

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

∗ Corresponding author

When Coordinated Knowledge Distillation Meets

Mixture of Expert Inference: Insights from Portfolio

Optimization

Jianzeng Song1, Senjie Xia1, Yong Zhang1, Jie Wei2 and Jianfei Yin1*

1 Shenzhen University, Canghai Campus Nanshan District, Shenzhen, China
2 Shenzhen SDG Information Co., Ltd., 18F, Block B, Tefa Infoport, No. 2 Kefeng Rd,

Nanshan District, Shenzhen, China
{songjianzeng2023, xiasenjie2023, zhang-

yong2023}@email.szu.edu.cn, weijie@sdgi.com.cn, yjf@szu.edu.cn

Abstract. To achieve stable profits in uncertain financial environments charac-

terized by pervasive noise signals, unavoidable transaction costs and zero-sum

dynamics, it is crucial to construct optimized portfolios based on comprehensive

data processing. However, existing methods often overlook the importance of

learning hedge financial knowledge from data and leveraging mixture-of-expert

(MoE) inferences to maximize agent profitability. To address this issue, we pro-

pose the Coordinated Knowledge Distillation and Inference Framework

(CKDIF). CKDIF introduces a three-dimensional discrete coordinate system to

train deep reinforcement learning agents with hedge trading behaviors, enabling

the effective distillation of underlying micro-financial knowledge directly from

noisy financial data. Furthermore, CKDIF constructs a novel ensemble of MoE

networks by harnessing these pretrained agents and uses the ensemble to make

final portfolio selection across any asset dimension. Notably, with transaction

costs set at a realistic rate of 0.1%, CKDIF outperforms eight representative al-

gorithms on five out of six real-world financial datasets. It achieves an average

cumulative wealth and Calmar ratio that are 1.66 and 3.70 times higher, respec-

tively, compared to the buy-and-hold strategy. These results underscore the po-

tency of coordinated knowledge distillation and MoE inference in enhancing

agent performance in competitive environments.

Keywords: Coordinated Knowledge Distillation, Mixture of Experts, Portfolio

Optimization.

1 Introduction

Achieving stable returns in real-world financial markets is challenging due to the com-

plex nature of optimization under financial uncertainty [1]. Unlike well-studied do-

mains like natural language processing (NLP) and computer vision (CV), financial data

present unique difficulties for developing automated portfolio optimization agents. The

main challenges are: (i) Pervasive noise signals—such as sentiment-driven fluctuations,

mailto:zhangyong2023%7d@email.szu.edu.cn
mailto:zhangyong2023%7d@email.szu.edu.cn

oversold/overbought conditions, and black swan events—distort financial data, reduc-

ing the effectiveness of traditional mean-variance portfolio optimization, especially in

short-term strategies [2]; (ii) Unavoidable transaction costs incurred during each trad-

ing action can significantly erode profits, especially in market conditions like bear mar-

kets. This poses a challenge to the trial-and-error learning paradigm commonly used in

deep reinforcement learning (DRL) [3]; (iii) Zero-sum competition causes strategies to

lose effectiveness over time, making it essential to maintain multiple coexisting strate-

gies for consistent returns [4, 5]. However, many approaches converge to a single strat-

egy, neglecting the importance of diversification.

To address these issues, we emphasize the extraction and use of hedge financial

knowledge, which represents the collective behavior of DRL agents exhibiting hedge

trading strategies [6]. This expands traditional diversification and allows inference-

based adaptation to evolving markets. However, existing knowledge distillation meth-

ods face several limitations: (i) information loss that reduces diversity in trend learning;

(ii) lack of hedge-oriented behaviors in agent strategies [7–9]; and (iii) difficulty incor-

porating essential financial knowledge—such as sparse portfolio construction [10] and

transaction cost control [3]—due to challenges in unifying these objectives during train-

ing.

To overcome these limitations, we propose the Coordinated Knowledge Distillation

and Inference Framework (CKDIF)1. CKDIF effectively learns and utilizes hedge trad-

ing knowledge for robust portfolio optimization. Our key contributions include:

• A novel three-dimensional discrete coordinate system for training DRL agents to

effectively capture hedge trading knowledge from noisy data.

• An ensemble of Mixture-of-Expert (MoE) networks built from these pretrained

agents for robust and generalized inference across diverse asset dimensions.

• A unified framework incorporating domain-specific knowledge—hedge trading

strategies, portfolio sparsity, and transaction cost control—into the distillation and

inference process.

To evaluate CKDIF, we tested it on six real-world financial datasets with a realistic

0.1% transaction cost. CKDIF outperformed eight baseline methods on five datasets,

achieving cumulative wealth and a Calmar ratio that are 1.66 times and 3.70 times

higher, respectively, than the buy-and-hold strategy. These results highlight the effec-

tiveness of coordinated knowledge distillation and MoE inference in boosting agent

performance in competitive environments.

The remainder of this paper is structured as follows: Section 2 reviews related work

in portfolio optimization. Section 3 outlines the CKDIF workflow. Section 4 details the

coordinated knowledge distillation process used to obtain pretrained agents. Section 5

describes the inference mechanism on these agents. Section 6 reports extensive exper-

imental results. Finally, Section 7 concludes the paper.

1 The code is available at https://github.com/ccckkkyyy666/CKDIF

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

2 Related Work

This section reviews related work on knowledge distillation and ensemble agent meth-

ods for portfolio optimization.

2.1 Knowledge Distillation

Knowledge distillation originated from the need to compress knowledge from large-

sized models into smaller ones [7-9]. As a learning method, it traditionally involves two

roles: the teacher and the student models. In the financial domain, one of the main mo-

tivations for utilizing knowledge distillation is its effectiveness in handling noisy finan-

cial data. Notably, Tsantekidis et al. [9] employed a diverse collection of teacher models

to handle transactions in various currencies, allowing the student network to distill com-

mon insights. Similarly, Chen et al. [7] developed a student-teacher framework where

multiple agents distill market information to train a student DRL model, demonstrating

profitable strategies and flexible asset allocation. Additionally, Moustakidis et al. [8]

proposed an online distillation method for DRL agents that transfers both output and

intermediate-layer knowledge from a teacher ensemble to a student model, improving

training stability and performance in noisy financial environments. However, these

methods have certain limitations: (i) Student models indirectly learn financial

knowledge from teacher models, which may result in information loss during

knowledge propagation and reduced behavior diversity in learning; (ii) The pool of

students lacks training in hedge trading behaviors; (iii) Crucial portfolio-specific

knowledge, such as sparse portfolio construction and transaction cost control, remains

unlearned from the teachers.

