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Abstract. The existing adversarial embedding methods, which based on distor-

tion cost function and syndrome trellis codes (STCs), achieve adversarial embed-

ding by manually adjusting the embedding cost. To address the limitation of 

hand-crafted embedding cost, we propose an end-to-end adversarial image ste-

ganography method, which automatically achieves adversarial embedding by us-

ing the gradients from the steganalytic network. We utilize gradients of the stego 

image to generate the adversarial embedding mask, then integrate it wtih the loss 

function to guide the secret messages embedded into the specific security-en-

hanced regions. Comparing with several state-of-the-art steganography methods, 

extensive experimental results demonstrate that our method significantly im-

proves the security performance against convolutional neural network (CNN)-

based steganalyzers and re-trained steganalyzers. For example, when against ste-

ganalyzers, the security improvement in terms of detection accuracy of our 

method achieves 30.68% higher than the SOTA steganography methods at 0.4 

bpp (bit per pixel). 

Keywords: Image steganography, adversarial sample, invertible neural net-

work. 

1 Introduction 

Image steganography [1-4] is an invisible communication method that hides secret 

messages in the pixels or frequency coefficients. Currently, the most remarkable image 

steganography methods utilize the structure of "distortion cost function + STCs". The 

critical issue of these methods is designing embedding costs for embedding units. For 

instance, in the JPEG domain, UED [5] uniformly extends the embedding modification 

to the histogram bin corresponding to all possible DCT coefficient values, thereby re-

ducing the overall variation of statistical characteristics. Work [6] uses the relative em-

bedding changes of wavelet decomposition coefficients in the decompressed spatial 

domain to define the distortion cost, thereby obtaining the JPEG image steganography 

distortion cost function J-UNIWARD. With the development of neural networks, ste-

ganography methods based on deep learning have shown strong performance. JS-GAN 

[7] applies generative adversarial networks to JPEG adaptive steganography for the first 

time and verifies the feasibility of using GAN in the design of JPEG steganography 



cost functions. It can automatically learn distortion cost values based on the features of 

the steganalyzer and compensate for the security vulnerabilities of steganography based 

on the detection features. In the spatial domain, there are several typical steganography 

methods, such as WOW [8], HILL [9], and UT-GAN [10]. On the contrary of steganog-

raphy, steganalysis [11] is used to distinguish stego images from cover images. 

Inspired by the idea that adversarial samples [12-14] can effectively deceive deep 

neural network-based classifiers, Researchers have introduced adversarial samples into 

image steganography to deceive CNN-based steganalyzer, thereby achieving the goal 

of improving security. Adversarial embedding (ADV-EMB) [15, 16] randomly divides 

image elements into common and adjustable groups according to a certain proportion. 

Min-max [17] can be seen as the iterative version of ADV-EMB. Adversarial enhancing 

method (AEN) [18] fully utilizes the gradients of cover and multiple stegos to guide the 

modification of embedding costs. In addition, an adversarial embedding method [19] 

suitable for both the spatial and JPEG domains is proposed. This method first generates 

some candidate stegos randomly and then selects the stego that can deceive the target 

steganalyzer. 

The above methods have not incorporated adversarial embedding into network train-

ing, and the embedding and extracting of secret messages rely entirely on syndrome 

trellis codes. In this paper, we propose an end-to-end image steganography method 

based on automatic adversarial embedding without using the "distortion cost function 

+ STCs" framework. The proposed method can automatically learn how to embed se-

cret messages and maintain the stego image with visual and statistical imperceptibility. 

The contributions are as follows: 

1. We first propose an end-to-end adversarial image steganography method, which au-

tomatically achieves adversarial embedding by using the gradients from the pre-

trained CNN-based steganalyzer. 

2. We propose a mask loss to guide the secret messages embedded into the specific 

regions. This design guide the stego signal along the opposite direction of the signs 

of gradient that can decrease the classification loss of the steganalyzer, enabling the 

steganalyzer to distinguish the stego image as a cover image. 

