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Abstract. In the Internet of Vehicles (IoV), the user computation demand varies 

spatially and temporally. Thus, traditional static edge servers with fixed capacity 

at fixed sites lack the flexibility to handle such user dynamic. To this end, we 

study the joint deployment optimization of fixed and vehicle-mounted edge serv-

ers for an IoV system, where fixed servers (FESes) offer the basic coverage of 

the computation offloading service, and vehicle-mounted edge servers (VESes) 

focus on serving demand hotspots on the move. We first design the GICUNet 

traffic flow prediction model to precisely forecast the future traffic. Next, we al-

locate the computation capacity to each FES using Bayesian Optimization to min-

imize the deployment cost. We then design a Mobile Server scheduling algorithm 

based on Bipartite Graph Rematching (MS-BGR) to plan the short-distance paths 

of the VESes that cover most of the user demand. Experimental results show that 

our solution is excellent in terms of traffic prediction accuracy, adaptability to 

spatio-temporal dynamic user demand, and energy-efficiency of the VES travel 

paths compared with existing popular algorithms. 

Keywords: Internet of Vehicles (IoV), Edge Computing, Vehicle-mounted 

Edge Serves, Traffic Prediction, Deployment, Path planning 

1 Introduction 

In recent years, the fast development of autonomous driving and the Internet of Vehi-

cles (IoV) have spurred a variety of innovative applications, such as High-Definition 

(HD) map-assisted driving, cooperative lane change, and other advanced driver assis-

tance systems [1]. These computing-intensive and delay-sensitive applications require 
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considerable computing resources, which can be hardly accommodated on vehicles [2-

4]. Therefore, the edge computing paradigm has become the promising solution which 

pushes the computing resources to the vicinity of these vehicles, i.e., IoV nodes, and 

serves them through computation offloading [5-8]. 

In edge computing-assisted IoV, edge servers can be placed at fixed sites such as 

cellular base stations, Roadside Units (RSUs), WiFi access points, street lamps etc., 

known as fixed servers, which provide the fundamental coverage of edge computing 

services. The servers can also be mounted on movable platforms such as trucks, buses, 

Unmanned Autonomous Vehicles (UAVs) etc., known as mobile servers, which en-

hance the computation elasticity to adapt to the spatiotemporally varying user demand 

[9]. 

The placement of the edge servers has attracted great attention, with several key 

challenges that need further exploration. One major challenge arises from the high-

speed movement of the IoV nodes, leading to the drastic spatiotemporal variation of the 

computation workload of the edge servers. It is difficult to serve such varying workload 

even using mobile edge servers, as they take time to reach the hotspots [10]. Therefore, 

it is necessary to predict the locations of future hotspots to guide the scheduling of the 

mobile edge servers. Besides, the coordination between fixed and mobile servers is also 

an open problem. A rational allocation of the computing resources among fixed and 

mobile servers, together with an efficient path planning algorithm of the mobile servers 

should be carefully designed that can quickly respond to the dynamic traffic change and 

thus the computation workload variation of the system. However, most of the existing 

works treat the two categories separately. They either focus on the collaboration among 

base stations or mobile edge servers [11-13]. Only a few studies have considered the 

collaboration between fixed and mobile edge servers,  but they ignore the energy con-

sumption of mobile edge servers [14], or rely on complex algorithms such as Deep 

Reinforcement Learning (DRL) without prior knowledge [15]. 

To address the challenges above, we study the joint deployment optimization of fixed 

and vehicle-mounted edge servers for an IoV system, including the determining the 

computing capacity of the fixed servers (FESes) and planning the paths of the vehicle-

mounted edge servers  (VESes), with the objective of minimizing the total deployment 

cost and travel distance of the VESes. Considering that VESes are usually not fast 

enough to reach demand hotspots, we also design a UNet-based prediction model to 

predict future traffic that allows the VESes to move in advance. Our major contributions 

are summarized as follows. 

• We build a joint-optimization model of the fixed and vehicle-mounted servers 

including capacity allocation and path planning, which minimizes the total de-

ployment cost and travel distance of the servers. 