2.2 Ensemble of Agents

The utilization of multiple trading agents can enhance portfolio diversification while

enabling online inference capabilities [7, 11, 12]. For instance, Chen et al. [7] intro-

duced a role-aware multi-agent algorithm that categorizes trading agents into distinct

groups, providing diverse observation sets and reward functions to simulate real-world

investment behaviors. Similarly, Shavandi and Khedmati [11] trained agents using deep

Q-Networks (DQN) across diverse time frames. However, relying solely on price in-

formation from different time intervals limits the exploitation of hedging opportunities

and diverse price information. Another study by Yang et al. [12] employed the Sharpe

ratio to automatically select the best-performing agent from an ensemble of proximal

policy optimization (PPO), advantage actor-critic (A2C), and deep deterministic policy

gradient (DDPG) algorithms. Nevertheless, a common issue with these ensemble meth-

ods is the lack of behavior diversity in constructing the agent pool, as the agents often

share similar trading styles due to using the same optimization objective during train-

ing. This can lead to a situation where all agents exhibit the same “follow-the-winner”

trading behavior.

3 The Workflow of CKDIF

The CKDIF workflow (Fig. 1) outlines data flows across four key steps, each using a

distinct dataset marked by color. It consists of two stages: Stage 1 (Steps 1–2) distills

knowledge from training data into agents as a living knowledge base, while Stage 2

(Steps 3–4) trains the MoE network and performs inference on this base.

Fig. 1. The workflow of CKDIF.

3.1 Datasets Allocation

The datasets, detailed in Table 1, used in the CKDIF workflow are obtained from Yahoo

Finance, encompassing trading data from global markets, including the Dow Jones In-

dustrial Average Stock Index (DOW), Shanghai and Shenzhen Indexes (HS), Hong

Kong Index (HK), Financial Times Stock Exchange Index (FTSE), New York Stock

Exchange Index (NYSE), as well as global cryptocurrency market data (CRYPTO).

These datasets reflect a range of market conditions, including black swan events and

regime shifts. For instance, the CRYPTO market experienced a major shift when

Bitcoin dropped from $45,308 to $41,454, an 8.51% decline, triggering nearly $600

million in liquidations. These events test a portfolio strategy’s ability to adjust to ex-

treme market conditions and confirm its generalization to out-of-sample events.

The training datasets, using asset set Ω𝑡𝑟𝑎𝑖𝑛 over 𝑛𝑡𝑟𝑎𝑖𝑛 periods, are used to train

agents. No.1 validation datasets, with asset set Ω1 over 𝑛1 periods, are employed to se-

lect agents exhibiting hedge trading behaviors. Both sets contain 29 assets, matching

the neural network’s capacity 𝑚. The No.2 validation datasets are used to train the MoE

network with asset set Ω2 over 𝑛2 periods.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Table 1. The allocation of datasets.

Market
Training Datasets No.1 Validation Datasets No.2 Validation Datasets Test Datasets

Periods #Assets Periods #Assets Periods #Assets Periods #Assets

DOW
05/01/2010-

31/12/2013
29

05/01/2014-

05/01/2015
29

06/01/2015-

06/01/2016
29

07/01/2016-

06/01/2017
29

HS
04/01/2011-

31/12/2014
29

06/01/2015-

06/01/2016
29

07/01/2016-

06/01/2017
63

09/01/2017-

08/01/2018
63

CRYPTO
10/11/2017-

10/11/2021
29

11/11/2021-

10/11/2022
29

11/11/2022-

11/11/2023
33

12/11/2023-

29/04/2024
33

HK
05/01/2015-

31/12/2018
29

03/01/2019-

03/01/2020
29

06/01/2020-

04/01/2021
73

05/01/2021-

05/01/2022
73

NYSE
02/01/2013-

30/12/2016
29

02/01/2017-

02/01/2018
29

03/01/2018-

03/01/2019
62

04/01/2019-

03/01/2020
62

FTSE
04/01/2017-

31/12/2020
29

04/01/2021-

04/01/2022
29

05/01/2022-

05/01/2023
75

06/01/2023-

05/01/2024
75

4 Coordinated Knowledge Distillation

We employ a 3D coordinate system to train a pool of agents 𝓐(𝑥,𝑦,𝑧) with the goal of

acquiring highly effective hedge financial knowledge. Each agent, denoted as 𝓐(𝑥,𝑦,𝑧) ,

can be viewed as a function 𝓐(𝑥,𝑦,𝑧)：ℝ10𝑚+1 → ℝ𝑚, mapping inputs from the real

space ℝ10𝑚+1 to trading actions in the action space ℝ𝑚 , where 𝑚 represents the max-

imum number of assets that can be processed by the neural network implementing these

agents.

4.1 Agent State Space

For each agent 𝓐(𝑥,𝑦,𝑧) , its state 𝒔𝑡
𝑥 ∈ ℝ10𝑚+1 is defined as follows:

𝒔𝑡
𝑥 = vec(𝑐𝑎𝑠ℎ𝑡 , 𝒑𝑡

𝑥, 𝒉𝑡 , 𝐢𝐧𝐝𝑡). (1)

The symbol 𝑐𝑎𝑠ℎ𝑡 ∈ ℝ+ represents the remaining cash at period 𝑡. The notation 𝒑𝑡
𝑥 ∈

ℝ𝑚, as defined in Table 2, refers to the price-trend features utilized by agents 𝓐(𝑥,𝑦,𝑧)

whose first index is 𝑥. The vector 𝒉𝑡 ∈ ℝ+
𝑚 represents the holdings of 𝑚 assets by an

agent, and the vector 𝐢𝐧𝐝𝑡 ∈ ℝ𝑚×8 contains eight technical indicators for each asset, as

described in Table 3. The operator vec vertically stacks the input vectors 𝑐𝑎𝑠ℎ𝑡 , 𝒑𝑡
𝑥,

𝒉𝑡, and 𝐢𝐧𝐝𝑡 to form a state 𝒔𝑡
𝑥. Consequently, the dimension of the state 𝒔𝑡

𝑥 is deter-

mined to be 10𝑚 + 1.

