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Abstract. To achieve stable profits in uncertain financial environments charac-

terized by pervasive noise signals, unavoidable transaction costs and zero-sum 

dynamics, it is crucial to construct optimized portfolios based on comprehensive 

data processing. However, existing methods often overlook the importance of 

learning hedge financial knowledge from data and leveraging mixture-of-expert 

(MoE) inferences to maximize agent profitability. To address this issue, we pro-

pose the Coordinated Knowledge Distillation and Inference Framework 

(CKDIF). CKDIF introduces a three-dimensional discrete coordinate system to 

train deep reinforcement learning agents with hedge trading behaviors, enabling 

the effective distillation of underlying micro-financial knowledge directly from 

noisy financial data. Furthermore, CKDIF constructs a novel ensemble of MoE 

networks by harnessing these pretrained agents and uses the ensemble to make 

final portfolio selection across any asset dimension. Notably, with transaction 

costs set at a realistic rate of 0.1%, CKDIF outperforms eight representative al-

gorithms on five out of six real-world financial datasets. It achieves an average 

cumulative wealth and Calmar ratio that are 1.66 and 3.70 times higher, respec-

tively, compared to the buy-and-hold strategy. These results underscore the po-

tency of coordinated knowledge distillation and MoE inference in enhancing 

agent performance in competitive environments. 

Keywords: Coordinated Knowledge Distillation, Mixture of Experts, Portfolio 

Optimization. 

1 Introduction 

Achieving stable returns in real-world financial markets is challenging due to the com-

plex nature of optimization under financial uncertainty [1]. Unlike well-studied do-

mains like natural language processing (NLP) and computer vision (CV), financial data 

present unique difficulties for developing automated portfolio optimization agents. The 

main challenges are: (i) Pervasive noise signals—such as sentiment-driven fluctuations, 
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oversold/overbought conditions, and black swan events—distort financial data, reduc-

ing the effectiveness of traditional mean-variance portfolio optimization, especially in 

short-term strategies [2]; (ii) Unavoidable transaction costs incurred during each trad-

ing action can significantly erode profits, especially in market conditions like bear mar-

kets. This poses a challenge to the trial-and-error learning paradigm commonly used in 

deep reinforcement learning (DRL) [3]; (iii) Zero-sum competition causes strategies to 

lose effectiveness over time, making it essential to maintain multiple coexisting strate-

gies for consistent returns [4, 5]. However, many approaches converge to a single strat-

egy, neglecting the importance of diversification. 

To address these issues, we emphasize the extraction and use of hedge financial 

knowledge, which represents the collective behavior of DRL agents exhibiting hedge 

trading strategies [6]. This expands traditional diversification and allows inference-

based adaptation to evolving markets. However, existing knowledge distillation meth-

ods face several limitations: (i) information loss that reduces diversity in trend learning; 

(ii) lack of hedge-oriented behaviors in agent strategies [7–9]; and (iii) difficulty incor-

porating essential financial knowledge—such as sparse portfolio construction [10] and 

transaction cost control [3]—due to challenges in unifying these objectives during train-

ing. 

To overcome these limitations, we propose the Coordinated Knowledge Distillation 

and Inference Framework (CKDIF)1. CKDIF effectively learns and utilizes hedge trad-

ing knowledge for robust portfolio optimization. Our key contributions include:  

• A novel three-dimensional discrete coordinate system for training DRL agents to 

effectively capture hedge trading knowledge from noisy data. 

• An ensemble of Mixture-of-Expert (MoE) networks built from these pretrained 

agents for robust and generalized inference across diverse asset dimensions. 

• A unified framework incorporating domain-specific knowledge—hedge trading 

strategies, portfolio sparsity, and transaction cost control—into the distillation and 

inference process. 

To evaluate CKDIF, we tested it on six real-world financial datasets with a realistic 

0.1% transaction cost. CKDIF outperformed eight baseline methods on five datasets, 

achieving cumulative wealth and a Calmar ratio that are 1.66 times and 3.70 times 

higher, respectively, than the buy-and-hold strategy.  These results highlight the effec-

tiveness of coordinated knowledge distillation and MoE inference in boosting agent 

performance in competitive environments.   

The remainder of this paper is structured as follows: Section 2 reviews related work 

in portfolio optimization. Section 3 outlines the CKDIF workflow. Section 4 details the 

coordinated knowledge distillation process used to obtain pretrained agents. Section 5 

describes the inference mechanism on these agents. Section 6 reports extensive exper-

imental results. Finally, Section 7 concludes the paper. 

 
1  The code is available at https://github.com/ccckkkyyy666/CKDIF 
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2 Related Work 

This section reviews related work on knowledge distillation and ensemble agent meth-

ods for portfolio optimization. 

2.1 Knowledge Distillation 

Knowledge distillation originated from the need to compress knowledge from large-

sized models into smaller ones [7-9]. As a learning method, it traditionally involves two 

roles: the teacher and the student models. In the financial domain, one of the main mo-

tivations for utilizing knowledge distillation is its effectiveness in handling noisy finan-

cial data. Notably, Tsantekidis et al. [9] employed a diverse collection of teacher models 

to handle transactions in various currencies, allowing the student network to distill com-

mon insights. Similarly, Chen et al. [7] developed a student-teacher framework where 

multiple agents distill market information to train a student DRL model, demonstrating 

profitable strategies and flexible asset allocation. Additionally, Moustakidis et al. [8] 

proposed an online distillation method for DRL agents that transfers both output and 

intermediate-layer knowledge from a teacher ensemble to a student model, improving 

training stability and performance in noisy financial environments. However, these 

methods have certain limitations: (i) Student models indirectly learn financial 

knowledge from teacher models, which may result in information loss during 

knowledge propagation and reduced behavior diversity in learning; (ii) The pool of 

students lacks training in hedge trading behaviors; (iii) Crucial portfolio-specific 

knowledge, such as sparse portfolio construction and transaction cost control, remains 

unlearned from the teachers. 