3. Extensive experimental results demonstrate that our method significantly improves 

security compared with state-of-the-art steganography methods. For example, at 0.2 

bpp (bit per pixel) and 0.4 bpp (bit per pixel), the detection accuracies against SRNet 

of our method are respectively about 49.40% and 46.16% lower than the state-of-

the-art adversarial embedding steganography methods. 

2 Related Works 

2.1 Adversarial Sample 

Image adversarial samples refer to samples formed by adding carefully constructed 

and subtle disturbances that are difficult for humans to discern through their senses to 

the input image. These adversarial samples cause the model to produce incorrect clas-
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sification results with high confidence. Adversarial examples have evolved into effec-

tive techniques for attacking both traditional machine learning models and deep learn-

ing models, achieving impressive performance in computer vision, information hiding 

[20], and other fields [21]. Next, we will introduce two classical adversarial attack al-

gorithms. 

The fast gradient sign method (FGSM) [22] is a typical gradient-based adversarial 

attack method. This method adds perturbations along the opposite direction of the gra-

dient to rapidly increase the loss function, leading to the model producing incorrect 

classification results. Carlini & Wagner (C&W) attacks [23] is a classic optimization-

based adversarial attack method. This method customizes different objective functions 

and selects the optimal objective through experimental data to achieve adversarial at-

tacks. C&W attack is characterized by small adversarial perturbations, high adversarial 

strength, and difficult to defend. However, a drawback is that it is time-consuming. 

2.2 Steganalysis Methods 

As the effectiveness of steganographic methods continues to improve, steganalysis 

methods are also being adjusted to enhance detection accuracy. As a comprehensive 

measure of detection accuracy and computational complexity, spatial rich model 

(SRM) [24] is the most commonly used hand-designed high-dimensional ste-

ganographic feature set in spatial images, while discrete cosine transform residual 

(DCTR) [25] and gabor filtering residual (GFR) are the most commonly used in JPEG 

images. 

With the advancement of neural networks, several deep learning-based steganalysis 

networks with high security have been proposed. J-XuNet [26] is a 20-layer CNN-based 

steganalysis network. The preprocessing layer of this network uses high-pass filters 

from DCTR to suppress image content. The residuals obtained through high-pass fil-

tering pass through an absolute value layer and then a truncation layer. All downsam-

pling layers are processed using 3 ×  3 convolutional layers with a stride of 2. SRNet 

[27] applies to both spatial and JPEG images. This network extracts residuals through 

an unpooled front-end network, replacing the prefiltering layer. ReLU activation func-

tions are used to reduce computational complexity. DengNet [28] is a CNN-based fast 

and effective steganalysis network. It first introduces global covariance pooling into 

steganalysis, utilizing the second-order statistics of high-level features to enhance the 

detection performance of the steganalysis network. 

3 Proposed Method 

3.1 Model Architecture 

In this paper, we propose an end-to-end adversarial image steganography framework 

to enhance the security of the image steganography. The framework of the proposed 

method is displayed in Fig. 1. Cover image (denoted as 𝐂 ) refers to the spatial image or 

the quantized DCT coefficients of JPEG image. The size of cover image is 𝜔 × ℎ and 

the number of channel is 𝑐 . The corresponding stego image with the same size of 𝐂 is 



characterized as 𝐒. In addition, we use 𝐌 and 𝐌′ to depict the original secret message 

and the revealed secret message, respectively. Our proposed method utilizes the invert-

ible neural network (INN) [29-31] to realize the embedding and extracting of secret 

messages. The cover image and secret message are input into the forward process of 

INN to generate the stego image. The backward process of INN can obtain the revealed 

secret message and revealed cover image from the stego image. 

 

Fig. 1:Overview of the proposed architecture. 

3.2 Adversarial Embedding 

Pre-training the steganalytic network. We obtain a cover set 𝐶𝛾 from the BOSSBase 

ver.1.01 and BOWS2 datasets. Then, we utilize UNIWARD to calculate its correspond-

ing embedding cost and generate a stego set 𝑆𝛾 with the given embedding capacity. 