The input price vector 𝒑𝑡
 ∈ ℝ+

𝑚 in Table 2 represents the close prices of 𝑚 assets,

while the parameter 𝑤 ∈ ℝ+ denotes the time window used to calculate these features,

and the parameter 𝛽 ∈ (0, 1) represents the weight used in computing the feature vector

𝒑𝑡
 𝑒𝑚𝑎 through the exponential moving average formula.

Table 2. Definition of price-trend features 𝒑𝑡
𝑥.

𝑥

𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑒𝑎𝑛 𝑒𝑚𝑎 𝑟𝑒𝑎𝑙

𝒑𝑡
𝑥 max

0≤𝑘≤𝑤−1
𝒑𝑡−𝑘

 min
0≤𝑘≤𝑤−1

𝒑𝑡−𝑘

1

𝑤
∑𝑘=0

𝑤−1𝒑𝑡−𝑘
 ∑𝑘=0

𝑤−1𝛽(1 − 𝛽)𝑘𝒑𝑡−𝑘
 𝒑𝑡

Table 3. Technical indicators used in the vector 𝐢𝐧𝐝𝑡.

Indicator Description

macd Moving average convergence divergence

boll_ub Bollinger bands upper band

boll_lb Bollinger bands lower band

rsi_30 Relative strength index for 30 periods

cci_30 Commodity channel index for 30 periods

dx_30 Directional movement index for 30 periods

ma_30 Simple moving average of closing prices for 30-periods

cci_30 Simple moving average of closing prices for 60-periods

4.2 Agent Action Space and Training Objective

All agents 𝓐(𝑥,𝑦,𝑧) operate within an action space that encompasses all allowable trad-

ing actions 𝒂𝑡+1
𝑦

 ∈ ℝ𝑚 for 𝑚 assets in a given state 𝒔𝑡
𝑥 at period 𝑡. These actions include

buying (𝑎𝑡+1,𝑖
𝑦

 > 0), selling (𝑎𝑡+1,𝑖
𝑦

 < 0), or holding (𝑎𝑡+1,𝑖
𝑦

 = 0) assets. For instance,

𝒂𝑡+1
𝑦

 = (10, −10, 0, ...) indicates buying 10 shares of the first asset, selling 10 shares of

the second asset, and holding the remaining shares of the third asset.

It is essential that agents’ actions follow a hedge behavior structure while maximiz-

ing individual profits. Therefore, we propose the following optimization objective for

training each agent 𝓐(𝑥,𝑦,𝑧) :

min − 𝜂𝐿1
𝑦

+ 𝐿2, (2)

where 𝜂 ∈ ℝ+ is a preset constant. The first item 𝐿1
𝑦

 is defined as follows:

𝐿1
𝑦

= ∑𝜏∈[0,𝑛𝑡𝑟𝑎𝑖𝑛]
 ∑𝑗=1

𝑦−1
KL(𝒂𝜏

𝑗
||𝒂𝜏

𝑦
). (3)

Eq. (3) sums the KL divergences between actions 𝒂𝜏
𝑦
 from 𝓐(𝑥,𝑦,𝑧) and actions 𝒂𝜏

𝑗

from 𝓐(𝑥′,𝑗,𝑧′), where the trading style index j < 𝑦. The second term in Eq. (2) is the

PPO or A2C loss, aiming to maximize rewards via advantage estimation. Together,

these terms guide agents to distill hedge financial knowledge in a greedy fashion.

Agents 𝓐(𝑥,𝑦,𝑧) are trained using the library stable-baselines32. Training complexity is

𝑂(𝓝𝑎 ×
𝓡𝑎

𝓑𝑎
𝜉), where 𝓝𝑎 iterations 𝓡𝑎 samples of observation–reward pairs, and each

network update (cost 𝜉) uses a batch of 𝓑𝑎 samples.

4.3 Training and Selection of Agents via the 3D Coordinate System

Our agent pool, denoted as 𝓐(𝑥,𝑦,𝑧), is trained within a 3D coordinate system (Fig. 1).

The first index, 𝑥 ∈{𝑚𝑎𝑥, 𝑚𝑖𝑛, 𝑚𝑒𝑎𝑛, 𝑒𝑚𝑎, 𝑟𝑒𝑎𝑙}, defines the set of price features

2 https://github.com/DLR-RM/stable-baselines3/blob/master/stable_baselines3/common

/on_policy_algorithm.py

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

used for training. The second, 𝑦 ∈ {1, 2, ..., 𝑌}, specifies the desired trading style. The

third, 𝑧 = {𝑃𝑃𝑂, 𝐴2𝐶}, indicates the training algorithm: Proximal Policy Optimization

(PPO) or Advantage Actor-Critic (A2C). We employ both PPO, known for robust ex-

ploration, and A2C, recognized for responsive policy updates, to cultivate a diverse set

of agents tailored to various financial strategies and market dynamics. With 5 price

features, 𝑌 trading styles and 2 algorithms, we train a total of 10𝑌 agents 𝓐(𝑥,𝑦,𝑧).

To select agents exhibiting hedge behaviors, we identify the top and bottom per-

formers within each of the 6 markets in the No.1 validation dataset. This process yields

a maximum of 12 selected agents for the subsequent inference phase. However, the

actual number 𝑔 of unique selected agents may be less than 12 due to potential repeti-

tions, as illustrated in Appendix A where 𝑔=9.

5 Inference over Agents

This section details the process of generating final trading decisions by performing in-

ference on the trained DRL agents. This is achieved by constructing a Mixture-of-Ex-

perts (MoE) neural network and further enhancing it through an ensemble of multiple

MoE instances to improve robustness and performance.

