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Abstract. Ship detection is crucial for maintaining maritime sovereignty and 

monitoring ocean pollution. However, deploying this technology in complex ma-

rine environments presents significant challenges, especially when detecting 

small vessels. Their subtle features, multi-scale variations, and the interference 

of complex backgrounds often result in poor target localization and classification 

accuracy in existing models. To address these issues, this paper presents a ship 

detection model based on multi-modal fusion. The model leverages pre-trained 

parameters from public datasets to extract features, enhances target identification 

through a cross-modal synergy mechanism, and introduces an uncertainty loss 

function to dynamically adjust loss weights, significantly improving detection 

accuracy across different ship sizes and complex backgrounds. Experimental re-

sults on the Levir-Ship dataset, which includes optical remote sensing images, 

demonstrate the model’s effectiveness with AP, AP50, AP75, and AR, scores of 

33.7%, 84.8%, 16.1%, and 45.4%, respectively. These results validate the 

model’s superiority in ship detection, offering strong technical support for mari-

time surveillance and pollution monitoring, and paving the way for future ad-

vancements in marine monitoring technologies.  

Keywords: Ship detection, deep learning, multi-modal fusion. 

1 Introduction 

Ships, as the primary carriers of maritime transportation, hold significant importance 

in territorial security, economic development, and environmental protection. With the 

advancement of remote sensing technology, the use of optical remote sensing images 

for continuous and accurate monitoring of small vessels has been applied in fisheries 

management and military security. However, due to the limitations of remote sensing 

image resolution, accurately detecting small fishing boats and cargo ships in optical 

remote sensing images remains a challenging task. 

Traditional ship detection primarily relies on algorithms based on image features and 

physical characteristics. For instance, Miao Kang et al. [1] improved the Faster R-CNN 

[2] using the traditional Constant False Alarm Rate (CFAR) [3], where the generated 

target proposals serve as the protection window for the CFAR algorithm to extract 

small-sized targets. Chonglei Wang et al. [4] proposed an Intensity-Spatial (IS) domain 

CFAR ship detector, which fuses the intensity of each pixel and the correlation between 



pixels into a feature, namely the Intensity-Spatial Index (IS Index), to fully utilize im-

age information. However, these methods exhibit poor detection accuracy and adapta-

bility when faced with complex backgrounds and multi-scale targets. With technologi-

cal advancements, the emergence of Convolutional Neural Networks (CNNs) [5] has 

provided new solutions to these problems. Linfeng Jiang [6] proposed the DSFPAP-

Net, which increases the number of feature layers and aggregates depth to address the 

challenge of detecting small targets in low-resolution remote sensing images. Due to 

the sensitivity of CNNs to noise and their limited performance in complex scenes, 

Transformers [7] have been introduced into the field of ship detection. Yue Zhou et al. 

[8] proposed the PVT-SAR ship detection framework, constructing a Pyramid Vision 

Transformer paradigm to address issues of target density and data insufficiency, thereby 

enhancing small target detection capabilities. Xiao Ke et al. [9] proposed a method 

based on Swin-Transformer [10] and FEFPN to overcome the limitations of CNN-

based SAR ship detection in complex backgrounds and small target detection. The 

Swin-Transformer serves as the backbone to model long-range dependencies and gen-

erate hierarchical feature maps, while the FEFPN progressively enhances the semantic 

information of feature maps at various levels, improving the quality of shallow feature 

maps. In contrast, most of these methods rely on single-modal data, and their inadequa-

cies in information utilization become evident in complex marine environments such 

as adverse weather and complex lighting conditions. Specifically, single-modal data 

(e.g., visible light, infrared, or SAR) have inherent limitations under different environ-

mental conditions: visible light images significantly degrade in quality at night or in 

hazy weather; infrared images are sensitive to temperature and susceptible to environ-

mental heat source interference; SAR images, while unaffected by lighting and weather, 

are prone to false alarms and missed detections in target-dense areas. Moreover, single-

modal methods struggle to fully utilize the complementary information from multi-

source data, leading to limited detection performance for small targets, dense targets, 

and occluded targets in complex scenes. Additionally, traditional methods often rely on 

handcrafted features or fixed network structures when dealing with multi-scale targets, 

lacking adaptability to different scenarios, which further restricts their generalization 

and robustness in practical applications. These issues indicate that there is still consid-

erable room for improvement in the detection capabilities of single-modal methods in 

complex marine environments. 