Finally, we train the cover set and stego set to obtain a pre-trained steganalytic network 

𝑁𝑠 (also named target steganalyzer). We use XuNet [32, 26] and SRNet [27] as the 

steganalytic network 𝑁𝑠. It is worth noting that the steganalytic network is only pre-

trained once and will not be updated during the process of embedding and extracting 

secret messages. All gradient calculations involved in the proposed method are imple-

mented through this pre-trained steganalytic network. 

Adversarial embedding. We generate the stego image using the forward process of 

INN. Then, we input the stego image into the steganalytic network and use the back-

propagation algorithm to calculate its gradient map 𝐺𝑀. The specific calculation pro-

cess is as follows: 
𝐺𝑀 =▽𝑠 𝐿(𝑠, 𝑡; 𝑁𝑠),

𝐿(𝑠, 𝑡; 𝑁𝑠) = −𝑡 log(𝑁𝑠(𝑠)) − (1 − 𝑡) log(1 − 𝑁𝑠(𝑠)) .
(1) 

where 𝑠 denote a stego image. 𝐿(𝑠, 𝑡; 𝑁𝑠) represents the binary cross entropy loss 

between the targeted label 𝑡  and the output of steganalytic network 𝑁𝑠(𝑥)  ( 0 ≤
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 𝑁𝑠(𝑥)  ≤  1). For targeted label 𝑡, we define 𝑡 = 0 as the cover image while 𝑡 = 1 as 

the stego image. The purpose of adversarial image steganography is to enable the target 

steganalyzer 𝑁𝑠 to distinguish the stego image 𝑠 as the target label (𝑡 = 0). From the 

property of the fast gradient sign method (FGSM),  we should modify the input stego 

image 𝑠 along the opposite direction of the signs of gradient map 𝐺𝑀 , which can de-

crease the loss 𝐿(𝑠, 𝑡; 𝑁𝑠). 

In order to introduce the idea of adversarial samples mentioned above into image 

steganography, the existing adversarial image steganography methods utilize the gra-

dient signs of the cover and stego images to update the original symmetric embedding 

cost to the asymmetric embedding cost as follows: 

{

𝜌𝑖,𝑗
+1 > 𝜌𝑖,𝑗

−1, 𝑖𝑓𝛻𝑥𝑖,𝑗𝐿(𝑥, 𝑡, 𝑁𝑠) > 0;

𝜌𝑖,𝑗
+1 = 𝜌𝑖,𝑗

−1, 𝑖𝑓𝛻𝑥𝑖,𝑗𝐿(𝑥, 𝑡, 𝑁𝑠) = 0;

𝜌𝑖,𝑗
+1 < 𝜌𝑖,𝑗

−1, 𝑖𝑓𝛻𝑥𝑖,𝑗𝐿(𝑥, 𝑡, 𝑁𝑠) < 0.

(2) 

where 𝑥 denotes cover or stego image, 𝑡 denotes the targeted label. 

After obtaining the asymmetric embedding cost, the existing adversarial image ste-

ganography methods use STC to embed the given secret message into the cover image 

to obtain the final stego image. From this process, we can see that existing adversarial 

image steganography methods achieve adversarial embedding by adjusting the embed-

ding cost rather than incorporating the idea of adversarial embedding into network 

training. Unlike these methods, our proposed method achieves adversarial embedding 

automatically by integrating the loss function with gradients from the pre-trained ste-

ganalytic network. The detailed process is as follows: 

Firstly, the output (value range is [0,255]) of the forward process of INN is mapped 

into the stego signal 𝐙 (value range is [-1,1]). Adding the cover image 𝐂 and the stego 

signal 𝐙 yields stego image 𝐒. Then, we feed the stego image 𝐒 into the steganalytic 

network 𝑁𝑠 to obtain the gradient map 𝐺𝑀 according to Formula (1). Next, we utilize 

the sign of stego signal 𝑍(𝑖, 𝑗) and gradients of the stego image 𝐺𝑀(𝑖, 𝑗) at coordinate 

(𝑖, 𝑗) to generate the embedding mask. 