2.2 Ensemble of Agents 

The utilization of multiple trading agents can enhance portfolio diversification while 

enabling online inference capabilities [7, 11, 12]. For instance, Chen et al. [7] intro-

duced a role-aware multi-agent algorithm that categorizes trading agents into distinct 

groups, providing diverse observation sets and reward functions to simulate real-world 

investment behaviors. Similarly, Shavandi and Khedmati [11] trained agents using deep 

Q-Networks (DQN) across diverse time frames. However, relying solely on price in-

formation from different time intervals limits the exploitation of hedging opportunities 

and diverse price information. Another study by Yang et al. [12] employed the Sharpe 

ratio to automatically select the best-performing agent from an ensemble of proximal 

policy optimization (PPO), advantage actor-critic (A2C), and deep deterministic policy 

gradient (DDPG) algorithms. Nevertheless, a common issue with these ensemble meth-

ods is the lack of behavior diversity in constructing the agent pool, as the agents often 

share similar trading styles due to using the same optimization objective during train-

ing. This can lead to a situation where all agents exhibit the same “follow-the-winner” 

trading behavior. 



3 The Workflow of CKDIF 

The CKDIF workflow (Fig. 1) outlines data flows across four key steps, each using a 

distinct dataset marked by color. It consists of two stages: Stage 1 (Steps 1–2) distills 

knowledge from training data into agents as a living knowledge base, while Stage 2 

(Steps 3–4) trains the MoE network and performs inference on this base. 

 

Fig. 1. The workflow of CKDIF.  

3.1 Datasets Allocation 

The datasets, detailed in Table 1, used in the CKDIF workflow are obtained from Yahoo 

Finance, encompassing trading data from global markets, including the Dow Jones In-

dustrial Average Stock Index (DOW), Shanghai and Shenzhen Indexes (HS), Hong 

Kong Index (HK), Financial Times Stock Exchange Index (FTSE), New York Stock 

Exchange Index (NYSE), as well as global cryptocurrency market data (CRYPTO). 

These datasets reflect a range of market conditions, including black swan events and 

regime shifts. For instance, the CRYPTO market experienced a major shift when 

Bitcoin dropped from $45,308 to $41,454, an 8.51% decline, triggering nearly $600 

million in liquidations. These events test a portfolio strategy’s ability to adjust to ex-

treme market conditions and confirm its generalization to out-of-sample events. 

The training datasets, using asset set Ω𝑡𝑟𝑎𝑖𝑛  over 𝑛𝑡𝑟𝑎𝑖𝑛  periods, are used to train 

agents. No.1 validation datasets, with asset set Ω1 over 𝑛1 periods, are employed to se-

lect agents exhibiting hedge trading behaviors. Both sets contain 29 assets, matching 

the neural network’s capacity 𝑚. The No.2 validation datasets are used to train the MoE 

network with asset set Ω2 over 𝑛2 periods. 
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Table 1. The allocation of datasets. 

Market 
Training Datasets No.1 Validation Datasets No.2 Validation Datasets Test Datasets 

Periods #Assets Periods #Assets Periods #Assets Periods #Assets 

DOW 
05/01/2010-

31/12/2013 
29 

05/01/2014- 

05/01/2015 
29 

06/01/2015- 

06/01/2016 
29 

07/01/2016- 

06/01/2017 
29 

HS 
04/01/2011- 

31/12/2014 
29 

06/01/2015- 

06/01/2016 
29 

07/01/2016- 

06/01/2017 
63 

09/01/2017- 

08/01/2018 
63 

CRYPTO 
10/11/2017- 

10/11/2021 
29 

11/11/2021- 

10/11/2022 
29 

11/11/2022- 

11/11/2023 
33 

12/11/2023- 

29/04/2024 
33 

HK 
05/01/2015- 

31/12/2018 
29 

03/01/2019- 

03/01/2020 
29 

06/01/2020- 

04/01/2021 
73 

05/01/2021- 

05/01/2022 
73 

NYSE 
02/01/2013- 

30/12/2016 
29 

02/01/2017- 

02/01/2018 
29 

03/01/2018- 

03/01/2019 
62 

04/01/2019- 

03/01/2020 
62 

FTSE 
04/01/2017- 

31/12/2020 
29 

04/01/2021- 

04/01/2022 
29 

05/01/2022- 

05/01/2023 
75 

06/01/2023- 

05/01/2024 
75 

4 Coordinated Knowledge Distillation 

We employ a 3D coordinate system to train a pool of agents 𝓐(𝑥,𝑦,𝑧)  with the goal of 

acquiring highly effective hedge financial knowledge. Each agent, denoted as 𝓐(𝑥,𝑦,𝑧) , 

can be viewed as a function 𝓐(𝑥,𝑦,𝑧)：ℝ10𝑚+1 → ℝ𝑚, mapping inputs from the real 

space ℝ10𝑚+1 to trading actions in the action space ℝ𝑚 , where 𝑚 represents the max-

imum number of assets that can be processed by the neural network implementing these 

agents.  

4.1 Agent State Space 

For each agent 𝓐(𝑥,𝑦,𝑧) , its state 𝒔𝑡
𝑥 ∈ ℝ10𝑚+1 is defined as follows: 

𝒔𝑡
𝑥 = vec(𝑐𝑎𝑠ℎ𝑡 , 𝒑𝑡

𝑥, 𝒉𝑡 , 𝐢𝐧𝐝𝑡). (1) 

The symbol 𝑐𝑎𝑠ℎ𝑡  ∈ ℝ+ represents the remaining cash at period 𝑡. The notation 𝒑𝑡
𝑥 ∈ 

ℝ𝑚, as defined in Table 2,  refers to the price-trend features utilized by agents 𝓐(𝑥,𝑦,𝑧) 

whose first index is 𝑥. The vector 𝒉𝑡 ∈ ℝ+
𝑚 represents the holdings of 𝑚 assets by an 

agent, and the vector 𝐢𝐧𝐝𝑡  ∈ ℝ𝑚×8 contains eight technical indicators for each asset, as 

described in Table 3. The operator vec vertically stacks the input vectors 𝑐𝑎𝑠ℎ𝑡  , 𝒑𝑡
𝑥, 

𝒉𝑡, and 𝐢𝐧𝐝𝑡  to form a state 𝒔𝑡
𝑥. Consequently, the dimension of the state 𝒔𝑡

𝑥 is deter-

mined to be 10𝑚 + 1. 