To address these challenges, this paper proposes a multi-modal model based on 

transfer learning. The model utilizes the Swin-Transformer as the image backbone net-

work and BERT [11] as the text backbone network to extract and enhance multi-scale 

image and text features. It employs a feature enhancer that includes deformable self-

attention (to enhance image features), ordinary self-attention (to enhance text features), 

and an image-text cross-attention module for cross-modal feature fusion. In language-

guided query selection, a specific module selects features strongly related to the input 

text from the image features as decoder queries to guide target detection, with the que-

ries containing both content and position parts. The position part is initialized by dy-

namic anchor boxes, while the content part is learnable during training. In the design 

of the cross-modal decoder, each cross-modal query sequentially passes through a self-

attention layer, an image cross-attention layer, a text cross-attention layer, and a FFN 
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layer. Compared to the DINO [12] decoder layer, an additional text cross-attention layer 

is included to inject text information into the query, better achieving modal alignment. 

The joint application of these three fusion techniques significantly enhances the model's 

overall performance on existing benchmarks. Furthermore, by optimizing the adaptive 

loss function, the model's performance is further improved. The main contributions of 

this study are as follows: 

• A multi-modal framework employing transfer learning is proposed. By pre-training 

the model on public datasets and fine-tuning it on ship datasets, the model's perfor-

mance is significantly enhanced. 

• Cross-modal attention learning is applied to text and images to enhance feature com-

plementarity, and a language-guided method is used to select the most relevant fea-

tures for the decoder's queries. Additionally, an adaptive loss function is employed 

to further optimize the model's performance. 

• The model is tested on the LEVIR-Ship [13] dataset. By comparing our model with 

nine baseline models, the effectiveness of our approach is validated, demonstrating 

its potential in ship detection and its applicability in other fields. 

2 Related Work 

In the important research field of ship detection, various types of methods have demon-

strated their unique characteristics and advantages, while also facing corresponding 

challenges, providing rich references and directions for future research. 

2.1 Ship Detection 

In the field of ship detection, traditional methods achieve effective ship detection by 

combining multiple technologies. Yongli Xu et al. [14] proposed a high-resolution SAR 

ship detection algorithm that employs a two-stage architecture using a pre-trained Sup-

port Vector Machine (SVM) [15] classifier and the Kapur-Sahoo-Wong (KSW) [16] 

optimal entropy threshold algorithm, which enhances detection speed while maintain-

ing accuracy and effectively suppressing false alarms. Armando Marino et al. [17] uti-

lized polarization data acquisition to detect targets with polarization characteristics dif-

ferent from the sea surface through spatial perturbation analysis. 

CNN-based methods have made significant progress in ship detection. Haopeng 

Zhang et al. [18] proposed a high-resolution feature generator (HRFG) method, adopt-

ing a specific network architecture and introducing a background degradation strategy 

to solve the problem of small ship detection in optical remote sensing images, signifi-

cantly improving detection accuracy and robustness. Jianwei Li et al. [19] constructed 

a complex scene dataset and optimized the Faster R-CNN framework in multiple as-

pects to enhance ship detection performance.  

Transformer-related methods have brought new ideas and improvements to ship de-

tection. Runfan Xia et al. [20] combined the advantages of Transformer and CNN, pro-

posing the CRTransSar framework based on contextual joint representation learning to 



address the complex features of SAR image targets. Kuoyang Li et al. [21] proposed 

ESTDNet, using Cascade R-CNN Swin as a benchmark, constructing the FESwin mod-

ule and AFF module to optimize feature extraction and fusion.  