• We design a traffic prediction model to accurately forecast the traffic volume (i,e., 

the computation workload) in different areas of a city in the near future, which 

serves as the basis for determining the capacity of the FESes and dispatching 

VESes. 

• Based on the prediction result, we determine the capacity of fixed edge servers 

for each grid using Bayesian Optimization, and devise a path planning scheme for 
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scheduling the vehicle-mounted edge servers to serve the remaining workload 

hotspots. 

The remainder of this paper is organized as follows. The related work is reviewed in 

Section 2. In Section 3, we present the joint-optimization model of the fixed and vehi-

cle-mounted servers.  In Section 4 we describe our proposed solution to the optimiza-

tion problem. Section 5 shows and analyzes the experimental results. Section 6 con-

cludes the paper and discusses the future work. 

2 Related Works 

Many existing works focus on the optimization strategies of already-deployed edge 

servers. Saurez et al. proposed the OneEdge architecture for dynamic scheduling and 

allocation of application resources, which involved monitoring the load of edge nodes 

and the end-to-end latency of applications through a central controller [16]. Alqe et al. 

employed reinforcement learning to train a resource management module to dynami-

cally allocate the edge computing resources, optimizing user experience quality and 

ensuring task success rates [17]. Our previous works also studied the management of 

fixed-site servers, including placing them at proper locations, the allocation of the com-

putation capacity, and the energy optimization of the VMs [18, 19]. 

However, existing static edge servers are unable to satisfy the rapidly changing de-

mand of the IoV nodes. Therefore, dynamic configuration of the edge computing re-

sources has become a hot research topic. Yang et al. constructed a Mobile Edge Com-

puting (MEC) system assisted by multiple Unmanned Aerial Vehicles (UAVs) which 

achieved load balancing of UAVs and improved the efficiency of UAV mission execu-

tion [20]. Mishra et al. investigated the integrated synergistic effects between 5G/B5G 

cellular systems and UAVs [21]. They treated the UAVs as a new type of aerial User 

Equipment (UE) and integrated them into the existing cellular networks to improve the 

performance. Liu et al. studied UAV-Edge-Cloud computing systems, and the results 

showed that their approach achieved highly efficient and stable performance in an 

online UAV swarm environment regarding computation offloading and traffic routing 

[22]. Our previous works studied the placement of UAVs for urban IoV systems and 

designed efficient online heuristic algorithms to schedule the UAVs to cover the work-

load hotspots [23]. 

Considering the limitations of UAVs, such as limited battery endurance, payload 

capacity etc., researchers have proposed using service vehicles, e.g., trucks, to carry 

edge servers. Feng et al. proposed a vehicle-assisted offloading scheme that aimed to 

reduce the latency of computing tasks [24]. Liu et al. introduced a distributed vehicle-

edge computing solution called Autonomous Vehicle Edge in the fields of vehicular 

networking and edge computing [25], which significantly improved the system utility 

and quality of service. Liu et al. proposed a multi-resource orchestration framework in 

VEC with an asynchronous deep reinforcement learning algorithm, which achieved low 

latency, high reliability and efficient utilization of resources for task processing [26]. 

Our previous work designed a vehicle-mounted edge server deployment scheme based 

on Adelson-Velsky and Landis (AVL)-tree, Gaussian Mixture Model and Simulated 



Annealing, which demonstrated the superiority in terms of computation resource utili-

zation and travelling distance [27]. We also proposed using buses to carry edge servers 

and provided a Dung Beetle-based computation offloading strategy using bus-mounted 

edge servers, which demonstrated good performance in terms of total cost and task 

success rate [28]. 

Our approach in this paper differs from the above works by combining fixed edge 

servers and vehicle-mounted edge server together to fulfill the needs of IoV nodes. We 

build a fine-grained mathematical model and design a 2-layer allocation strategy which 

harnesses fixed servers and mobile servers to maximize the edge computing perfor-

mance with minimum deployment cost. 