𝑀𝐿(𝑖, 𝑗) = {
    𝛿, 𝑖𝑓    𝑠𝑖𝑔𝑛(𝑍(𝑖, 𝑗)) × 𝐺𝑀(𝑖, 𝑗) ≥ 0

−𝛿, 𝑖𝑓    𝑠𝑖𝑔𝑛(𝑍(𝑖, 𝑗)) × 𝐺𝑀(𝑖, 𝑗) < 0
(3) 

where the mask factor 𝛿 >  1 denotes the adversarial magnitude. The value of 𝛿 

will be discussed in the next section. Finally, we design the following mask loss ℒ𝓂 

according to the embedding mask: 

ℒ𝑚 = ||𝐶 × 𝑀𝐿 − 𝑆 × 𝑀𝐿||2
2 (4) 

This mask loss can guide the secret messages embedded in specific security-en-

hanced regions. For example, when the sign of the stego signal is consistent with gra-

dients of the stego image, adversarial magnitude δ will increase the mask loss ℒ𝓂. In 

other words, the position (𝑖, 𝑗) that satisfies 𝑠𝑖𝑔𝑛(𝑍(𝑖, 𝑗)) × 𝐺𝑀(𝑖, 𝑗) ≥ 0 will reduce 

the embedding probability. The secret message is iteratively embedded into the cover 

image along the opposite direction of the signs of the gradient graph, minimizing the 

cross-entropy loss of the pre-trained steganalytic network 𝑁𝑠  as much as possible. 

Therefore, the stego image will be determined as the cover image by the pre-trained 

steganalytic network as much as possible. 



3.3 Loss Function 

The objective loss function of our method includes mask loss ℒ𝓂, generating loss 

ℒℊ, extracting loss ℒℯ, and alignment loss ℒ𝒶. The training objective is to minimize the 

following: 
ℒ𝑡 = 𝜆𝑚ℒ𝑚 + 𝜆𝑔ℒ𝑔 + 𝜆𝑒ℒ𝑒 + 𝜆𝑎ℒ𝑎. (5) 

where λ𝑚 = 3, λ𝑔 = 1, λ𝑒 = 15, and λ𝑎 = 5 are the weight factors to adjust loss 

terms. We have already introduced mask loss ℒ𝓂. Next, we will provide a detailed in-

troduction to the remaining three losses. 

Generating Loss ℒℊ. The generating loss ℒℊ ensures the generated stego image re-

sembles as close as possible to the original cover image. The typical image quality 

evaluation indicators structural similarity index (SSIM) and mean square error (MSE) 

are  employed to measure the difference between the generated stego image and original 

cover image depicted as: 

ℒ𝑔 = 𝑀𝑆𝐸(𝐶, 𝑆) =
1

𝑐 × ℎ × 𝑤
||𝐶 − 𝑆||2

2, (6) 

Extracting Loss ℒℯ. The extracting Loss ℒℯ indicates the difference between the re-

vealed and original secret messages. The low extracting loss means obtaining high ex-

traction accuracy during the process of the message recovery, which can be calculated 

as: 

ℒ𝑒 = 𝑀𝑆𝐸(𝑀, 𝑀′) =
1

𝑐′ × ℎ × 𝑤
||𝑀 − 𝑀′||2

2. (7) 

Alignment Loss ℒ𝒶. The process of embedding secret messages inevitably causes 

damage to the information in the cover image. In addition, to ensure the high visual 

quality of the stego image, it is difficult to entirely embed large amounts of secret mes-

sages into the cover image. So the lost information matrix 𝑳𝑰 consists of these two in-

formation losses. In this paper, we propose the following alignment loss ℒ𝒶 , which 

minimizes the difference between the lost information matrix 𝑳𝑰 and the matrix 𝑰𝟎 to 

embed as many secret messages as possible into the stego image while minimizing the 

information loss of the entire network. 

ℒ𝒶 = ||𝑳𝐼 − 𝑰𝟎||
2

2
(8) 

where 𝑰𝟎 is an all-zero matrix of the same size as 𝑳𝑰. Because after network training, 

lost information matrix 𝑳𝑰 hardly contains useful information about the process of em-

bedding secret messages. We input an all-zero matrix 𝑨 and the stego image 𝑺 during 

the process of extracting secret messages to recover the original secret message. 