2.2 Transfer Learning 

In ship detection-related research, various methods based on transfer learning have 

emerged. V. Ganesh et al. [22] adopted deep learning methods, using the TensorFlow 

object detection API and the MASATI-v2 dataset for object detection, considering the 

video characteristics of real-time satellite monitoring, and using models trained on this 

dataset for video processing to detect ships. The model training leveraged the SSD Mo-

bileNetV2 algorithm and employed transfer learning techniques. Xu Cheng et al. [23] 

proposed a semi-supervised transfer learning method SAFENESS, utilizing abundant 

source ship data and limited target ship data, through a data alignment algorithm, two 

attention mechanisms, and a multi-category adversarial discriminator to train the 

model, solving problems in traditional sea state estimation methods.  

In this research, we innovatively propose a transfer learning-based multi-modal 

framework for small target ship detection. This model, with its unique multi-modal fu-

sion capability, can effectively integrate optical remote sensing images with other pos-

sible modalities (such as infrared images), providing more comprehensive and accurate 

information for ship detection. In complex marine environments, the model's powerful 

target localization and recognition accuracy can effectively overcome the issues of in-

sufficient small target detection accuracy and susceptibility to interference in complex 

backgrounds present in other methods. Moreover, the model employs transfer learning, 

enabling efficient and stable ship detection on the LEVIR-Ship dataset without the need 

for extensive retraining. Moreover, its flexible computational performance and task 

adaptability allow for the adjustment of computational resources according to actual 

detection needs, ensuring fast detection speeds while meeting detection accuracy re-

quirements. This model is expected to bring new solutions and breakthroughs to the 

field of ship detection, playing an important role in national security, marine monitor-

ing, and environmental protection. 

3 Approach 

Currently, the majority of deep learning-based ship detection methods primarily focus 

on ship localization in high-resolution (HR) remote sensing images, while research tar-

geting medium-resolution (MR) remote sensing images remains relatively scarce. To 

address this issue, we propose a ship detection model based on MM-Grounding-DINO 

[24]. The framework of the model is illustrated in Fig. 1. Its core components include 

a backbone network, a feature enhancer, a language-guided query selection module, 

and a cross-modal decoder. Initially, the backbone network extracts features from both 

the input image and the corresponding text. These features are then fed into the feature 

enhancer for cross-modal feature fusion and enhancement. The language-guided query 

selection module processes the enhanced features to select appropriate cross-modal 
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queries from the image features. These queries are subsequently passed into the cross-

modal decoder to perform object detection and simultaneously update information from 

both image and text modalities. Finally, the model outputs the predicted object bound-

ing boxes along with the extracted textual information. 

 

Fig. 1. The framework of our model. 

3.1 Model 

Feature Extraction and Enhancement. For an input pair comprising an image and its 

associated text, a visual backbone network (e.g., Swin-Transformer) is utilized to cap-

ture multi-scale image representations, while a textual backbone network (e.g., BERT) 

is applied to extract contextual text embeddings. 

𝑖𝑚𝑎𝑔𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠   =  backbone𝑖𝑚𝑔( 𝑖𝑚𝑎𝑔𝑒𝑠 ) (1) 

𝑡𝑒𝑥𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = backbone𝑡𝑒𝑥𝑡(𝑡𝑒𝑥𝑡) (2) 

Next, both sets of features are directed into the feature enhancer module to facilitate 

cross-modal fusion. Inside the module, the initial integration of text and image features 

is performed using a Bi-Attention Block, which includes a cross-attention layer for text-

to-image interactions and another for image-to-text interactions. 

𝑖𝑚𝑎𝑔𝑒𝑓𝑢𝑠𝑒𝑑 = BiAttentionBlock(𝑖𝑚𝑎𝑔𝑒𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) (3) 



𝑡𝑒𝑥𝑡𝑓𝑢𝑠𝑒𝑑 = BiAttentionBlock(𝑡𝑒𝑥𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) (4) 

Subsequently, the fused text and image features undergo further refinement via a 

standard self-attention layer and a deformable self-attention layer, followed by a feed-

forward network (FFN) layer, ultimately producing the enhanced image and text fea-

tures. 