The input price vector 𝒑𝑡
  ∈ ℝ+

𝑚  in Table 2 represents the close prices of 𝑚 assets, 

while the parameter 𝑤 ∈ ℝ+ denotes the time window used to calculate these features, 

and the parameter 𝛽 ∈ (0, 1) represents the weight used in computing the feature vector 

𝒑𝑡
 𝑒𝑚𝑎 through the exponential moving average formula. 

Table 2. Definition of price-trend features 𝒑𝑡
𝑥. 

 
𝑥 

𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑒𝑎𝑛 𝑒𝑚𝑎 𝑟𝑒𝑎𝑙 

𝒑𝑡
𝑥 max

0≤𝑘≤𝑤−1
𝒑𝑡−𝑘

  min
0≤𝑘≤𝑤−1

𝒑𝑡−𝑘
  

1

𝑤
∑𝑘=0

𝑤−1𝒑𝑡−𝑘
  ∑𝑘=0

𝑤−1𝛽(1 − 𝛽)𝑘𝒑𝑡−𝑘
  𝒑𝑡

  



Table 3. Technical indicators used in the vector 𝐢𝐧𝐝𝑡. 

Indicator Description 

macd Moving average convergence divergence 

boll_ub Bollinger bands upper band 

boll_lb Bollinger bands lower band 

rsi_30 Relative strength index for 30 periods 

cci_30 Commodity channel index for 30 periods 

dx_30 Directional movement index for 30 periods 

ma_30 Simple moving average of closing prices for 30-periods 

cci_30 Simple moving average of closing prices for 60-periods 

4.2 Agent Action Space and Training Objective 

All agents 𝓐(𝑥,𝑦,𝑧) operate within an action space that encompasses all allowable trad-

ing actions 𝒂𝑡+1
𝑦

 ∈ ℝ𝑚 for 𝑚 assets in a given state 𝒔𝑡
𝑥 at period 𝑡. These actions include 

buying (𝑎𝑡+1,𝑖
𝑦

 > 0), selling (𝑎𝑡+1,𝑖
𝑦

 < 0), or holding (𝑎𝑡+1,𝑖
𝑦

 = 0) assets. For instance, 

𝒂𝑡+1
𝑦

 = (10, −10, 0, ...) indicates buying 10 shares of the first asset, selling 10 shares of 

the second asset, and holding the remaining shares of the third asset. 

It is essential that agents’ actions follow a hedge behavior structure while maximiz-

ing individual profits. Therefore, we propose the following optimization objective for 

training each agent 𝓐(𝑥,𝑦,𝑧) : 

min − 𝜂𝐿1
𝑦

+ 𝐿2, (2) 

where 𝜂 ∈ ℝ+ is a preset constant. The first item 𝐿1
𝑦

 is defined as follows: 

𝐿1
𝑦

= ∑𝜏∈[0,𝑛𝑡𝑟𝑎𝑖𝑛]
 ∑𝑗=1

𝑦−1
KL(𝒂𝜏

𝑗
||𝒂𝜏

𝑦
). (3) 

Eq. (3)  sums the KL divergences between actions 𝒂𝜏
𝑦
 from 𝓐(𝑥,𝑦,𝑧)  and actions 𝒂𝜏

𝑗
  

from 𝓐(𝑥′,𝑗,𝑧′), where the trading style index j < 𝑦. The second term in Eq. (2) is the 

PPO or A2C loss, aiming to maximize rewards via advantage estimation. Together, 

these terms guide agents to distill hedge financial knowledge in a greedy fashion. 

Agents 𝓐(𝑥,𝑦,𝑧) are trained using the library stable-baselines32. Training complexity is 

𝑂(𝓝𝑎 ×
𝓡𝑎

𝓑𝑎
𝜉), where 𝓝𝑎 iterations 𝓡𝑎 samples of observation–reward pairs, and each 

network update (cost 𝜉) uses a batch of 𝓑𝑎 samples. 

4.3 Training and Selection of Agents via the 3D Coordinate System 

Our agent pool, denoted as 𝓐(𝑥,𝑦,𝑧), is trained within a 3D coordinate system (Fig. 1). 

The first index, 𝑥 ∈{𝑚𝑎𝑥, 𝑚𝑖𝑛, 𝑚𝑒𝑎𝑛, 𝑒𝑚𝑎, 𝑟𝑒𝑎𝑙}, defines the set of price features 

 
2  https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common 

/on_policy_algorithm.py 
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used for training. The second, 𝑦 ∈ {1, 2, ..., 𝑌}, specifies the desired trading style. The 

third, 𝑧 = {𝑃𝑃𝑂, 𝐴2𝐶}, indicates the training algorithm: Proximal Policy Optimization 

(PPO) or Advantage Actor-Critic (A2C). We employ both PPO, known for robust ex-

ploration, and A2C, recognized for responsive policy updates, to cultivate a diverse set 

of agents tailored to various financial strategies and market dynamics. With 5 price 

features, 𝑌 trading styles and 2 algorithms, we train a total of 10𝑌 agents 𝓐(𝑥,𝑦,𝑧). 

To select agents exhibiting hedge behaviors, we identify the top and bottom per-

formers within each of the 6 markets in the No.1 validation dataset. This process yields 

a maximum of 12 selected agents for the subsequent inference phase. However, the 

actual number 𝑔 of unique selected agents may be less than 12 due to potential repeti-

tions, as illustrated in Appendix A where 𝑔=9. 

5 Inference over Agents 

This section details the process of generating final trading decisions by performing in-

ference on the trained DRL agents. This is achieved by constructing a Mixture-of-Ex-

perts (MoE) neural network and further enhancing it through an ensemble of multiple 

MoE instances to improve robustness and performance. 