3 System Model and Problem Formulation 

This section presents our system model of joint deployment optimization with both 

fixed edge servers and vehicle-mounted edge servers in an urban IoV system. The for-

mer ones offer basic coverage of the computation offloading service, and the latter ones 

add computation elasticity to the system to handle the spatio-temporal user dynamics. 

3.1 System Model and Assumptions 

We model an IoV system as a 2D map with  grids, where each grid represents 

an independent geographical area. The set of indices of these grids is denoted as 

, where  represents the total number of grids. We deploy the follow-

ing components within each grid shown in Fig. 1. User equipment (UE), i.e., IoV nodes 

carrying user devices, generate computing tasks periodically and offload these tasks to 

selected edge servers. The Fixed Edge Server (FES) is the fixed-site server with fixed 

computation capacity and stable energy supply. It receives, executes the computing 

tasks from the UE, and transmits the result back to the UE. The workload of a FES can 

be highly unstable due to the mobility of vehicles under urban environments. Therefore, 

we introduce Vehicle-mounted Edge Servers (VESes) to add elastic computing re-

source to handle such user dynamics. These VESes can be dispatched to different grids 

to compensate for the computing deficit there-in. The Base Station (BS) offers high-

bandwidth network connections for all the components and the Task Scheduler collects 

the relevant information and assist the assignment of the computing tasks to the servers. 

We assume there is no bottleneck on the network links within each grid, which allows 

us to focus on the scheduling of computation resources. Each UE (vehicle) generates 

time-sensitive computing tasks in a grid. These tasks must be executed and completed 

before the vehicle leaves the grid, through offloading to either the FES or VESes. We 

assume homogeneous offloading tasks of all UE nodes, and the total number of tasks 

in a grid is in proportion to the number of the UE nodes there-in. We adopt discrete 

time slots where the duration of each single time slot is . A time slot is denoted by 

 where  is the total number of time slots, or namely the total time dura-

tion of our interests.  
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Fig. 1. Components within One Grid of the Edge Computing IoV System. 

3.2 Joint Deployment of FESes and VESes 

Let  denote the number of computing tasks in grid  during time slot , i.e., the 

user demand.  represents the computation capacity of the FES deployed at grid , 

evaluated as the number of computing tasks that can be processed in one time slot. 

There are a total number of  VESes. We use a series of locations  to represent 

their trajectories as follows. 

  (1) 

The first constraint is the maximum travel distance that a VES can reach between two 

consecutive time slots, , i.e., 

  (2) 

where  denotes the distance between grid  and . 

 We consider the energy endurance of the VESes. Let  denote the energy of 

VES  at the beginning of time slot t, evaluated as the number of computing tasks that 

can be processed. The energy capacity of each VES is . A VES can be re-

charged/refueled at any grid at any time slot if the energy is exhausted or no computing 

tasks are received, i.e., 

  (3) 

  (4) 



The cost of our concern in this study includes the deployment cost of all the FESes and 

VESes, as well as the maintenance cost of the VESes. The deployment cost is evaluated 

as the total cost on the computation capacity of these servers: 

  (5) 

where  and  are the unit deployment costs of the computation capacity of the 

FES and the VESes, respectively. 

The maintenance cost of the VESes is evaluated as the total travel distance of all 

the VESes during the entire time duration from time slot 1 to , denoted as  and 

calculated as 

  (6) 

Let  and  denote the weights of the deployment cost and maintenance cost of the 

servers ( ), respectively. The optimization problem is thus formulated as 

  (7) 

  (8) 

  

  (9) 

  

  (10) 

  (11) 

  

  (12) 

  (13) 

  (14) 

where  and  are the unknown variables. Constraint 8 means 

 is {0, 1} variable. Constraint 9 ensures that the total distance traveled by each 

VES between consecutive time slots does not exceed the maximum travel distance, 
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. Constraint 10 updates the available energy of VES  of the next time slot based 

on its energy of the current time slot. Constraint 12 and 13 mean that if the energy of 

VES  is exhausted or if VES  is static and idle in one time slot, the energy of VES  

will be replenished in the next time slot. Constraint 14 ensures that each VES is only 

deployed to one grid at any time slot. Constraint 15 specifies that the computation ca-

pacity of any FES is non-negative. This problem is NP-hard. 

