further reinforce the clinical relevance 

of liver enzymes and lipid metabolism in diabetes risk prediction. Several high-impact 

features are derived through MECFE’s enhancement strategy, including Aminotrans-

ferase Product and Gamma-Glutamyl Transferase Uric Acid Difference, demonstrating 

the approach’s ability to capture meaningful interactions among biological markers. 

Conversely, features like Red Cell Distribution Width and Plateletcrit show minimal 

influence. Overall, the highly ranked features align closely with those selected by the 

MECFE framework, validating its effectiveness in enhancing model feature represen-

tation. 

6 Conclusion 

This study proposes a novel MECFE approach to address the challenges in early dia-

betes prediction. By integrating both data-driven methods and medical prior knowledge 

in the MD-CFC component, and employing a multi-model consensus approach for fea-

ture selection in the HM-CFS component, MECFE enhances diabetes risk prediction 

performance, feature stability, and interpretability. Experimental results demonstrate 

consistent gains across multiple metrics (R², RMSE, MSE, MAPE), while feature im-

portance visualization further enhances model explainability. Nevertheless, as valida-

tion is currently limited to public datasets, future work should evaluate MECFE in real-

world clinical settings to assess its practical applicability. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

Acknowledgments. This study is supported by the Key Research and Development Program of 

Zhejiang Province (2025C01135). 

Disclosure of Interests. The authors have no competing interests to declare that are relevant to 

the content of this article. 

References 

1. Heald, A.H., Stedman, M., Davies, M., et al.: Estimating life years lost to diabetes: Out-

comes from analysis of National Diabetes Audit and Office of National Statistics data. Car-

diovascular Endocrinology & Metabolism 9(4), 183–185 (2020) 

2. International Diabetes Federation.: IDF diabetes atlas, 10th ed. Belgium: International Dia-

betes Federation. Retrieved from https://diabetesatlas.org/atlas/tenth-edition/ (2021) 

3. Lin, X., Xu, Y., Pan, X., et al.: Global, regional, and national burden and trend of diabetes 

in 195 countries and territories: An analysis from 1990 to 2025. Scientific Reports 10(1), 1–

11 (2020) 

4. Ong, K.L., Stafford, L.K., McLaughlin, S.A., et al.: Global, regional, and national burden of 

diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis 

for the Global Burden of Disease Study 2021. The Lancet 402(10397), 203–234 (2023) 

5. Abel, E.D., Gloyn, A.L., Evans-Molina, C., et al.: Diabetes mellitus—Progress and oppor-

tunities in the evolving epidemic. Cell 187(15), 3789–3820 (2024) 

6. Uddin, S., Khan, A., Hossain, M.E., et al.: Comparing different supervised machine learning 

algorithms for disease prediction. BMC Medical Informatics and Decision Making 19(1), 

1–16 (2019) 

7. VijiyaKumar, K., Lavanya, B., Nirmala, I., et al.: Random forest algorithm for the prediction 

of diabetes. In: 2019 IEEE International Conference on System, Computation, Automation 

and Networking (ICSCAN), pp. 1–5. IEEE (2019) 

8. Prabha, A., Yadav, J., Rani, A., et al.: Design of intelligent diabetes mellitus detection sys-

tem using hybrid feature selection-based XGBoost classifier. Computers in Biology and 

Medicine 136, 104664 (2021) 

9. Yu, W., Liu, T., Valdez, R., et al.: Application of support vector machine modeling for pre-

diction of common diseases: The case of diabetes and pre-diabetes. BMC Medical Informat-

ics and Decision Making 10, 1–7 (2010) 

10. Zhou, H., Myrzashova, R., Zheng, R.: Diabetes prediction model based on an enhanced deep 

neural network. EURASIP Journal on Wireless Communications and Networking 2020, 1–

13 (2020) 

11. Alex, S.A., Jhanjhi, N.Z., Humayun, M., et al.: Deep LSTM model for diabetes prediction 

with class balancing by SMOTE. Electronics 11(17), 2737 (2022) 

12. Ali, M.S., Islam, M.K., Das, A.A., et al.: A novel approach for best parameters selection and 

feature engineering to analyze and detect diabetes: Machine learning insights. BioMed Re-

search International 2023(1), 8583210 (2023) 

13. Kakoly, I.J., Hoque, M.R., Hasan, N.: Data-driven diabetes risk factor prediction using ma-

chine learning algorithms with feature selection technique. Sustainability 15(6), 4930 (2023) 

14. Khanam, J.J., Foo, S.Y.: A comparison of machine learning algorithms for diabetes predic-

tion. ICT Express 7(4), 432–439 (2021) 

15. Barbieri, M.C., Grisci, B.I., Dorn, M.: Analysis and comparison of feature selection methods 

towards performance and stability. Expert Systems with Applications, 123667 (2024) 



 

16. Alsentzer, E., Murphy, J.R., Boag, W., et al.: Publicly available clinical BERT embeddings. 

arXiv preprint arXiv:1904.03323 (2019) 

17. Ke, G., Meng, Q., Finley, T., et al.: LightGBM: A highly efficient gradient boosting decision 

tree. Advances in Neural Information Processing Systems 30 (2017) 

18. Zou, H.: The adaptive lasso and its oracle properties. Journal of the American Statistical 

Association 101(476), 1418–1429 (2006) 

19. Breiman, L., Friedman, J., Olshen, R.A., et al.: Classification and Regression Trees. 

Routledge (2017) 

20. Gurney, K.: An Introduction to Neural Networks. CRC Press (2018) 