5.1 MoE Neural Network 

The MoE neural network can be conceptualized as a function MoE: ℝ10𝑚+1 → ℝ𝑚 and 

is defined as follows: 

𝒖1 = 𝑾1
128×(10𝑚+1)  

𝒔𝑡
𝑟𝑒𝑎𝑙

(10𝑚+1)×1
+ 𝒃1

128×1
,             (4a) 

𝒖1 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖1),            (4b) 
𝒖2 = 𝑾2

256×128
𝒖1

  128×1
+ 𝒃2

256×1
,                              (4c) 

 𝒖2 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖2),             (4d) 
𝒖3 = 𝑾3

128×256
𝒖2

  256×1
+ 𝒃3

128×1
,                              (4e) 

  𝒖3 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖3),               (4f) 
𝒖4 = 𝑾4

𝑔×128
𝒖3

  128×1
+ 𝒃4

𝑔×1
,                                     (4g) 

 𝒖4 = Softmax ∘ Topk(𝒖4, 𝑘 = 2),                   (4h) 

𝒄𝑡
𝑚×1

= [… 𝓐(𝑥𝑖,𝑦𝑖,𝑧𝑖)(𝒔𝑡
𝑟𝑒𝑎𝑙) … ]

𝑚×𝑔

𝒖4
𝑔×1

.                      (4i) 

For the network design, we adopt a repeated three-layer block composed of fully con-

nected layers with Dropout and LeakyRelu activation. The hidden dimension is first 

expanded to 256 to explore richer feature interactions, then reduced to 128 to filter out 

redundant components and retain salient signals. LeakyRelu is chosen to maintain sta-

ble gradient flow and mitigate dead neuron issues. In the final layer, the output vector 

𝒖4 is used to compute a weighted sum of portfolio vectors proposed by the trained DRL 

agents. According to Eq. (4i), the domain of 𝒄𝑡 matches the agents’ action space ℝ𝑚, 

making 𝒄𝑡 interpretable as traders’ trading actions. The MoE neural network is trained 



using the following loss function:  

𝑙𝑜𝑠𝑠 = −(𝑐𝑎𝑠ℎ𝑡 + 𝒉𝑡
⊺𝒑𝑡 − (𝑐𝑎𝑠ℎ𝑡−1 + 𝒉𝑡−1

⊺ 𝒑𝑡−1)). (5) 

At each period 𝑡, the loss is calculated as the difference in capital between two consec-

utive periods, with 𝒉𝑡
⊺𝒑𝑡 representing the estimated value of shares 𝒉𝑡

 , obtained from 

the agent trading environment MoEEnv, as described in Step 9 of Algorithm 1. The 

MoE neural network is trained on samples from the No.2 validation dataset3 using Al-

gorithm 1, with support from the FinRL framework4. 

 
Algorithm 1 MoE Neural Network Training Algorithm 

Input: Price vectors: {𝒑𝑡: 𝒑𝑡 ∈ ℝ+
|Ω|

}
𝑡=1

𝑛2
, where Ω is a subset of assets from a No.2 validation dataset; a 

set of 𝑔 agents: {𝓐(𝑥𝑖,𝑦𝑖,𝑧𝑖)}𝑖=1
𝑔

; number of iterations 𝓝𝑒, learning rate 𝜆𝑒, and dropout rate 𝛾𝑒; 

Procedure: 

  1:  Initialize MoE network weights 𝓦, as defined in Eq. (4) 

  2:  Initialize optimizer = optim.Adam(𝓦, 𝜆𝑒) 

  3:  Initialize cumulative wealth 𝜔0 = 1, 000, 000 

  4:  MoEEnv = StockTradingEnv (𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣() 

  5:  for 𝑖 = 1 → 𝓝𝑒 do 

  6:      Initialize 𝑐𝑎𝑠ℎ0 = 𝜔0, 𝒃0 = [0, ..., 0] 

  7:      for 𝑡 = 1 → 𝑛2 do 

  8:            compute state 𝒔𝑡
𝑟𝑒𝑎𝑙 via Eq. (1) and action 𝒄𝑡

  via Eq. (4) 

  9:            obtain 𝑐𝑎𝑠ℎ𝑡, 𝒑𝑡, and 𝒉𝑡
  via invoking MoEEnv.step(𝒄𝑡) 

10:            compute 𝑙𝑜𝑠𝑠 via Eq. (5) 

11:            optimizer.zero_grad(); loss.backward(); optimizer.step() 

12:  Output: network weights 𝓦 

In Step 4, the variable MoEEnv represents an instance of the StockTradingEnv class, 

which encapsulates crucial trading state information, including price vectors 𝒑𝑡 , re-

maining cash 𝑐𝑎𝑠ℎ𝑡, cumulative wealth 𝜔t, and asset holdings 𝒉𝑡
 , among others. The 

computational complexity of Algorithm 1 can be estimated as 𝑂(𝓝𝑒 × 𝑛2 [𝑚(1280 + 

𝑔) + 𝑔(𝜉 + 128)]), where 𝜉 denotes the computational cost associated with inference on 

an agent’s neural network. 

5.2 Varied Inference Intervals 

Transaction fees significantly affect portfolio profitability for agents. To mitigate this, 

we propose a heuristic to determine the optimal inference interval 𝑑𝑡
∗
 at period 𝑡, based 

on the following objective: 

𝑑𝑡
∗ = arg max

𝑑∈𝐷
{𝛼(𝜔𝑡 − 𝜔𝑡−𝑑)/𝑑 + (1 − 𝛼)√∑𝑘=1

𝑑 (Δ𝜔𝑡−𝑘 − Δ𝜔𝑡)2/𝑑} . (6) 

Here, 𝛼 ∈ [0, 1] is a preset interval coefficient, and 𝐷 ∈ 2ℕ is the set of candidate infer-

ence intervals. 𝜔𝑡 denotes cumulative portfolio wealth, with change Δ𝜔𝑡 = 𝜔𝑡 − 𝜔𝑡−1. 