4 Experimental Results 

4.1 Experimental Settings 

Datasets. We use 20,000 grayscale images from the BOSSBase ver.1.01 and 

BOWS2 datasets as cover images. To maintain consistency with the baseline methods, 

we resize all cover images to a size of 256 × 256 using the "imresize" function in 

Matlab. 
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Evaluation Metrics. We adopt the peak signal-to-noise ratio (PSNR) and structural 

similarity index measure (SSIM) to measure the image quality of the generated stego 

images. Moreover, we use the extraction accuracy to evaluate the recovery performance 

of our method. We utilize the receiver operating characteristic (ROC) curve generated 

by the statistical steganalysis tool StegExpose [33], together with detection accuracy to 

measure the security of our method. The larger value of PSNR, SSIM, and extraction 

accuracy indicate higher performance. The smaller value of detection accuracy indicate 

higher performance. 

Table 1. Detection accuracy (%) evaluated on four steganalyzers in spatial domain. "Without" 

denotes the proposed method does not use adversarial embedding. "Ours-Xu" and "Ours-SR" 

represent our proposed method adopt XuNet and SRNet as the steganalytic network, respec-

tively. 

Ste-

ganalyzer 

0.2 bpp 0.4 bpp  bpp 

With-

out 

Ours-

Xu 

Ours-

SR 

With-

out 

Ours-

Xu 

Ours-

SR 

With-

out 

Ours-

Xu 

Ours-

SR 

SRM 75.69 74.44 73.53 84.70 76.41 72.99 79.56 76.97 78.62 

XuNet 91.75 50.50 51.47 95.50 50.50 51.95 100.00 54.41 60.95 

DengNet 98.10 50.20 50.85 100.00 53.54 51.66 100.00 61.69 55.36 

SRNet 99.40 51.15 50.00 100.00 61.39 53.84 100.00 64.91 59.32 

 

4.2 Security on Steganalyzers. 

The pre-trained steganalyzers are trained by conventional stego images but cannot 

perceive adversarial stego images. In this subsection, we evaluate the security of our 

method in this case. The security improvement in the following text refers to the per-

formance improvement compared to the "original" method. Table 1 and Table 2 show 

the detection accuracy evaluated on four pre-trained steganalyzers in the spatial do-

main, respectively. We can obtain the following five observations: 

Table 2. Benchmark evaluations focus on image quality, extraction performance, and security 

in a white-box scenario. The term "Naive INN from work [2]" describes the original INN 

framework that does not incorporate adversarial hiding. Meanwhile, "Naive perturbation" refers 

to the process of directly adding perturbations to the stego image without utilizing the gradient 

of the stego image. 

Capacities Methods 
Image quality Extraction performance Security 

PSNR(dB) SSIM BER(%) 𝑅𝑠 𝐴𝑐𝑐𝑑(%) 

0.1 bpp 

Naive INN from work 
[2] 

42.35 0.9821 0.0731 7/4,000 99.87 

Naive perturbation 36.47 0.9364 0.0032 1,756/4,000 57.59 

Ours-SR 41.16 0.9648 0 4,000/4,000 50.05 

0.2 bpp 

Naive INN from work 
[2] 

39.76 0.9652 0.3415 7/4,000 99.56 

Naive perturbation 34.73 0.9053 0.0013 1,492/4,000 57.03 

Ours-SR 39.84 0.9667 0 4,000/4,000 50.12 

 



1. In comparison to the "naive INN from work [2]," our approach results in a slight 

reduction in image quality. This is due to the presence of adversarial perturbations, 

which function as noise and inevitably affect the image. Nonetheless, our method 

achieves a Bit Error Rate (BER) of 0, demonstrating its ability to extract secret mes-

sages without loss. Furthermore, our technique accurately retrieves all 4,000 test im-

ages. 