𝑖𝑚𝑎𝑔𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = FFN (Self-Attention(𝑖𝑚𝑎𝑔𝑒𝑓𝑢𝑠𝑒𝑑)) (5) 

𝑡𝑒𝑥𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = FFN (Self-Attention(𝑡𝑒𝑥𝑡𝑓𝑢𝑠𝑒𝑑)) (6) 

Language-Guided Query Selection. To enhance the role of text in guiding target de-

tection, we introduce a language-guided query selection module. This module dynam-

ically generates or selects queries aligned with the text description by leveraging text 

features, enabling the model to more effectively focus on image regions relevant to the 

textual context. 

Initially, a matching score matrix is calculated to evaluate the alignment between the 

image features and the text features. 

𝑆 = 𝑖𝑚𝑎𝑔𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 ⋅ 𝑡𝑒𝑥𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝑇 (7) 

𝑖𝑚𝑎𝑔𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑  and 𝑡𝑒𝑥𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑  represent the image and text feature fusion matri-

ces, respectively, after undergoing the feature enhancement and fusion module. 𝑆 de-

notes the overall matching score matrix, where 𝑆𝑖𝑗  corresponds to the matching score 

between the image feature at position 𝑖 and the text feature at position 𝑗. 
For each image, the maximum similarity with all texts is calculated. 

𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒𝑠𝑖 = max(𝑆𝑖,1, 𝑆𝑖,2⋯ , 𝑆𝑖,𝑁𝑇) (8) 

A vector 𝑚𝑎𝑥_𝑠𝑐𝑜𝑟𝑒 of length 𝑁𝑇 is obtained, where each element represents the 

maximum similarity between an image token and all text tokens. 

Finally, the indices of the 𝑛𝑢𝑚_𝑞𝑢𝑒𝑟𝑦 image features with the highest matching 

scores are selected. 

Selectedindices = {𝑖𝑛−𝑛𝑢𝑚_𝑞𝑢𝑒𝑟𝑦 , 𝑖𝑛−𝑛𝑢𝑚_𝑞𝑢𝑒𝑟𝑦+1, ⋯ 𝑖𝑛} (9) 

𝑛𝑢𝑚_𝑞𝑢𝑒𝑟𝑦 denotes the number of selected queries, which is configured as 900 in 

this research. The argsort function returns indices sorted in ascending order, and the 

indices with the highest scores are selected through slicing operations. 

Cross-Modality Decoder. The cross-modality decoder layer in our model is designed 

to further integrate text and image features, enabling effective cross-modal learning. 

First, each cross-modal query is fed into a self-attention layer: 

𝑄self = self-attention(𝑄) (10) 

𝑄 represents the input query vector. The self-attention layer is responsible for pro-

cessing the input queries to enhance the internal feature representation of the queries. 
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Next, the queries are processed through the image cross-attention layer and the text 

cross-attention layer separately, facilitating the fusion of image and text features. 

𝑄𝑖𝑚𝑎𝑔𝑒 = cross-attention(𝑄𝑠𝑒𝑙𝑓 , 𝐾𝑖𝑚𝑎𝑔𝑒 , 𝑉𝑖𝑚𝑎𝑔𝑒) (11) 

𝑄𝑡𝑒𝑥𝑡 = cross-attention(𝑄𝑖𝑚𝑎𝑔𝑒 , 𝐾𝑡𝑒𝑥𝑡 , 𝑉𝑡𝑒𝑥𝑡) (12) 

𝑄𝑖𝑚𝑎𝑔𝑒  is the output of the image cross-attention layer, while 𝐾𝑡𝑒𝑥𝑡  and 𝑉𝑡𝑒𝑥𝑡  are the 

key and value of the text features, respectively. The primary goal is to integrate text 

information into the queries to achieve more accurate modality alignment. 

Finally, the queries are further processed and optimized through a FFN: 

𝑄𝑜𝑢𝑡 = FFN(𝑄𝑡𝑒𝑥𝑡) (13) 

𝑄𝑡𝑒𝑥𝑡  is the output of the text cross-attention layer, and FFN is a feedforward neural 

network used to further process and refine the final representation of the queries. 