 
3  The training datasets for the MoE neural network can be accessed at https://github.com/ccck-

kkyyy666/CKDIF/blob/main/Data/data/forMoE.csv. 
4  https://github.com/AI4Finance-Foundation/FinRL 
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Objective (6) balances the growth ratio of  𝜔𝑡 and the variance of recent increase ratios 

over window 𝑑. Details on selecting 𝐷 and 𝛼 are provided in Appendix B. 

5.3 CKDIF Inference Algorithm 

This section introduces an ensemble of MoE networks to make final trading decisions 

on the test datasets Ω𝑡𝑒𝑠𝑡 . To handle potential mismatches between the number of assets 

in Ω𝑡𝑒𝑠𝑡  and the maximum asset capacity 𝑚 of a single MoE network (as defined in Eq. 

(4)), this ensemble, denoted as {MoE𝑖}, is constructed as follows: 

• We sample a collection of asset subsets denoted as Σ = {Ω1, ..., Ω𝑛𝑐
 : |Ω𝑖 | = 𝑚, Ω𝑖  

⊆ Ω𝑡𝑒𝑠𝑡}. Here, 𝑛𝑐 is calculated as 𝑛𝑐=⌈
| Ω𝑡𝑒𝑠𝑡 |

𝑚
⌉, where Ω𝑡𝑒𝑠𝑡  represents the asset set 

in the given test dataset. 

• Construct {MoE𝑖} to use the sampled collection Σ to generate the final trading ac-

tions 𝒄t
′ ∈ ℝ𝑚 according to the following rule: 

𝒄𝑡
′ = Sparse(MoE𝑗(𝒔𝑡

𝑟𝑒𝑎𝑙 ; Ω𝑗); Ω𝑗), (7) 

where 𝑗 =arg max𝑖∈[1,𝑛𝑐], Ω𝑖∈ΣMoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

 ; Ω𝑖).cash. 

The notation (𝒔𝑡
𝑟𝑒𝑎𝑙; Ω𝑖) indicates that the state 𝒔𝑡

𝑟𝑒𝑎𝑙  must be constructed using only 

the features corresponding to the asset subset Ω𝑖 , such as the price-trend vector 𝒑𝑡
𝑟𝑒𝑎𝑙  

and the holdings 𝒉𝑡 for assets in Ω𝑖 . The term MoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

 
; Ω𝑖).𝑐𝑎𝑠ℎ represents the re-

maining cash balance in the trading environment of MoE𝑖 after executing the action 

MoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

 
; Ω𝑖). The function Sparse: ℝ𝑚 × 2ℕ  → ℝ𝑚 is designed to transform an 

action 𝒄𝑡
  ∈ ℝ𝑚 into a sparse action 𝒄𝑡

′  ∈ ℝ𝑚 according to the following rule: 

Sparse(𝑐𝑡,𝑖; Ω𝑗) = {
−ℎ𝑡,𝑖, if 𝑖 ≠ 𝑘 ∧ ℎ𝑡,𝑖 > 0,

(𝑐𝑎𝑠ℎ𝑡 + ∑𝑙≠𝑘𝑝𝑡,𝑙ℎ𝑡,𝑙)/𝑝𝑡,𝑖 , if 𝑖 = 𝑘,
(8) 

where 𝑘 is defined as 𝑘 = arg 𝑚𝑎𝑥𝑖𝑐𝑡,𝑖, and ℎ𝑡,𝑖 ∈ ℝ+
 , for 𝑖 =1, ..., 𝑚, represents the 

number of shares of each asset in Ω𝑗 that the action 𝒄𝑡
  operates upon. 

Finally, we introduce the CKDIF inference algorithm (Algorithm 2) for generating 

final trading actions. CKDIF adaptively updates the optimal inference interval 𝑑∗ at 

each period 𝑡, triggered when 𝑡 is a multiple of the previous 𝑑∗ (Step 10). Its computa-

tional complexity is approximated as 𝑂(
𝑛

𝑚𝑖𝑛 𝐷
 × ⌈ 

|Ω|

m
 ⌉× [𝑚(1280 +𝑔) +𝑔(𝜉 + 128)]), 

where 𝜉 is the cost of inferring from a single agent’s network. 

To prepare the optimal asset subset collection Σ∗ for invoking Algorithm 2, multiple 

candidates Σ𝑖 = {Ω1
𝑖 , … , Ω𝑛𝑐

𝑖 }  are sampled from validation set Ω2 , where |Ω𝑗
𝑖| = 𝑚 

and 𝑛𝑐 = ⌈
|𝛺2|

𝑚
⌉. The optimal Σ∗ is chosen as argmaxΣ𝑖

CIA(Σ𝑖 , 𝐷, 𝛼), with CIA denoting 

Algorithm 2. 

 

 

 



Algorithm 2 CIA: CKDIF Inference Algorithm 

Input: Price vectors:  {𝒑𝑡: 𝒑𝑡 ∈ ℝ+
|Ω|

}
𝑡=1

𝑛 
, where Ω  is an asset set; collection of asset subsets: Σ 

= {Ω1, . . . , Ω𝑛𝑐
: |Ω𝑖| = 𝑚, Ω𝑖 ⊆ Ω}, where 𝑛𝑐 = ⌈ 

|Ω|

𝑚
 ⌉;  𝑛𝑐 MoE neural networks and 𝑛𝑐 × 𝑔 agents; can-

didate inference intervals 𝐷, and interval coefficient 𝛼; 

Procedure: 

  1:  Initialize the cumulative wealth 𝜔0 = 1, 000, 000, inference interval 𝑑∗ = 𝐷[0] 

  2:  EnsembleEnv = StockTradingEnv(𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣() 

  3:  for 𝑖 = 1 → 𝑛𝑐 do 

  4:        𝑀𝑜𝐸𝑖 = StockTradingEnv(𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣() 

  5:  for 𝑡 = 1 → 𝑛 do 

  6:        compute state 𝒔𝑡
𝑟𝑒𝑎𝑙 via Eq. (1), and compute final action 𝒄𝑡

′  via Eq. (7) using Σ and  𝒔𝑡
𝑟𝑒𝑎𝑙 

  7:        if 𝑡 < max(𝐷) then 

  8:              obtain 𝜔𝑡  via invoking EnsembleEnv.step(𝒄𝑡
′ ); continue 

  9:        if 𝑡 % 𝑑∗ == 0 then 

10:              obtain 𝜔𝑡  via invoking EnsembleEnv.step(𝒄𝑡
′ ); update interval 𝑑∗ via Eq. (6) 

11:  Output: the final cumulative wealth 𝜔𝑛 

6 Experiment Results 

We conducted experiments on the test datasets (Table 1) using a machine with an AMD 

Ryzen 7 5800H, GeForce RTX 3060 GPU, and 16GB RAM. 