5.1 MoE Neural Network

The MoE neural network can be conceptualized as a function MoE: ℝ10𝑚+1 → ℝ𝑚 and

is defined as follows:

𝒖1 = 𝑾1
128×(10𝑚+1)

𝒔𝑡
𝑟𝑒𝑎𝑙

(10𝑚+1)×1
+ 𝒃1

128×1
, (4a)

𝒖1 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖1), (4b)
𝒖2 = 𝑾2

256×128
𝒖1

 128×1
+ 𝒃2

256×1
, (4c)

 𝒖2 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖2), (4d)
𝒖3 = 𝑾3

128×256
𝒖2

 256×1
+ 𝒃3

128×1
, (4e)

 𝒖3 = Dropout(𝛾𝑒) ∘ LeakyRelu(𝒖3), (4f)
𝒖4 = 𝑾4

𝑔×128
𝒖3

 128×1
+ 𝒃4

𝑔×1
, (4g)

 𝒖4 = Softmax ∘ Topk(𝒖4, 𝑘 = 2), (4h)

𝒄𝑡
𝑚×1

= [… 𝓐(𝑥𝑖,𝑦𝑖,𝑧𝑖)(𝒔𝑡
𝑟𝑒𝑎𝑙) …]

𝑚×𝑔

𝒖4
𝑔×1

. (4i)

For the network design, we adopt a repeated three-layer block composed of fully con-

nected layers with Dropout and LeakyRelu activation. The hidden dimension is first

expanded to 256 to explore richer feature interactions, then reduced to 128 to filter out

redundant components and retain salient signals. LeakyRelu is chosen to maintain sta-

ble gradient flow and mitigate dead neuron issues. In the final layer, the output vector

𝒖4 is used to compute a weighted sum of portfolio vectors proposed by the trained DRL

agents. According to Eq. (4i), the domain of 𝒄𝑡 matches the agents’ action space ℝ𝑚,

making 𝒄𝑡 interpretable as traders’ trading actions. The MoE neural network is trained

using the following loss function:

𝑙𝑜𝑠𝑠 = −(𝑐𝑎𝑠ℎ𝑡 + 𝒉𝑡
⊺𝒑𝑡 − (𝑐𝑎𝑠ℎ𝑡−1 + 𝒉𝑡−1

⊺ 𝒑𝑡−1)). (5)

At each period 𝑡, the loss is calculated as the difference in capital between two consec-

utive periods, with 𝒉𝑡
⊺𝒑𝑡 representing the estimated value of shares 𝒉𝑡

 , obtained from

the agent trading environment MoEEnv, as described in Step 9 of Algorithm 1. The

MoE neural network is trained on samples from the No.2 validation dataset3 using Al-

gorithm 1, with support from the FinRL framework4.

Algorithm 1 MoE Neural Network Training Algorithm

Input: Price vectors: {𝒑𝑡: 𝒑𝑡 ∈ ℝ+
|Ω|

}
𝑡=1

𝑛2
, where Ω is a subset of assets from a No.2 validation dataset; a

set of 𝑔 agents: {𝓐(𝑥𝑖,𝑦𝑖,𝑧𝑖)}𝑖=1
𝑔

; number of iterations 𝓝𝑒, learning rate 𝜆𝑒, and dropout rate 𝛾𝑒;

Procedure:

 1: Initialize MoE network weights 𝓦, as defined in Eq. (4)

 2: Initialize optimizer = optim.Adam(𝓦, 𝜆𝑒)

 3: Initialize cumulative wealth 𝜔0 = 1, 000, 000

 4: MoEEnv = StockTradingEnv (𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣()

 5: for 𝑖 = 1 → 𝓝𝑒 do

 6: Initialize 𝑐𝑎𝑠ℎ0 = 𝜔0, 𝒃0 = [0, ..., 0]

 7: for 𝑡 = 1 → 𝑛2 do

 8: compute state 𝒔𝑡
𝑟𝑒𝑎𝑙 via Eq. (1) and action 𝒄𝑡

 via Eq. (4)

 9: obtain 𝑐𝑎𝑠ℎ𝑡, 𝒑𝑡, and 𝒉𝑡
 via invoking MoEEnv.step(𝒄𝑡)

10: compute 𝑙𝑜𝑠𝑠 via Eq. (5)

11: optimizer.zero_grad(); loss.backward(); optimizer.step()

12: Output: network weights 𝓦

In Step 4, the variable MoEEnv represents an instance of the StockTradingEnv class,

which encapsulates crucial trading state information, including price vectors 𝒑𝑡 , re-

maining cash 𝑐𝑎𝑠ℎ𝑡, cumulative wealth 𝜔t, and asset holdings 𝒉𝑡
 , among others. The

computational complexity of Algorithm 1 can be estimated as 𝑂(𝓝𝑒 × 𝑛2 [𝑚(1280 +

𝑔) + 𝑔(𝜉 + 128)]), where 𝜉 denotes the computational cost associated with inference on

an agent’s neural network.

5.2 Varied Inference Intervals

Transaction fees significantly affect portfolio profitability for agents. To mitigate this,

we propose a heuristic to determine the optimal inference interval 𝑑𝑡
∗
 at period 𝑡, based

on the following objective:

𝑑𝑡
∗ = arg max

𝑑∈𝐷
{𝛼(𝜔𝑡 − 𝜔𝑡−𝑑)/𝑑 + (1 − 𝛼)√∑𝑘=1

𝑑 (Δ𝜔𝑡−𝑘 − Δ𝜔𝑡)2/𝑑} . (6)

Here, 𝛼 ∈ [0, 1] is a preset interval coefficient, and 𝐷 ∈ 2ℕ is the set of candidate infer-

ence intervals. 𝜔𝑡 denotes cumulative portfolio wealth, with change Δ𝜔𝑡 = 𝜔𝑡 − 𝜔𝑡−1.

3 The training datasets for the MoE neural network can be accessed at https://github.com/ccck-

kkyyy666/CKDIF/blob/main/Data/data/forMoE.csv.
4 https://github.com/AI4Finance-Foundation/FinRL

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Objective (6) balances the growth ratio of 𝜔𝑡 and the variance of recent increase ratios

over window 𝑑. Details on selecting 𝐷 and 𝛼 are provided in Appendix B.

5.3 CKDIF Inference Algorithm

This section introduces an ensemble of MoE networks to make final trading decisions

on the test datasets Ω𝑡𝑒𝑠𝑡 . To handle potential mismatches between the number of assets

in Ω𝑡𝑒𝑠𝑡 and the maximum asset capacity 𝑚 of a single MoE network (as defined in Eq.

(4)), this ensemble, denoted as {MoE𝑖}, is constructed as follows:

• We sample a collection of asset subsets denoted as Σ = {Ω1, ..., Ω𝑛𝑐
 : |Ω𝑖 | = 𝑚, Ω𝑖

⊆ Ω𝑡𝑒𝑠𝑡}. Here, 𝑛𝑐 is calculated as 𝑛𝑐=⌈
| Ω𝑡𝑒𝑠𝑡 |

𝑚
⌉, where Ω𝑡𝑒𝑠𝑡 represents the asset set

in the given test dataset.