3.2 Training Setting 

In the training configuration, for the OVD task, all categories from the detection dataset 

are merged into a single continuous string, such as "Car. Tree. Dog. Bicycle."; for the 

PG and REC tasks, adhering to M-DETR, each object referenced in the text is annotated 

during the pre-training stage. For instance, with the description "A man in a red shirt 

standing beside a bicycle," our model is trained to predict bounding boxes for the man, 

the red shirt, and the bicycle. Regarding model variations, the case-insensitive pre-

trained BERT model is selected as the language encoder, while Swin Transformer 

serves as the image backbone. For data augmentation, beyond standard techniques like 

random scaling, cropping, and flipping, random negative samples are introduced by 

combining categories or descriptions from unrelated images to effectively mitigate the 

model's hallucination tendency, ensuring it does not predict non-existent objects in the 

image. We train the model for 100 epochs on 8 NVIDIA 4090 GPUs with a batch size 

of 64. 

3.3 Loss Function 

The loss function consists of three main components loss_bbox (bounding box regres-

sion loss), loss_cls (classification loss), and loss_iou (IoU loss between predicted boxes 

and ground truth boxes). 

ℒ𝑏𝑏𝑜𝑥 =∑|g
𝑖
− 𝑝𝑖|

𝑛

𝑖=1

(14) 

As shown in Eq. 14 the L1 loss is used for bounding box regression, where 𝑔𝑖 rep-

resents the ground truth tokenized bounding box, and 𝑝𝑖  represents the predicted to-

kenized bounding box. Following the GLIP [25] model, we employ a contrastive loss 



between predicted objects and language tokens for classification. Specifically, we pre-

dict the logit value for each text token by computing the dot product between each query 

and the text features, as shown in the equation, and then apply focal loss [26] to each 

logit value. 

logit = 𝑖𝑚𝑎𝑔𝑒𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 ⋅ 𝑡𝑒𝑥𝑡𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑
𝑇 (15) 

𝑝𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(logit) (16) 

ℒ𝑐𝑙𝑠 = −𝛼𝑡(1 − 𝑝𝑡)
χlog(𝑝𝑡) (17) 

As shown in Eq. 17, 𝑝𝑡  is the probability of the model predicting the correct class, 𝛼 

is a weighting factor used to balance positive and negative samples, and 𝜒 is a focusing 

parameter used to modulate the weight decay for easy-to-classify samples. 

𝓛𝑖𝑜𝑢 = 1 − 𝐼𝑜𝑈 +
|𝐶 − 𝑈|

|𝐶|
(18) 

The IoU loss between the predicted and ground truth bounding boxes is computed 

according to Eq. 18, where C denotes the smallest closed region enclosing both bound-

ing boxes, and U represents the union of their spatial extents. 

The traditional multi-task loss function is calculated as shown in Eq. 19, where 

𝜔𝑏𝑏𝑜𝑥, 𝜔𝑐𝑙𝑠, and 𝜔𝑖𝑜𝑢 are the weights for the bounding box loss, classification loss, and 

IoU loss, respectively. 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑏𝑏𝑜𝑥ℒ𝑏𝑏𝑜𝑥 + 𝜔𝑐𝑙𝑠ℒ𝑐𝑙𝑠 + 𝜔𝑖𝑜𝑢ℒ𝑖𝑜𝑢 (19) 

Traditional methods typically rely on manually preset or fixed weight assignments, 

which cannot dynamically adjust the priorities of different tasks based on task diffi-

culty, changes in data distribution, or training progress. To address this, we introduce 

the concept of UNCERTAINTY [27] to measure the losses of different tasks and dy-

namically balance them. In multi-task learning, UNCERTAINTY is used to adjust the 

loss weights of each task. By modeling uncertainty as learnable parameters, the model 

automatically adjusts task weights, there by suppressing the influence of complex or 

noisy tasks and ensuring effective joint training. Specifically, Eq. 20 has three tasks 𝒯1, 

𝒯2, and 𝒯3 with loss functions ℒ1, ℒ2, and ℒ3, respectively, we adjust their weights by 

introducing uncertainty parameters 𝜎1, 𝜎2, and 𝜎3. The final optimization objective can 

be expressed as: 