2. Our proposed end-to-end adversarial image steganography method significantly im-

proves the security against pre-trained steganalyzers compared with the original 

method. For example, when the steganalyzer is SRNet, the security improvements 

of "ours-SR" in the spatial domain for 0.2-1.0 bpp are 49.40%, 46.16%, and 40.68%, 

respectively. 

3. Our method performs better in resisting CNN-based steganalyzers than traditional 

steganalyzers. At 0.2 bpp, the security improvements of "ours-SR" are 40.28%, 

47.25%, and 49.40% in resisting XuNet, DengNet, and SRNet, respectively. How-

ever, the security improvement is only 2.04% when resisting SRM detection. 

4. Due to the transferability of adversarial examples, our proposed method also 

achieves strong security in resisting the non-targeted pre-trained steganalyzers. For 

example, "ours-SR" adopts SRNet as the pre-trained steganalytic network, but it can 

effectively evade the detection of three other steganalyzers. 

5. The security improvements of our method would decrease with increasing the em-

bedding capacities in the spatial. For example, the security improvements of "ours-

SR" in the spatial domain at 0.2 bpp is 49.40%, and at 1.0 bpp is 40.68%. 

4.3 Comparison with state-of-the-art Methods. 

In order to verify the progressiveness of our method, we present the comparative 

experimental results and analysis of our proposed method and various state-of-the-art 

image steganography methods in this subsection. 

Comparison with adversarial embedding steganography methods in low capacity. 

We compare the security of our method with UNIWARD, ADV-EMB, and Work [19] 

at 0.4 bpp. UNIWARD is recognized as the most secure traditional steganography 

method. ADV-EMB is a classic steganography method based on adversarial embed-

ding. Work [19] is currently recognized as the most advanced steganography method 

based on adversarial embedding. In order to show the fairness of the comparison ex-

periment, both our method and Work [19] use UNIWARD to train the steganalyzers. 

In addition, we compared the experimental results obtained by the steganography 

method with the best security enhancement and the most advanced targeted ste-

ganalyzer in the original paper of Work [19]. Table 3 show the detection accuracy of 

our method and these three comparison methods with the following observations: 
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Table 3. Benchmark evaluations focus on image quality, extraction performance, and security 

in a white-box scenario. The term "Naive INN from work [2]" describes the original INN 

framework that does not incorporate adversarial hiding. Meanwhile, "Naive perturbation" refers 

to the process of directly adding perturbations to the stego image without utilizing the gradient 

of the stego image. 

Methods SRM XuNet DengNet SRNet 

S-UNIWARD 77.68 82.71 89.15 96.90 

ADV-EMB 78.10 78.06 84.55 86.70 

Lan [2] 79.81 90.66 95.12 96.86 

Liu [19] 74.29 76.31 82.40 84.54 

Ours-SR 76.70 61.39 57.86 53.84 

Table 4. The extraction accuracy (%), PSNR (dB), SSIM, and the detection accuracy (%) of 

our method and three SOTA deep steganography at 1.0 bpp embedding capacity. "Ours-SR" 

represent our proposed method adopt SRNet as the steganalytic network. ↑ means the larger the 

value, the better; while ↓ means the smaller the value, the better. 

Methods Extraction accuracy ↑ Detection by DengNet ↓ Detection by SRNet ↓ 

SteganoGAN 97.81 97.71 96.12 

ABDH 97.44 97.82 98.53 

CHAT-GAN 99.62 94.65 94.13 

Lan [2] 99.75 93.27 94.86 

AHDeS [34] 99.15 84.84 86.91 

Ours-SR 99.99 57.32 59.32 

 

1. Our method has significant security improvements in resisting CNN-based ste-

ganalyzers. Compared with Work [19] in the spatial domain, "Ours-SR" respectively 

improves the security by 14.49%, 24.52%, and 30.68% against XuNet, DengNet, 

and SRNet. 