4 Heuristic Strategies 

In this section, we present our heuristic strategies for the joint deployment problem with 

fixed and vehicle-mounted edge servers, i.e., to tackle the intractable NP-hard problem 

in the previous section. 

4.1 Methodology 

Firstly, we employ the deep learning technique to forecast the time-varying traffic of 

each grid, which is used to approximate the computation demand. Next, we utilize the 

Bayesian Optimization to analyze the traffic pattern of the grids and identify heavily-

loaded grids and time slots. Based on such statistical results, we set appropriate com-

putation capacity of the FES in each grid to accommodate most of the demand in regular 

hours, and dispatch VESes to those overloaded grids to handle the extra offloading 

requests that exceed the capacity of the FESes during peak hours. At last, we design a 

path planning algorithm to manage the transition of the VESes among the grids between 

different time slots, while minimizing the total travel distance and thus the energy con-

sumption. 

4.2 Forecast the Grid Traffic 

We predict the traffic using a convolutional neural network model called UNet. Con-

volution were originally used for image processing, but in recent years, they have also 

been applied to traffic prediction [29]. Since adjacent grids are strongly correlated, bet-

ter prediction performance can be achieved by capturing traffic features in the spatial 

dimension through convolution. UNet is structured through a combination of multiple 

convolutional modules, including upsampling and downsampling layers. In its original 

form, UNet employs standard convolutions, normalization layers, and activation func-

tions in these modules. Given that the coordinate of grid  is , and recall that 

the demand in the grid at time slot  is , the predicted demand at time slot  

is calculated through the standard convolution as: 

  (15) 



The output  denotes the prediction result of the demand volume, the 

input  means the traffic data of its surrounding grids,  and  stands 

for the channel of the features (traffic inflow and outflow in this paper) at time slot  

and the predicted feature in t+1, respectively. The convolution kernel extracts the 

features across the entire feature map. 

 However, standard convolutions are not ideally suited for our specific traffic predic-

tion task, as they process all input channel  uniformly. To this end, we develop a 

unique convolutional module named GroupInceptionConvolution (GICConv). Specif-

ically, GICConv comprises of two specialized convolutional layers: PointWise Convo-

lutional (PWC) layer and Group Convolutional (GC) layer. The PWC layer, with a ker-

nel size of 1, only establishes connections for the features within each grid. The GC 

layer employs a convolution kernel of size 3 and divides  into  groups, which means 

that the information about the surrounding grids will be captured, and spatial connec-

tions will be made for each group of features. Our feature extraction module is repre-

sented as 

  (16)  

where  and  are the input and output data. By combining the two channels: PWC 

followed by GC, and GC followed by PWC, it is possible to capture global feature 

patterns while preserving internal feature relationships. The complete network archi-

tecture is based on UNet, which we refer to as GICUNet, as is shown in Fig. 2. 

 

Fig. 2. The UNet-based model for Grid Traffic Prediction. 

4.3 Determine the Computation Capacity of the FESes 

Once the computation capacity of a FES is determined and deployed, it cannot be 

changed. We use Bayesian optimization (BO) to determine such computation capacity 

of each FES, with the aim of maximizing the server utilization and minimizing the cost, 

which is detailed in Alg. 1. 

BO is an algorithm based on a probabilistic model that integrates exploration and 

exploitation. During the optimization process, BO considers both exploring unknown 

regions and exploiting known regions. Compared with grid search, random search or 

genetic algorithms, BO usually converges to the optimal solution with fewer evaluation 
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iterations, which makes it especially suitable for global search and optimization prob-

lems in high-dimensional spaces. 