ℒ𝛼(𝜎1, 𝜎2, 𝜎3) =∑(
1

2𝜎𝑖
ℒ𝑖 + log𝜎𝑖)

3

𝑖=1

(20) 
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4 Experimental results and analysis 

4.1 Evaluation Metrics 

We evaluate the effectiveness of the proposed method through detection accuracy. We 

use metrics such as AP (Average Precision), AP50, AP75, and AR, (Average Recall) to 

measure the model's detection accuracy. The calculation of AP is shown in: 

𝐴𝑃 = ∑ 𝑃(𝑟) ×Δ𝑟

𝑟∈{0,0.01,0.02,⋯,1}

(21) 

4.2 Dataset 

Most ship detection datasets focus on high spatial resolution images, such as 0.3 meters, 

0.5 meters, and 2 meters, while datasets targeting small ship objects with low spatial 

resolution are relatively scarce. In this study, we utilized a small ship detection dataset 

named Levir-Ship, which has a spatial resolution of 16 meters. The images in Levir-

Ship were acquired by the multispectral cameras of the GaoFen-1 and GaoFen-6 satel-

lites, using only the red (R), green (G), and blue (B) bands. The dataset contains 85 

scenes, with pixel resolutions ranging between 10,000×10,000 and 50,000×20,000. We 

cropped the original images to a size of 512×512, resulting in 1,973 positive samples 

and 1,903 negative samples. 

4.3 Comparison 

To provide a more comprehensive evaluation of our model's performance, we com-

pared our model with several state-of-the-art object detection models, such as DDOD 

[28], Dynamic R-CNN [29], TOOD [30], and others. The specific data is presented in 

the Table 1.  

Table 1. COMPARISION OF DIFFERENT METHODS 

Model AP(%) AP50(%) AP75(%) AP𝑠(%) AP𝑚(%) AR(%) A𝑅𝑠(%) A𝑅𝑠(%) A𝑃𝑎𝑣𝑒(%) A𝑅𝑎𝑣𝑒(%) 

AutoAssign [31] 23.0 73.8 9.9 27.1 25.8 40.7 40.9 27.5 31.9 36.4 

DDOD [28] 23.7 73.9 10.3 27.2 27.8 41.4 41.6 21.5 32.6 34.8 

Dynamic R-CNN [29] 24.1 69.9 7.6 24.1 25.7 36.8 36.8 32.5 30.3 35.4 

TOOD [30] 26.3 72.6 10.4 26.3 28.7 40.0 40.0 36.2 32.9 38.7 

FCOS [32] 25.7 71.2 8.7 25.5 33.6 39.8 39.9 38.8 32.9 39.5 

ATSS [33] 27.0 73.2 12.0 26.9 33.0 41.3 41.4 36.2 34.4 39.6 

FASF [34] 20.0 58.7 5.7 19.8 34.7 35.8 35.8 35.0 27.8 35.5 

Grid R-CNN [35] 16.7 57.3 3.4 16.9 9.2 32.2 32.3 25.0 20.7 29.8 

Libra R-CNN [36] 23.6 67.0 7.3 23.4 35.8 36.0 36.0 36.2 31.4 36.1 

MM-Grouding-DINO 

[24] 
1.0 0.7 0 0.7 0.3 8.0 10.3 32.5 0.5 16.9 

Ours 33.7 84.8 16.1 33.5 37.1 45.4 46.0 51.2 41.0 47.5 



1
 Results of MM-Grouding-DINO's test using publicly available pre-trained model weights 

Our model demonstrates significant superiority over other comparative models 

across all metrics. Particularly in the detection tasks for small and medium-sized tar-

gets, our model exhibits stronger adaptability and higher detection accuracy. Compared 

to the second-best model, ATSS, in our experiments, our model achieves notable per-

formance improvements in key metrics such as AP, AP50, AP75, and AR, with increases 

of 6.7%, 11.6%, 4.1%, and 4.1%, respectively. Other metrics also show improvements. 