6.1 Effect of Knowledge Distillation and MoE Inference 

To assess the effect of knowledge distillation, we evaluated nine agents (Appendix A) 

on the datasets in Table 1. Fig. 2a shows the price series of 62 assets over 250 periods 

in the NYSE dataset, where hedge patterns are subtle and hard to identify. In contrast, 

Fig. 2b illustrates the diverse trading behaviors learned by the nine agents. For example, 

agent a2cMax2 exhibits distinct trading dynamics from a2cEma1 during days 75–90, 

and from ppoReal4 during days 150–250, highlighting strategy diversity. 

The effectiveness of MoE inference is demonstrated in Fig. 2c, where CKDIF, lev-

eraging MoE-based inference across the trained agent ensemble, significantly outper-

forms the other eight methods on the NYSE dataset. A similar performance advantage 

is shown in Fig. 2d for the CRYPTO dataset, where no individual agent exceeds 

CKDIF’s performance. These results confirm that MoE inference improves both gen-

eralization and robustness beyond what single-agent approaches can achieve. 

 

(a) Asset prices in NYSE dataset            (b) Agent performance on NYSE dataset 
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(c) Performance comparison on NYSE dataset          (d) Performance comparison on CRYPTO dataset 

Fig. 2. Effect of knowledge distillation and MoE inference. 

6.2 Inference Performance Comparison 

Table 4 presents a performance comparison against a diverse set of baselines: the tra-

ditional buy-and-hold (BAH) strategy, the mean-reversion multi-expert strategy MRvol 

[13], the sparse strategy SSPO_𝑙0 [14], the tree-based model LightGBM [18], and en-

semble techniques like the Double Ensemble (DE) [19]. Our evaluation also includes 

enhanced implementations of DRL algorithms (SAC[15], TD3[16], and DDPG[17]) 

using the Ray RLlib framework5. 

Cumulative Wealth. Cumulative wealth (CW) evaluates long-term performance as the 

ratio of final to initial wealth CW ≔
𝜔𝑛

𝜔0
= ∏ (

𝒑𝑡

𝒑𝑡−1
)

⊺
𝑛
𝑡=1 𝒃𝑡, where 𝒃𝑡 ∈ ℝ+

𝑚 is a portfo-

lio vector with 𝒃𝑡
T𝟏 = 1. Table 4 shows that CKDIF consistently outperforms other 

algorithms in CW, ranking first on five of six datasets. Notably, on the CRYPTO da-

taset, its CW of 4.67 more than doubles MRvol’s 1.56. This strong performance high-

lights the effectiveness of coordinated knowledge distillation and MoE inference. 

Sharpe Ratio. The Sharpe ratio (SR) evaluates risk-adjusted portfolio returns, defined 

as SR ≔
𝔼[𝑅−𝑅𝑓] 

𝜎[𝑅−𝑅𝑓]
. CKDIF achieves the highest SRs on the CRYPTO and HK datasets 

and ranks second on FTSE, just 0.04 behind the top method. However, since SR treats 

all return variance 𝜎[𝑅 − 𝑅𝑓] as risk, it may overestimate risk during periods of con-

sistent growth. 

Maximum Drawdown. Maximum Drawdown (MDD) measures the largest loss from 

peak to trough before recovery. While CKDIF shows higher MDDs than the best-per-

forming algorithms in this metric, this is due to its higher trading frequency. Notably, 

CKDIF achieves significantly greater Cumulative Wealth (CW). For instance, on the 

CRYPTO dataset, MRvol has the lowest MDD but a CW of only 1.56—about one-third 

of CKDIF’s 4.67—highlighting the trade-off between MDD and CW. 

 
5  https://github.com/ray-project/ray/tree/master/rllib/algorithms 



Calmar Ratio. Calmar Ratio (CAR) measures investment performance by dividing an-

nualized return (AR) by maximum drawdown (MDD). The AR is computed as: AR ∶= 

(1 + CR)
252

𝑛  −1, where CR ∶= 
𝜔𝑛 

𝜔0
 −1 represents the cumulative return. CKDIF outper-

forms on CAR, achieving top CARs on HS and CRYPTO datasets, second on FTSE, 

and third on HK. 

Table 4. Inference performance comparison (best scores in bold). 