For a given grid m, the prediction results for a specific period  (e.g., 10 

days) are extracted. The computation capacity of the FES at this grid can be set to any 

value between the maximum and minimum demand within this period, which forms the 

exploration space for BO. The working process is shown in the Fig. 3. The blue line 

with dots represents the user demand in the time domain. The exploration range of BO, 

i.e., the computation capacity of the FES, is between the two red lines. If the computa-

tion capacity finally converges to the green dashed line as the optimal solution, the sum 

of the cost on the orange part and the blue part should be minimized. 

 

Fig. 3. Illustration of BO. 

Recall that the unit deployment cost of the computation capacity of the FES is , 

and the unit deployment cost of the VES is . Given a proportion  and set the 

computation capacity of the FES to . The objective is to 

minimize the total cost on computation capacity, which can be formulated as: 

  (17) 

To solve the problem, the BO algorithm will first select several initial points within 

the exploration space and calculate the spending. It then uses Gaussian Process to build 

a probability model based on the observed results. Next, acquisition functions will be 

used to determine the next point to evaluate, and the new result will be used to update 

the Gaussian process model. The process will be repeated until convergence or the pre-

set number of iterations is reached. 

4.4 Plan the Paths of VESes 

After determining the capacity of the FESes, we will dispatch VESes to provide com-

plementary services during the surge periods. The goal is to minimize the energy con-

sumption of the VESes, i.e., the total travel distance, while meeting user demands. We  



Algorithm 1 Bayesian Optimization for Optimal Fixed Resource Allocation per 

Grid 

Require: Resource demand matrix , for each grid cell , 

, and each time slot ; Fixed Resource cost , Mobile Re-

source cost , number of time slots ; 

Ensure: Capacity matrix  and cost matrix  for all grid cells. 

1: for to 32 do 

2:    for to 32 do 

3:       Let  

4:       Compute  and  

5:       if  then 

6:          Set optimal fixed resource  

7:          Compute cost  

8:       else 

9:          Define the objective function: 

 

10:        Apply Bayesian Optimization (using the TPE method) on  to 

obtain: 

 

11:        Set cost  

12:      end if 

13:      Update matrices: set  and  

14:   end for 

15:end for 

16:return Capacity matrix  and cost matrix  

 

design a Mobile Server scheduling algorithm based on Bipartite Graph Rematching 

(MS-BGR) to achieve that. 

Our MS-BGR is an iterative matching-based path planning strategy which considers 

the energy endurance of the VESes and aims at satisfying the user demand with mini-

mum energy consumption. At the end of each time slot, the energy status of all the 

VESes will be reviewed. The VESes with available energy will be sent to different grids 

according to the time varying-demand of the next time slot, and exhausted VESes will 

halt for one time slot to get recharged/refueled. Our objective is to match the VESes 

with the demanding grids such that the VESes can support a maximum volume of the 

user demand with their remaining energy with minimum total travel distance. Fig. 4 

shows one iteration of matching for a given time slot. The left part of the bipartite graph 

represents the grids with user demand, and the right part represents all the VESes with 
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remaining energy. An edge connecting grid  and VES  means that the VES is able to 

move to grid  within the travel distance limit  from its current residing grid. 

represents the current demand volume in grid  at time slot . The weight of each 

edge  should reflect the preference to reduce the travel distance of the VESes, so 

we define it as 

  (18) 

The first term means that we prefer to send a VES to a grid with a small difference of 

the supply and demand, which reduces the number of moving VESes globally. The 

second term aims to minimize the total travel distance. and  indicate the prefer-

ence of the two terms, respectively. Thus the problem is to find the maximum weight 

matching in the bipartite graph, which can be solved using the Hungarian Algorithm 

(Kuhn-Munkres Algorithm) in polynomial time. This process is repeated until no more 

matching can be found for the time slot. The algorithm is detailed in Alg. 2. 

Although MS-BGR currently operates on predicted demand, its iterative bipartite 

matching structure inherently supports real-time adjustments. By feeding live traffic 

updates into the weight matrix (Eq.18), the algorithm can dynamically rematch VESes 

to emerging hotspots within the travel distance constraint. This online adaptation capa-

bility will be formalized in future work using model predictive control frameworks. 