• Construct {MoE𝑖} to use the sampled collection Σ to generate the final trading ac-

tions 𝒄t
′ ∈ ℝ𝑚 according to the following rule:

𝒄𝑡
′ = Sparse(MoE𝑗(𝒔𝑡

𝑟𝑒𝑎𝑙 ; Ω𝑗); Ω𝑗), (7)

where 𝑗 =arg max𝑖∈[1,𝑛𝑐], Ω𝑖∈ΣMoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

 ; Ω𝑖).cash.

The notation (𝒔𝑡
𝑟𝑒𝑎𝑙; Ω𝑖) indicates that the state 𝒔𝑡

𝑟𝑒𝑎𝑙 must be constructed using only

the features corresponding to the asset subset Ω𝑖 , such as the price-trend vector 𝒑𝑡
𝑟𝑒𝑎𝑙

and the holdings 𝒉𝑡 for assets in Ω𝑖 . The term MoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

; Ω𝑖).𝑐𝑎𝑠ℎ represents the re-

maining cash balance in the trading environment of MoE𝑖 after executing the action

MoE𝑖(𝒔𝑡
𝑟𝑒𝑎𝑙

; Ω𝑖). The function Sparse: ℝ𝑚 × 2ℕ → ℝ𝑚 is designed to transform an

action 𝒄𝑡
 ∈ ℝ𝑚 into a sparse action 𝒄𝑡

′ ∈ ℝ𝑚 according to the following rule:

Sparse(𝑐𝑡,𝑖; Ω𝑗) = {
−ℎ𝑡,𝑖, if 𝑖 ≠ 𝑘 ∧ ℎ𝑡,𝑖 > 0,

(𝑐𝑎𝑠ℎ𝑡 + ∑𝑙≠𝑘𝑝𝑡,𝑙ℎ𝑡,𝑙)/𝑝𝑡,𝑖 , if 𝑖 = 𝑘,
(8)

where 𝑘 is defined as 𝑘 = arg 𝑚𝑎𝑥𝑖𝑐𝑡,𝑖, and ℎ𝑡,𝑖 ∈ ℝ+
 , for 𝑖 =1, ..., 𝑚, represents the

number of shares of each asset in Ω𝑗 that the action 𝒄𝑡
 operates upon.

Finally, we introduce the CKDIF inference algorithm (Algorithm 2) for generating

final trading actions. CKDIF adaptively updates the optimal inference interval 𝑑∗ at

each period 𝑡, triggered when 𝑡 is a multiple of the previous 𝑑∗ (Step 10). Its computa-

tional complexity is approximated as 𝑂(
𝑛

𝑚𝑖𝑛 𝐷
 × ⌈

|Ω|

m
 ⌉× [𝑚(1280 +𝑔) +𝑔(𝜉 + 128)]),

where 𝜉 is the cost of inferring from a single agent’s network.

To prepare the optimal asset subset collection Σ∗ for invoking Algorithm 2, multiple

candidates Σ𝑖 = {Ω1
𝑖 , … , Ω𝑛𝑐

𝑖 } are sampled from validation set Ω2 , where |Ω𝑗
𝑖| = 𝑚

and 𝑛𝑐 = ⌈
|𝛺2|

𝑚
⌉. The optimal Σ∗ is chosen as argmaxΣ𝑖

CIA(Σ𝑖 , 𝐷, 𝛼), with CIA denoting

Algorithm 2.

Algorithm 2 CIA: CKDIF Inference Algorithm

Input: Price vectors: {𝒑𝑡: 𝒑𝑡 ∈ ℝ+
|Ω|

}
𝑡=1

𝑛
, where Ω is an asset set; collection of asset subsets: Σ

= {Ω1, . . . , Ω𝑛𝑐
: |Ω𝑖| = 𝑚, Ω𝑖 ⊆ Ω}, where 𝑛𝑐 = ⌈

|Ω|

𝑚
 ⌉; 𝑛𝑐 MoE neural networks and 𝑛𝑐 × 𝑔 agents; can-

didate inference intervals 𝐷, and interval coefficient 𝛼;

Procedure:

 1: Initialize the cumulative wealth 𝜔0 = 1, 000, 000, inference interval 𝑑∗ = 𝐷[0]

 2: EnsembleEnv = StockTradingEnv(𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣()

 3: for 𝑖 = 1 → 𝑛𝑐 do

 4: 𝑀𝑜𝐸𝑖 = StockTradingEnv(𝜔0).𝑔𝑒𝑡_𝑠𝑏_𝑒𝑛𝑣()

 5: for 𝑡 = 1 → 𝑛 do

 6: compute state 𝒔𝑡
𝑟𝑒𝑎𝑙 via Eq. (1), and compute final action 𝒄𝑡

′ via Eq. (7) using Σ and 𝒔𝑡
𝑟𝑒𝑎𝑙

 7: if 𝑡 < max(𝐷) then

 8: obtain 𝜔𝑡 via invoking EnsembleEnv.step(𝒄𝑡
′); continue

 9: if 𝑡 % 𝑑∗ == 0 then

10: obtain 𝜔𝑡 via invoking EnsembleEnv.step(𝒄𝑡
′); update interval 𝑑∗ via Eq. (6)

11: Output: the final cumulative wealth 𝜔𝑛

6 Experiment Results

We conducted experiments on the test datasets (Table 1) using a machine with an AMD

Ryzen 7 5800H, GeForce RTX 3060 GPU, and 16GB RAM.

6.1 Effect of Knowledge Distillation and MoE Inference

To assess the effect of knowledge distillation, we evaluated nine agents (Appendix A)

on the datasets in Table 1. Fig. 2a shows the price series of 62 assets over 250 periods

in the NYSE dataset, where hedge patterns are subtle and hard to identify. In contrast,

Fig. 2b illustrates the diverse trading behaviors learned by the nine agents. For example,

agent a2cMax2 exhibits distinct trading dynamics from a2cEma1 during days 75–90,

and from ppoReal4 during days 150–250, highlighting strategy diversity.

The effectiveness of MoE inference is demonstrated in Fig. 2c, where CKDIF, lev-

eraging MoE-based inference across the trained agent ensemble, significantly outper-

forms the other eight methods on the NYSE dataset. A similar performance advantage

is shown in Fig. 2d for the CRYPTO dataset, where no individual agent exceeds

CKDIF’s performance. These results confirm that MoE inference improves both gen-

eralization and robustness beyond what single-agent approaches can achieve.