Datasets Metrics BAH CKDIF MRvol SSPO_𝑙0 SAC TD3 DDPG LightGBM DE 

DOW 

CW 1.21±0.00 1.37±0.00 1.25±0.00 1.10±0.00 1.14±0.00 1.32±0.00 1.22±0.00 1.17±0.00 1.14±0.02 

SR 1.52±0.00 1.50±0.00 1.44±0.00 0.40±0.00 1.29±0.00 2.15±0.00 1.62±0.00 -0.01±0.00 -0.02±0.01 

MDD (%) 5.15±0.00 14.42±0.00 7.49±0.00 13.62±0.00 6.83±0.00 6.18±0.00 5.59±0.00 25.40±0.00 26.25±0.38 

CAR 4.01±0.00 2.55±0.00 3.28±0.00 0.70±0.00 2.10±0.00 5.16±0.00 3.60±0.00 0.14±0.01 0.23±0.06 

HS 

CW 1.23±0.00 1.69±0.00 1.13±0.00 0.79±0.00 1.45±0.00 1.17±0.00 1.26±0.00 1.16±0.00 1.23±0.02 

SR 2.28±0.00 1.97±0.00 1.04±0.00 -0.80±0.00 2.73±0.00 1.42±0.00 2.16±0.00 0.04±0.00 0.06±0.01 

MDD (%) 6.28±0.00 10.65±0.00 8.76±0.00 38.70±0.00 8.26±0.00 7.03±0.00 6.60±0.00 16.78±0.00 15.54±0.65 

CAR 3.85±0.00 6.72±0.00 1.51±0.00 -0.55±0.00 5.60±0.00 2.56±0.00 4.12±0.00 -0.63±0.00 -1.05±0.14 

CRYPTO 

CW 1.17±0.00 4.67±0.00 1.56±0.00 1.02±0.00 0.73±0.00 0.89±0.00 0.76±0.00 1.36±0.00 1.24±0.10 

SR 0.41±0.00 2.1±0.00 1.02±0.00 0.01±0.00 -0.20±0.00 0.02±0.00 -0.16±0.00 0.01±0.00 -0.01±0.02 

MDD (%) 30.35±0.00 75.42±0.00 21.63±0.00 75.60±0.00 53.96±0.00 34.57±0.00 51.29±0.00 59.14±0.00 57.27±3.81 

CAR 0.85±0.00 11.69±0.00 4.30±0.00 0.03±0.00 -0.68±0.00 -0.45±0.00 -0.65±0.00 -0.11±0.00 0.11±0.18 

HK 

CW 0.96±0.00 1.12±0.00 0.77±0.00 0.67±0.00 0.94±0.00 0.97±0.00 1.06±0.00 0.93±0.01 0.97±0.01 

SR -0.22±0.00 0.47±0.00 -1.02±0.00 -0.52±0.00 -0.17±0.00 -0.18±0.00 0.35±0.00 -0.06±0.00 -0.05±0.00 

MDD (%) 17.14±0.00 34.63±0.00 36.91±0.00 61.38±0.00 17.30±0.00 16.14±0.00 18.17±0.00 24.74±0.69 21.11±1.64 

CAR -0.23±0.00 0.34±0.00 -0.62±0.00 -0.54±0.00 -0.33±0.00 -0.17±0.00 0.34±0.00 0.77±0.00 0.70±0.06 

NYSE 

CW 1.34±0.00 1.44±0.00 1.17±0.00 0.86±0.00 1.30±0.00 1.36±0.00 1.26±0.00 1.21±0.00 1.22±0.01 

SR 2.55±0.00 1.95±0.00 1.11±0.00 -0.52±0.00 2.41±0.00 2.30±0.00 1.95±0.00 -0.01±0.00 0.00±0.01 

MDD (%) 5.91±0.00 13.79±0.00 9.75±0.00 33.50±0.00 5.06±0.00 5.19±0.00 7.69±0.00 14.93±0.00 14.46±1.12 

CAR 5.80±0.00 3.18±0.00 1.72±0.00 -0.42±0.00 5.95±0.00 6.84±0.00 3.41±0.00 0.08±0.01 0.01±0.08 

FTSE 

CW 1.11±0.00 1.36±0.00 1.40±0.00 0.36±0.00 1.08±0.00 1.15±0.00 0.89±0.00 1.08±0.03 1.00±0.02 

SR 0.72±0.00 1.31±0.00 1.61±0.00 -1.67±0.00 0.53±0.00 1.19±0.00 -0.38±0.00 -0.09±0.01 -0.12±0.01 

MDD (%) 10.98±0.00 19.91±0.00 12.63±0.00 75.29±0.00 19.97±0.00 9.41±0.00 33.99±0.00 29.93±1.98 36.94±2.30 

CAR 0.98±0.00 1.79±0.00 3.14±0.00 -0.85±0.00 0.41±0.00 1.63±0.00 -0.31±0.00 0.76±0.04 0.83±0.01 

7 Conclusion 

This paper introduces the Coordinated Knowledge Distillation and Inference Frame-

work (CKDIF), which integrates knowledge distillation with mixture-of-expert infer-

ence to achieve stable profits in non-stationary, zero-sum financial markets. CKDIF 

demonstrates superior performance compared to eight benchmark algorithms in portfo-

lio optimization and brings the pretrain–finetune–inference paradigm from NLP into 

the financial domain. Future research will explore extending hedge knowledge distilla-

tion within the context of established financial theories, such as Markowitz’s mean-

variance model. 
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A    Agent Selection for MoE Training and Inference 

To choose the optimal hedging agents for MoE, we evaluated all agents on the No.1 

validation dataset, select the top (green) and bottom (red) performers from each dataset 

to form the pool of agents for MoE training and inference. As shown in Table 5, the 

results indicate the selection of 𝑔 = 9 agents, distinguished by at least one colored mark 

in their corresponding index rows. 

Table 5. Agents’ performance on the No.1 validation datasets. 