 

Fig. 4. Process of MS-BGR. 

5 Performance Evaluation 

5.1 Experiment Setup 

1) Data Set: We use the TaxiBJ dataset released in [30]. In the dataset, the urban area 

of Beijing is divided into  areas, and the number of vehicles entering and exiting 

each area for each half an hour is recorded from July 1, 2013 to October 30, 2013, from 

March 1, 2014 to June 30, 2014, from March 1, 2015 to June 30, 2015 and from No-

vember 1, 2015 to April 10, 2016. 

2) Data Preprocessing: We take advantage of the 7-day user behavior cycle, and use 

the traffic volume of the time slots in the previous 7 days to predict the traffic volume 

of the same time slots in the following 7 days. Subsequently, we randomly split the data 

into an 80% portion for model training and the remaining 20% portion for testing. 



Algorithm 2 Path Planning Algorithm of VES 

Require: Grids as left nodes , mobile servers as right nodes 

, Initial vehicle resources , Weight parameters
1 , 2 ; 

Ensure: Optimal matches of vehicles to grids. 

1: Extract grids with mobile resource demands ( )iw t  as left nodes , and vehi-

cles with resource  as right nodes . 

2: for each ROUND  do 

3:     Initialize weight matrix W    

4:     for each left node  do 

5:        for each right node  do 

6:            Construct the distance matrix
,i jd   

7:            if 
, maxi jd D  then 

8:                Perform BFS and calculate the shortest travel time 
,i jT . 

9:                if 
, maxi jT T  then 

10:                  Form an edge with weight . 

11:              end if 

12:          end if 

13:      end for 

14:   end for 

15:   Perform KM matching. 

16:   Update  and ( )iw t . 

17:   Re-extract grids with unmet demands as left nodes and unmatched vehicles as 

right nodes. 

18: end for 

19: return Optimal matches. 

 

3) Experimental Environment: Our experiments were conducted on a workstation 

equipped with a 3.2 GHz Intel i9 CPU, 64 GB of memory, and an NVIDIA 3060 

graphics card. 

5.2 Forecasting Results 

In the GICUNet model prediction, we set the hidden feature dimension of the network 

to 512 and use a batch size of 16. We choose the Lion optimizer for training with an 

initial learning rate of 0.002 and employ a cosine annealing strategy to dynamically 

adjust the learning rate. To train the GICUNet model, we utilize the mean squared error 

loss (MSELoss) to minimize the difference between the prediction and actual values. 

We compare our prediction method with the current state-of-art methods TAU and 

SimVP on the TaxiBJ dataset, as well as the STResNet model designed specifically for 

the TaxiBJ dataset [30]. To ensure a fair comparison, we adjust the STResNet model 
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by using data from the same preceding 7 days to match our experimental setup. Addi-

tionally, we use Avg as the reference group that obtains the averaged data from the 

preceding 7 days as the prediction results. 

Table I shows the prediction results of the above methods. Our method's highest 

recorded computation cost is only 1.37G, significantly lower than TAU (6.12G), 

SimVP (9.42G), and STResNet (3.14G). Meanwhile, our method also maintains a high 

prediction accuracy, with an average MSELoss of 0.0155, significantly better than TAU 

(0.0185), SimVP (0.0190), and STResNet (0.0223). 

Table 1. Comparison of Different Prediction Models. 

 GICUNet TAU SimVP STResNet 

Computational Over-

head (G) 
1.37 6.12 9.42 3.14 

Average MSELoss (M) 0.0155 0.0185 0.0190 0.0223 

5.3 Computation Capacity of the Fixed Edge Severs 

We set the unit deployment price of the computation capacity of the FES to , and 

the unit deployment price of the VES to , where . Fig. 5 shows the 

computation capacity of the fixed edge severs and the minimum total cost through 

Bayesian optimization. 

 

Fig. 5. Computation Capacity of the Fixed Edge Severs and Deployment Cost. 