(a) Asset prices in NYSE dataset (b) Agent performance on NYSE dataset

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

(c) Performance comparison on NYSE dataset (d) Performance comparison on CRYPTO dataset

Fig. 2. Effect of knowledge distillation and MoE inference.

6.2 Inference Performance Comparison

Table 4 presents a performance comparison against a diverse set of baselines: the tra-

ditional buy-and-hold (BAH) strategy, the mean-reversion multi-expert strategy MRvol

[13], the sparse strategy SSPO_𝑙0 [14], the tree-based model LightGBM [18], and en-

semble techniques like the Double Ensemble (DE) [19]. Our evaluation also includes

enhanced implementations of DRL algorithms (SAC[15], TD3[16], and DDPG[17])

using the Ray RLlib framework5.

Cumulative Wealth. Cumulative wealth (CW) evaluates long-term performance as the

ratio of final to initial wealth CW ≔
𝜔𝑛

𝜔0
= ∏ (

𝒑𝑡

𝒑𝑡−1
)

⊺
𝑛
𝑡=1 𝒃𝑡, where 𝒃𝑡 ∈ ℝ+

𝑚 is a portfo-

lio vector with 𝒃𝑡
T𝟏 = 1. Table 4 shows that CKDIF consistently outperforms other

algorithms in CW, ranking first on five of six datasets. Notably, on the CRYPTO da-

taset, its CW of 4.67 more than doubles MRvol’s 1.56. This strong performance high-

lights the effectiveness of coordinated knowledge distillation and MoE inference.

Sharpe Ratio. The Sharpe ratio (SR) evaluates risk-adjusted portfolio returns, defined

as SR ≔
𝔼[𝑅−𝑅𝑓]

𝜎[𝑅−𝑅𝑓]
. CKDIF achieves the highest SRs on the CRYPTO and HK datasets

and ranks second on FTSE, just 0.04 behind the top method. However, since SR treats

all return variance 𝜎[𝑅 − 𝑅𝑓] as risk, it may overestimate risk during periods of con-

sistent growth.

Maximum Drawdown. Maximum Drawdown (MDD) measures the largest loss from

peak to trough before recovery. While CKDIF shows higher MDDs than the best-per-

forming algorithms in this metric, this is due to its higher trading frequency. Notably,

CKDIF achieves significantly greater Cumulative Wealth (CW). For instance, on the

CRYPTO dataset, MRvol has the lowest MDD but a CW of only 1.56—about one-third

of CKDIF’s 4.67—highlighting the trade-off between MDD and CW.

5 https://github.com/ray-project/ray/tree/master/rllib/algorithms

Calmar Ratio. Calmar Ratio (CAR) measures investment performance by dividing an-

nualized return (AR) by maximum drawdown (MDD). The AR is computed as: AR ∶=

(1 + CR)
252

𝑛 −1, where CR ∶=
𝜔𝑛

𝜔0
 −1 represents the cumulative return. CKDIF outper-

forms on CAR, achieving top CARs on HS and CRYPTO datasets, second on FTSE,

and third on HK.

Table 4. Inference performance comparison (best scores in bold).