Agent DOW HS CRYPTO HK NYSE FTSE 

(x=real, y=1, z=PPO) 0.5232 0.3210 0.1899 0.6599 0.7042 1.2104 

(x=real, y=2, z=PPO) 0.8602 1.4432 0.1377 0.9310 0.6712 1.1029 

(x=real, y=3, z=PPO) 0.6527 0.7428 0.1382 0.6750 0.7000 1.2057 

(x=real, y=4, z=PPO) 0.9868 0.8587 0.0529 1.9492 1.1230 0.7996 

(x=max, y=1, z=PPO) 0.7421 0.5162 0.1354 0.6557 0.6547 0.6684 

(x=max, y=2, z=PPO) 0.5836 0.4920 0.1492 0.8948 0.8232 1.1687 

(x=max, y=3, z=PPO) 1.3249 1.0814 0.1540 1.0976 1.1633 1.8432 

(x=max, y=4, z=PPO) 0.5817 0.6027 0.2063 0.4505 0.7100 1.1924 

(x=min, y=1, z=PPO) 0.6303 0.6352 0.1121 0.7658 0.6259 1.2899 

(x=min, y=2, z=PPO) 1.0763 0.4762 0.3435 0.6649 1.1113 1.1175 

(x=min, y=3, z=PPO) 0.6414 0.2991 0.2976 0.9579 0.7289 0.9617 

(x=min, y=4, z=PPO) 0.6359 0.7204 0.9762 0.7592 0.7525 1.0440 

(x=mean, y=1, z=PPO) 0.8661 0.5902 0.1165 1.1165 0.7892 0.7479 

(x=mean, y=2, z=PPO) 0.7370 0.4645 0.0607 1.0266 0.6646 1.0094 

(x=mean, y=3, z=PPO) 1.1324 0.9966 0.1803 1.3481 0.9609 1.1784 

(x=mean, y=4, z=PPO) 0.8856 0.6454 0.1350 0.6869 0.8572 0.9404 

(x=ema, y=1, z=PPO) 0.6869 1.2475 0.1448 0.6007 0.8046 1.1714 

(x=ema, y=2, z=PPO) 0.9746 0.4739 0.2794 0.7422 1.2960 1.1333 

(x=ema, y=3, z=PPO) 1.1507 0.8396 0.2437 0.5925 0.7859 0.8581 

(x=ema, y=4, z=PPO) 0.9061 0.3174 0.1908 0.5800 0.5818 0.9623 

(x=real, y=1, z=A2C) 0.5998 0.3682 0.3252 0.7487 0.7420 1.2678 

(x=real, y=2, z=A2C) 0.8623 0.9266 0.1327 0.9178 0.5915 1.0924 

(x=real, y=3, z=A2C) 0.7116 1.0866 0.0974 0.4838 0.8692 1.6652 

(x=real, y=4, z=A2C) 0.8317 0.3095 0.1452 0.7582 1.0800 1.0125 

(x=max, y=1, z=A2C) 0.6982 0.3788 0.2160 0.9156 0.4958 0.8679 

(x=max, y=2, z=A2C) 0.7107 0.4791 0.1413 0.4495 0.5569 0.9021 

(x=max, y=3, z=A2C) 1.2263 0.8937 0.0764 0.8408 1.0608 0.9904 

(x=max, y=4, z=A2C) 0.8477 0.5697 0.2136 0.6340 0.6778 1.1404 

(x=min, y=1, z=A2C) 0.6237 0.8784 0.2215 0.9227 0.6700 1.6029 

(x=min, y=2, z=A2C) 0.7596 0.3328 0.1109 1.1281 0.7848 1.1301 

(x=min, y=3, z=A2C) 0.6025 0.3214 0.1128 0.4992 0.7707 1.1402 

(x=min, y=4, z=A2C) 0.7773 1.0657 0.1774 0.7748 0.8251 1.0897 

(x=mean, y=1, z=A2C) 0.7169 0.3598 0.2372 0.4693 1.0868 1.0832 

(x=mean, y=2, z=A2C) 0.7483 0.6707 0.1935 0.8090 0.6761 1.2517 

(x=mean, y=3, z=A2C) 0.6745 0.8021 0.1231 0.8384 0.7100 1.0356 

(x=mean, y=4, z=A2C) 0.7601 1.9874 0.4716 0.8998 0.6967 1.0662 

(x=ema, y=1, z=A2C) 1.4212 1.0063 0.0960 0.6285 1.5695 1.7013 

(x=ema, y=2, z=A2C) 0.6911 0.8570 0.1090 0.9358 0.5363 0.9000 

(x=ema, y=3, z=A2C) 0.6618 0.5491 0.2265 0.7673 0.7857 0.7087 

(x=ema, y=4, z=A2C) 0.8065 0.3185 0.0256 0.6968 0.4573 1.2848 

B    Parameter Settings of 𝐷 and 𝛼 

To identify the members 𝑑 of the inference intervals set 𝐷 in Eq. (6), we evaluate the 

performance of a single MoE neural network using various 𝑑 settings on the No.1 val-

idation datasets. Based on the results in Table 6, we select 𝐷 = {6, 9, 10}. This choice 

balances inference time in the CKDIF inference algorithm while maintaining satisfac-

tory performance. 

To determine the optimal setting for the interval coefficient 𝛼 in Eq. (6), we apply 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

the CKDIF inference algorithm (Algorithm 2) to the No.1 validation datasets. With 

fixed inference intervals 𝐷 = {6, 9, 10}, we iterate through different values of 𝛼 ∈ [0, 

1] with a step size of 0.1. The cumulative wealth obtained is depicted in Fig. 3. After 

evaluating the algorithm’s performance across all markets in the No.1 validation da-

tasets, we have chosen 𝛼 = 0.45 as the default value. 

Table 6. Exploration of different inference intervals 𝑑 (best scores in bold). 

d DOW HS CRYPTO HK NYSE FTSE 

1 0.9550 0.4562 0.3222 0.4954 0.6526 1.0631 

2 0.9361 0.5031 0.1279 0.5631 0.8573 1.1681 

3 1.0204 0.8358 0.2442 0.8555 0.9181 1.0095 

4 0.9810 0.8347 0.0672 0.6855 0.8750 1.1164 

5 1.0521 0.3054 0.3795 0.8030 0.9497 1.0450 

6 0.9666 0.8160 0.2692 1.0751 1.1183 1.0551 

7 1.0706 1.0532 0.0699 0.8845 0.8490 1.1300 

8 1.1963 0.7422 0.1654 0.9328 1.0727 1.2171 

9 1.2094 1.2438 0.1412 0.8147 1.0911 1.2426 

10 1.1630 1.4161 0.2102 0.9917 0.9910 0.9987 

 
(a) DOW                                        (b) HS                                   (c) CRYPTO 

 
(d) HK                                      (e) NYSE                                   (f) FTSE 

Fig. 3. Exploration of different settings of the interval coefficient 𝛼. 