These experimental results fully validate the effectiveness and superiority of our model 

in object detection tasks, especially in complex scenarios and multi-scale target detec-

tion, where it performs exceptionally well. 

 

Fig. 2. Performance comparison of object detection algorithms across epochs. 

As illustrated in the Fig. 2, in the line charts of AP, AP50, and AP75 metrics, our 

model demonstrates efficient convergence characteristics from the early stages of train-

ing. Its curve rapidly ascends to a leading position within a very short number of epochs 

and maintains stable high-level fluctuations throughout the subsequent training process, 

significantly outperforming other comparative algorithms. This performance fully 

proves that our model possesses superior feature learning capabilities and optimization 

mechanisms, enabling it to quickly capture effective features while maintaining the sta-

bility of detection accuracy over prolonged training periods. Further analysis of the AR 

metric in the bar chart reveals that our model achieves a dominant position in average 

recall, indicating that it not only ensures high-precision localization but also achieves 

more comprehensive target recall in object detection tasks. 

In conclusion, by conducting extensive comparisons with other leading object de-

tection models, our model demonstrates clear advantages in key metrics such as AP, 
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AP50, AP75, and AR, fully validating its effectiveness and exceptional performance in 

object detection tasks. By introducing textual modality to compensate for the shortcom-

ings of image modality in complex backgrounds and small target detection, leveraging 

cross-modal attention mechanisms to enhance the complementarity of image and text 

features, and utilizing language-guided query selection mechanisms to precisely locate 

targets, our model achieves significant improvements. In addition, the optimization of 

ℒ𝛼 further enhances the model's adaptability to complex scenarios. These innovative 

designs enable the model to exhibit higher accuracy and robustness in ship detection 

tasks using medium-resolution remote sensing images while maintaining high compu-

tational efficiency. 

4.4 Ablation Experiments 

In this section, we systematically evaluate the effectiveness of the proposed tightly-

coupled fusion localization model for open-set object detection through ablation exper-

iments. To thoroughly evaluate the impact of each module on the model's performance, 

we incrementally removed different fusion modules and conducted pre-training and 

testing on the official dataset using the Swin-T backbone network. The experimental 

results are presented in the Table 2. 

Table 2. ABLATIONS FOR OUR MODULE 

Model AP(%) AP50(%) AP75(%) 

Ours 33.7 84.8 16.1 

w/o ℒα 33.0 84.7 14.9 

w/o encoder fusion 33.5 84.3 15.1 

w/o text cross-attention 26.9 79.0 14.3 

 

The experimental results indicate that the text cross-attention module significantly 

enhances the model's performance on the Levir-Ship dataset, contributing performance 

gains of +25% AP, +7% AP50, and +12.6% AP75, respectively. This result strongly con-

firms the essential role of text cross-attention in cross-modal feature fusion, signifi-

cantly boosting the model's ability to comprehend target semantic information and, as 

a result, markedly enhancing detection accuracy. Additionally, ℒα also positively im-

pacts the model's performance, contributing gains of +7% AP, +1% AP50, and +12% 

AP75, demonstrating its importance in optimizing model prediction confidence and en-

hancing detection robustness. 

In contrast, the encoder fusion module provides relatively limited performance im-

provements on the Levir-Ship dataset, with gains of only +0.6% AP, +0.5% AP50, and 

+6.7% AP75. This phenomenon may be related to the characteristics of the dataset. Spe-

cifically, the Levir-Ship dataset has limited diversity in target types and scenarios, with 

relatively simple backgrounds, which means the model can adequately fit the data dis-

tribution without relying on complex feature fusion mechanisms such as encoder fu-

sion. Therefore, the model can easily learn patterns in the data through other means 

(e.g., text cross-attention) without needing encoder fusion to integrate complex feature 

information. 



4.5 Visualization 

To more intuitively demonstrate the functionality of each module and its impact on 

model performance, we conducted a visual analysis of the feature maps and prediction 

results. Through visualization, we were able to diagnose the feature extraction process 

of each network layer during model training and gain a deeper understanding of the role 

of each module based on the performance of the feature maps. Specifically, we ex-

tracted feature maps generated by convolutional neural network filters layer by layer, 

observing how they abstracted and processed data during the training process. 