Datasets Metrics BAH CKDIF MRvol SSPO_𝑙0 SAC TD3 DDPG LightGBM DE

DOW

CW 1.21±0.00 1.37±0.00 1.25±0.00 1.10±0.00 1.14±0.00 1.32±0.00 1.22±0.00 1.17±0.00 1.14±0.02

SR 1.52±0.00 1.50±0.00 1.44±0.00 0.40±0.00 1.29±0.00 2.15±0.00 1.62±0.00 -0.01±0.00 -0.02±0.01

MDD (%) 5.15±0.00 14.42±0.00 7.49±0.00 13.62±0.00 6.83±0.00 6.18±0.00 5.59±0.00 25.40±0.00 26.25±0.38

CAR 4.01±0.00 2.55±0.00 3.28±0.00 0.70±0.00 2.10±0.00 5.16±0.00 3.60±0.00 0.14±0.01 0.23±0.06

HS

CW 1.23±0.00 1.69±0.00 1.13±0.00 0.79±0.00 1.45±0.00 1.17±0.00 1.26±0.00 1.16±0.00 1.23±0.02

SR 2.28±0.00 1.97±0.00 1.04±0.00 -0.80±0.00 2.73±0.00 1.42±0.00 2.16±0.00 0.04±0.00 0.06±0.01

MDD (%) 6.28±0.00 10.65±0.00 8.76±0.00 38.70±0.00 8.26±0.00 7.03±0.00 6.60±0.00 16.78±0.00 15.54±0.65

CAR 3.85±0.00 6.72±0.00 1.51±0.00 -0.55±0.00 5.60±0.00 2.56±0.00 4.12±0.00 -0.63±0.00 -1.05±0.14

CRYPTO

CW 1.17±0.00 4.67±0.00 1.56±0.00 1.02±0.00 0.73±0.00 0.89±0.00 0.76±0.00 1.36±0.00 1.24±0.10

SR 0.41±0.00 2.1±0.00 1.02±0.00 0.01±0.00 -0.20±0.00 0.02±0.00 -0.16±0.00 0.01±0.00 -0.01±0.02

MDD (%) 30.35±0.00 75.42±0.00 21.63±0.00 75.60±0.00 53.96±0.00 34.57±0.00 51.29±0.00 59.14±0.00 57.27±3.81

CAR 0.85±0.00 11.69±0.00 4.30±0.00 0.03±0.00 -0.68±0.00 -0.45±0.00 -0.65±0.00 -0.11±0.00 0.11±0.18

HK

CW 0.96±0.00 1.12±0.00 0.77±0.00 0.67±0.00 0.94±0.00 0.97±0.00 1.06±0.00 0.93±0.01 0.97±0.01

SR -0.22±0.00 0.47±0.00 -1.02±0.00 -0.52±0.00 -0.17±0.00 -0.18±0.00 0.35±0.00 -0.06±0.00 -0.05±0.00

MDD (%) 17.14±0.00 34.63±0.00 36.91±0.00 61.38±0.00 17.30±0.00 16.14±0.00 18.17±0.00 24.74±0.69 21.11±1.64

CAR -0.23±0.00 0.34±0.00 -0.62±0.00 -0.54±0.00 -0.33±0.00 -0.17±0.00 0.34±0.00 0.77±0.00 0.70±0.06

NYSE

CW 1.34±0.00 1.44±0.00 1.17±0.00 0.86±0.00 1.30±0.00 1.36±0.00 1.26±0.00 1.21±0.00 1.22±0.01

SR 2.55±0.00 1.95±0.00 1.11±0.00 -0.52±0.00 2.41±0.00 2.30±0.00 1.95±0.00 -0.01±0.00 0.00±0.01

MDD (%) 5.91±0.00 13.79±0.00 9.75±0.00 33.50±0.00 5.06±0.00 5.19±0.00 7.69±0.00 14.93±0.00 14.46±1.12

CAR 5.80±0.00 3.18±0.00 1.72±0.00 -0.42±0.00 5.95±0.00 6.84±0.00 3.41±0.00 0.08±0.01 0.01±0.08

FTSE

CW 1.11±0.00 1.36±0.00 1.40±0.00 0.36±0.00 1.08±0.00 1.15±0.00 0.89±0.00 1.08±0.03 1.00±0.02

SR 0.72±0.00 1.31±0.00 1.61±0.00 -1.67±0.00 0.53±0.00 1.19±0.00 -0.38±0.00 -0.09±0.01 -0.12±0.01

MDD (%) 10.98±0.00 19.91±0.00 12.63±0.00 75.29±0.00 19.97±0.00 9.41±0.00 33.99±0.00 29.93±1.98 36.94±2.30

CAR 0.98±0.00 1.79±0.00 3.14±0.00 -0.85±0.00 0.41±0.00 1.63±0.00 -0.31±0.00 0.76±0.04 0.83±0.01

7 Conclusion

This paper introduces the Coordinated Knowledge Distillation and Inference Frame-

work (CKDIF), which integrates knowledge distillation with mixture-of-expert infer-

ence to achieve stable profits in non-stationary, zero-sum financial markets. CKDIF

demonstrates superior performance compared to eight benchmark algorithms in portfo-

lio optimization and brings the pretrain–finetune–inference paradigm from NLP into

the financial domain. Future research will explore extending hedge knowledge distilla-

tion within the context of established financial theories, such as Markowitz’s mean-

variance model.

References

1. Xu, J., Li, B.: Uncertain utility portfolio optimization based on two different criteria and

improved whale optimization algorithm. Expert Systems with Applications 268, 126281

(2025)

2. Lai, Z.R., Yang, H.: A survey on gaps between mean-variance approach and exponential

growth rate approach for portfolio optimization. ACM Computing Surveys (CSUR) 55(2),

1–36 (2022)

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

3. Zhang, Y., Zhao, P., Wu, Q., Li, B., Huang, J., Tan, M.: Cost-sensitive portfolio selection

via deep reinforcement learning. IEEE Transactions on Knowledge and Data Engineer-

ing 34(1), 236–248 (2020)

4. Xie, A., Harrison, J., Finn, C.: Deep reinforcement learning amidst continual structured risk-

stationarity. In: International Conference on Machine Learning. pp. 11393–11403. PMLR

(2021)

5. Li, Y., Wang, P., Chen, H.: Can reinforcement learning solve asymmetric combinatorial-

continuous zero-sum games? arXiv preprint arXiv:2502.01252 (2025)

6. Yin, J., Zhong, A., Xiao, X., Wang, R., Huang, J.Z.: An asset subset-constrained minimax

optimization framework for online portfolio selection. Expert Systems with Applications

254, 124299 (2024)

7. Chen, M.Y., Chen, C.T., Huang, S.H.: Knowledge distillation for portfolio management us-

ing multi-agent reinforcement learning. Advanced Engineering Informatics 57, 102096

(2023)

8. Moustakidis, V., Passalis, N., Tefas, A.: Online probabilistic knowledge distillation on cryp-

tocurrency trading using deep reinforcement learning. Pattern Recognition Letters 186, 243–

249 (2024)

9. Tsantekidis, A., Passalis, N., Tefas, A.: Diversity-driven knowledge distillation for financial

trading using deep reinforcement learning. Neural Networks 140, 193–202 (2021)

10. Wang, H., Zhang, W., He, Y., Cao, W.: L0-norm based short-term sparse portfolio optimi-

zation algorithm based on alternating direction method of multipliers. Available at SSRN

4115395 (2023)

11. Shavandi, A., Khedmati, M.: A multi-agent deep reinforcement learning framework for al-

gorithmic trading in financial markets. Expert Systems with Applications 208, 118124

(2022)

12. Yang, H., Liu, X.Y., Zhong, S., Walid, A.: Deep reinforcement learning for automated stock

trading: An ensemble strategy. In: Proceedings of the first ACM international conference on

AI in finance. pp. 1–8 (2020)

13. Lin, H., Zhang, Y., Yang, X.: Online portfolio selection of integrating expert strategies

based on mean reversion and trading volume. Expert Systems with Applications 238,

121472 (2024)

14. Wang, H., Zhang, W., He, Y., Cao, W.: L0-norm based short-term sparse portfolio optimi-

zation algorithm based on alternating direction method of multipliers. Available at SSRN

4115395 (2023)

15. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum en-

tropy deep reinforcement learning with a stochastic actor. International conference on ma-

chine learning. pp. 1861–1870. PMLR (2018)

16. Kabbani, T., Duman, E.: Deep reinforcement learning approach for trading automation in

the stock market. IEEE Access 10, 93564–93574 (2022)

17. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,

D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971

(2015)

18. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: Lightgbm: A

highly efficient gradient boosting decision tree. Advances in neural information processing

systems 30 (2017)

19. Zhang, C., Li, Y., Chen, X., Jin, Y., Tang, P., Li, J.: DoubleEnsemble: A new ensemble

method based on sample reweighting and feature selection for financial data analysis. In:

2020 IEEE International Conference on Data Mining (ICDM). pp. 781–790. IEEE (2020)

A Agent Selection for MoE Training and Inference

To choose the optimal hedging agents for MoE, we evaluated all agents on the No.1

validation dataset, select the top (green) and bottom (red) performers from each dataset

to form the pool of agents for MoE training and inference. As shown in Table 5, the

results indicate the selection of 𝑔 = 9 agents, distinguished by at least one colored mark

in their corresponding index rows.

Table 5. Agents’ performance on the No.1 validation datasets.