2. The security of our method will not decrease with the enhancement of steganalyzers. 

As is well known, DengNet and SRNet have much stronger detection capabilities 

than XuNet. We can observe that the three comparison methods have the best secu-

rity against XuNet. When resisting DengNet and SRNet, the detection accuracy will 

significantly increase, which means that the security will decrease substantially. It is 

worth noting that our method can still achieve detection accuracy of 53.84% when 

resisting SRNet detection. It indicates that our method has good prospects in resist-

ing advanced CNN-based steganalyzers. 

 

Comparison with SOTA deep learning (DL)-based steganography methods in 

large capacity. Due to the limitations of STC encoding, the three comparison methods 

mentioned above only have good performance when the embedding capacity is less 

than 0.4 bpp. Recently, some deep learning-based steganography methods have shown 

excellent performance in large capacity. To demonstrate the superiority of our method 

in large capacity, we select three SOTA DL-based steganography methods (Ste-

ganoGAN, ABDH, and CHAT-GAN) as the comparison methods. Table 4 shows the 



extraction accuracy, image quality (PSNR, SSIM), and security (detection accuracy) of 

our method and three SOTA DL-based steganography methods under 1.0 bpp embed-

ding capacity. We can observe that our method achieves the best performance in terms 

of extraction accuracy and security. As shown in Table 4, "Ours-SR" achieves a 0.37% 

improvement in extraction accuracy compared to CHAT-GAN. When resisting the de-

tection of DengNet and SRNet, "Ours-SR" respectively achieves 37.33% and 34.81% 

improvements. 

4.4 Visualization results 

 

Fig. 2: The visualization results of the adversarial stego image, residual image , perturbation 

and Grad-CAM of our method. 

 

Gradient-weighted Class Activation Mapping (Grad-CAM), also known for its heatmap 

visualization effects, is a technique used to visualize the internal decision-making pro-

cesses of deep networks. It generates a heatmap that highlights the regions in the input 

image that play a crucial role in predicting a specific class by utilizing gradient infor-

mation of the target class with respect to the feature maps of convolutional layers during 

classification tasks. Fig. 2 illustrates the visual effect of Grad-CAM. In the Grad-CAM 

results, the red regions represent the areas that the steganalyzer primarily focuses on. 

For images with concealed information that have not undergone adversarial perturba-

tions, the red regions in Grad-CAM are mainly concentrated in texture-rich areas, which 

are typically key positions for the steganalyzer to extract classification features and also 

where secret information is embedded, making it easier for the information to be de-

tected. 

Analysis of Fig. 2 shows that the adversarial stego images generated by our method do 

not exhibit noticeable color distortion or text copy artifacts, making them visually in-

distinguishable from the cover images. The adversarial perturbations generated by this 
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method are primarily applied to complex texture areas. As a result, when these texture-

based adversarial perturbations are added to the concealed images to produce adversar-

ial stego images, the attention of the steganalyzer is successfully misled. The red re-

gions in Grad-CAM shift from critical texture areas to smoother regions, and even to 

areas unrelated to classification. This shift indicates that our method can effectively 

guide the attention of the steganalyzer to regions that do not contain secret information, 

leading to a lack of sufficient discriminative information for correctly identifying the 

adversarial stego images. 

5 Conclusion 

This paper proposes an end-to-end adversarial image steganography method, which au-

tomatically achieves adversarial embedding by using the gradients from the pre-trained 

convolutional neural network (CNN)-based steganalyzer. Unlike another adversarial 

embedding steganography method, we introduce the idea of adversarial embedding into 

the automatic training of networks for the first time. We design a novel embedding 

mask to guide the secret messages embedded into the specific security-enhanced re-

gions. Extensive experimental results demonstrate the superiority of our method under 

pre-trained and re-trained CNN-based steganalyzers in spatial domains. 

The adversarial embedding proposed in this paper can be flexibly applied to other 

end-to-end DL-based steganography frameworks, and have good application prospects 

in resisting advanced CNN-based steganalyzers. However, there are several important 

challenges worth further overcome. For instance, while our method achieves good se-

curity against CNN-based steganalyzers in the spatial domain, it is also necessary to 

consider how to enhance resistance to CNN-based steganalysis in the JPEG domain. 

We will strive to address this issue in our future work. 
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