The heatmaps are shown in the Fig. 3. As illustrated in the figure, it is evident that, 

compared to the models without ℒα (w/o ℒα), without encoder fusion (w/o encoder fu-

sion), and without text cross-attention (w/o text cross-attention), our model demon-

strates more precise target localization. The red bounding boxes in the heatmaps pro-

vide clearer annotations of the targets, effectively distinguishing between target and 

non-target regions. Besides, the heat distribution in the target regions is more reasona-

ble, indicating that our model can more effectively capture key information. For in-

stance, in scenarios with complex backgrounds or target occlusion, our model still gen-

erates high-response heatmap regions, demonstrating its strong capability to capture 

target features. 

 

Fig. 3. Heatmaps from ablation experiments of our model. 
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From the visualization of the prediction results shown in the Fig. 4, it is evident that, 

compared to the models without ℒα (w/o ℒα), without encoder fusion (w/o encoder fu-

sion), and without text cross-attention (w/o text cross-attention), our model demon-

strates significant advantages in the completeness and accuracy of target detection. Spe-

cifically, our model is able to detect more targets, particularly smaller and more chal-

lenging ones, highlighting its robustness in handling multi-scale targets. Moreover, the 

predicted bounding boxes align more closely with the actual target locations, indicating 

a notable improvement in localization precision. Furthermore, in scenarios with com-

plex backgrounds or densely packed targets, our model more effectively identifies and 

distinguishes targets, reducing instances of false positives and missed detections. This 

further validates its strong adaptability and reliability in complex environments. 

 

Fig. 4. Comparisons of the detection results by different methods. 

To more comprehensively evaluate the model's performance, we introduced the con-

fusion matrix as a critical tool. From the normalized confusion matrix, it is evident that 

the model achieves a 100% accuracy in predicting background samples, completely 

avoiding misclassifying the background as ships. For ship samples, the prediction ac-

curacy reaches 83%, demonstrating high reliability in target detection. The overall clas-

sification performance is notably superior, with the model accurately distinguishing 

between ships and the background. 



 

Fig. 5. Confusion matrix for our model. 

5 Conclusion and Discussion 

This study addresses the challenge of multi-scale ship detection in complex maritime 

environments by proposing an innovative framework based on multi-modal feature fu-

sion and dynamic loss optimization. By leveraging a cross-modal complementary 

mechanism to enhance the representation capability of multi-scale targets and incorpo-

rating uncertainty modeling to achieve adaptive adjustment of loss weights, the frame-

work significantly improves the detection accuracy of weak-feature targets (e.g., small 

ships) and robustness under complex background interference. Experimental results 

demonstrate the technical superiority of the framework in target localization and clas-

sification tasks, achieving metrics of AP (33.7%), AP50  (84.4%), AP75  (16.1%), and 

AR (45.4%) on the Levir-Ship dataset. 

Despite significant advancements in existing ship detection technologies, notable 

limitations remain in complex maritime scenarios. Traditional ship detection methods 

rely on handcrafted features, which perform poorly in multi-scale target detection. Deep 

learning models, due to their single-modal nature, exhibit limited capability in classi-

fying detailed ship attributes. This study integrates textual semantic information with 

remote sensing images, effectively addressing the shortcomings of pure visual models 
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in semantic reasoning and providing a new approach for target detection in complex 

scenarios. 

The goal of this study is to enhance ship detection performance through multi-modal 

feature fusion and dynamic loss optimization. By fully utilizing the complementary in-

formation from multiple modalities, the accuracy and applicability of ship recognition 

are improved. A dynamic loss weighting strategy based on uncertainty modeling is em-

ployed to adaptively adjust the optimization weights for multi-scale targets, effectively 

mitigating training imbalance issues in complex scenarios. Future research will further 

explore the transferability of this framework to fields such as remote sensing image 

analysis and ship monitoring, while focusing on optimizing the real-time performance 

and generalization capability of multi-modal fusion. 
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