Agent DOW HS CRYPTO HK NYSE FTSE

(x=real, y=1, z=PPO) 0.5232 0.3210 0.1899 0.6599 0.7042 1.2104

(x=real, y=2, z=PPO) 0.8602 1.4432 0.1377 0.9310 0.6712 1.1029

(x=real, y=3, z=PPO) 0.6527 0.7428 0.1382 0.6750 0.7000 1.2057

(x=real, y=4, z=PPO) 0.9868 0.8587 0.0529 1.9492 1.1230 0.7996

(x=max, y=1, z=PPO) 0.7421 0.5162 0.1354 0.6557 0.6547 0.6684

(x=max, y=2, z=PPO) 0.5836 0.4920 0.1492 0.8948 0.8232 1.1687

(x=max, y=3, z=PPO) 1.3249 1.0814 0.1540 1.0976 1.1633 1.8432

(x=max, y=4, z=PPO) 0.5817 0.6027 0.2063 0.4505 0.7100 1.1924

(x=min, y=1, z=PPO) 0.6303 0.6352 0.1121 0.7658 0.6259 1.2899

(x=min, y=2, z=PPO) 1.0763 0.4762 0.3435 0.6649 1.1113 1.1175

(x=min, y=3, z=PPO) 0.6414 0.2991 0.2976 0.9579 0.7289 0.9617

(x=min, y=4, z=PPO) 0.6359 0.7204 0.9762 0.7592 0.7525 1.0440

(x=mean, y=1, z=PPO) 0.8661 0.5902 0.1165 1.1165 0.7892 0.7479

(x=mean, y=2, z=PPO) 0.7370 0.4645 0.0607 1.0266 0.6646 1.0094

(x=mean, y=3, z=PPO) 1.1324 0.9966 0.1803 1.3481 0.9609 1.1784

(x=mean, y=4, z=PPO) 0.8856 0.6454 0.1350 0.6869 0.8572 0.9404

(x=ema, y=1, z=PPO) 0.6869 1.2475 0.1448 0.6007 0.8046 1.1714

(x=ema, y=2, z=PPO) 0.9746 0.4739 0.2794 0.7422 1.2960 1.1333

(x=ema, y=3, z=PPO) 1.1507 0.8396 0.2437 0.5925 0.7859 0.8581

(x=ema, y=4, z=PPO) 0.9061 0.3174 0.1908 0.5800 0.5818 0.9623

(x=real, y=1, z=A2C) 0.5998 0.3682 0.3252 0.7487 0.7420 1.2678

(x=real, y=2, z=A2C) 0.8623 0.9266 0.1327 0.9178 0.5915 1.0924

(x=real, y=3, z=A2C) 0.7116 1.0866 0.0974 0.4838 0.8692 1.6652

(x=real, y=4, z=A2C) 0.8317 0.3095 0.1452 0.7582 1.0800 1.0125

(x=max, y=1, z=A2C) 0.6982 0.3788 0.2160 0.9156 0.4958 0.8679

(x=max, y=2, z=A2C) 0.7107 0.4791 0.1413 0.4495 0.5569 0.9021

(x=max, y=3, z=A2C) 1.2263 0.8937 0.0764 0.8408 1.0608 0.9904

(x=max, y=4, z=A2C) 0.8477 0.5697 0.2136 0.6340 0.6778 1.1404

(x=min, y=1, z=A2C) 0.6237 0.8784 0.2215 0.9227 0.6700 1.6029

(x=min, y=2, z=A2C) 0.7596 0.3328 0.1109 1.1281 0.7848 1.1301

(x=min, y=3, z=A2C) 0.6025 0.3214 0.1128 0.4992 0.7707 1.1402

(x=min, y=4, z=A2C) 0.7773 1.0657 0.1774 0.7748 0.8251 1.0897

(x=mean, y=1, z=A2C) 0.7169 0.3598 0.2372 0.4693 1.0868 1.0832

(x=mean, y=2, z=A2C) 0.7483 0.6707 0.1935 0.8090 0.6761 1.2517

(x=mean, y=3, z=A2C) 0.6745 0.8021 0.1231 0.8384 0.7100 1.0356

(x=mean, y=4, z=A2C) 0.7601 1.9874 0.4716 0.8998 0.6967 1.0662

(x=ema, y=1, z=A2C) 1.4212 1.0063 0.0960 0.6285 1.5695 1.7013

(x=ema, y=2, z=A2C) 0.6911 0.8570 0.1090 0.9358 0.5363 0.9000

(x=ema, y=3, z=A2C) 0.6618 0.5491 0.2265 0.7673 0.7857 0.7087

(x=ema, y=4, z=A2C) 0.8065 0.3185 0.0256 0.6968 0.4573 1.2848

B Parameter Settings of 𝐷 and 𝛼

To identify the members 𝑑 of the inference intervals set 𝐷 in Eq. (6), we evaluate the

performance of a single MoE neural network using various 𝑑 settings on the No.1 val-

idation datasets. Based on the results in Table 6, we select 𝐷 = {6, 9, 10}. This choice

balances inference time in the CKDIF inference algorithm while maintaining satisfac-

tory performance.

To determine the optimal setting for the interval coefficient 𝛼 in Eq. (6), we apply

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

the CKDIF inference algorithm (Algorithm 2) to the No.1 validation datasets. With

fixed inference intervals 𝐷 = {6, 9, 10}, we iterate through different values of 𝛼 ∈ [0,

1] with a step size of 0.1. The cumulative wealth obtained is depicted in Fig. 3. After

evaluating the algorithm’s performance across all markets in the No.1 validation da-

tasets, we have chosen 𝛼 = 0.45 as the default value.

Table 6. Exploration of different inference intervals 𝑑 (best scores in bold).

d DOW HS CRYPTO HK NYSE FTSE

1 0.9550 0.4562 0.3222 0.4954 0.6526 1.0631

2 0.9361 0.5031 0.1279 0.5631 0.8573 1.1681

3 1.0204 0.8358 0.2442 0.8555 0.9181 1.0095

4 0.9810 0.8347 0.0672 0.6855 0.8750 1.1164

5 1.0521 0.3054 0.3795 0.8030 0.9497 1.0450

6 0.9666 0.8160 0.2692 1.0751 1.1183 1.0551

7 1.0706 1.0532 0.0699 0.8845 0.8490 1.1300

8 1.1963 0.7422 0.1654 0.9328 1.0727 1.2171

9 1.2094 1.2438 0.1412 0.8147 1.0911 1.2426

10 1.1630 1.4161 0.2102 0.9917 0.9910 0.9987

(a) DOW (b) HS (c) CRYPTO

(d) HK (e) NYSE (f) FTSE

Fig. 3. Exploration of different settings of the interval coefficient 𝛼.