We compare the deployment cost of our BO-based method with two schemes:  

1) Half-Fixed: We allocate half of the computing capacity to VESes and half of the 

computing capacity to FESes. 

2) All-Fixed: We allocate all of the computing capacity to FESes, and it is entirely 

up to FES to provide computational offloading services to IoV users. 

The results are shown in Table 2. Our approach yields much lower deployment costs 

than the comparison schemes: 7.5% lower compared with Half-Fixed and 31% com-

pared with All-Fixed. This shows that our scheme can efficiently allocate computing 

resources and reduce the deployment cost. 



Table 2.  Deployment Cost of the Three Methods. 

 BO Half-Fixed All-Fixed 

Cost 1.33×107 1.43×107 1.72×107 

 

5.4 Performance of Path Planning of the VESes 

We use the demand obtained from the prediction results for path planning, and verify 

the performance of our deployment approach on the real demand. We will compare it 

with other three methods on the same dataset: 

1) MS-Single: This algorithm performs one single iteration of the matching in the 

bipartite graph for path planning. 

2) High-Demand First: This algorithm employs the greedy algorithm to send the 

VESes to high-demand grids in priority. 

3) Random Matching: This algorithm matches VESes to grids randomly. All the 

VESes that meet the distance constraint have a chance to be matched. 

We investigate two evaluating metrics: service coverage and total travel distance. 

Service coverage refers to the average ratio of the satisfied computation requests to the 

total number of requests of all the grids across 48 time slots per day. Total travel dis-

tance is defined as the sum of the travel paths of all the VESes across 48 time slots per 

day. It is worth noting that the total travel distance is calculated based on the paths we 

plan in advance, while the service coverage is computed to evaluate what we can 

achieve with the path planning scheme on real demand. 

 

Fig. 6. Comparison of Service Coverage. 
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Fig. 7. Comparison of Total Travel Distance. 

 

Fig. 8. An Example of the Real Vehicle Trajectories. 

Fig. 6 presents the experimental results of the four methods on service coverage ra-

tio. It can be observed that the demand is generally lower on weekends (e.g., March 5 

and March 6), so the service coverage of almost all four methods can reach more than 

90%. However, on weekdays with higher user demand, MS-Single, which only per-

forms one single match between the VESes and grids, performs significantly worse 

than the other three methods, especially on March 28 when the user demand is excep-

tionally high. The service coverage of Random Matching is relatively stable, and it can 

reach about 80-90% regardless the user demand. Our MS-BGR algorithm and the High-

Demand First method both demonstrate superior overall performance with stable and 

high service coverage, at least 10% higher compared with Random Matching and MS-

Single. 

Fig. 7 illustrates the comparison results of total travel distances among the four al-

gorithms. The total travel distance for Random Matching is not shown in the figure as 

the it is too large compared with other methods. MS-Single has smaller total travel 

distance than other methods due to small number of matched VESes, but its service 

coverage is poor as discussed above. The High-Demand First method has a large total 

travel distance because it always greedily sends VESes to the higher-demand grids with 



higher demand, regardless of the travel distance. In contrast, our MS-BGR achieves the 

best performance among the four algorithms, e.g., 77% lower travel distance than High-

Demand First. 

Fig. 8 shows an example of the real trajectories of the VESes under our MS-BGR 

method on several time slots on a single day. 

 

6 Conclusion and Future Work 

In this study, we proposed a joint deployment scheme using Fixed and Vehicle-

Mounted Edge Servers for Urban Internet of Vehicles. Firstly, leveraging historical 

traffic data, we designed the GICUNet traffic flow prediction model to accurately pre-

dict the future traffic in different areas. Subsequently, we applied Bayesian Optimiza-

tion to determine the computation capacity of the FESes with the objective of minimiz-

ing the total deployment cost of the FESes and VESes. Then we designed a path plan-

ning algorithm for VESes to serve the grids and reduce energy consumption. The ex-

perimental results verified the superior performance of our proposed solution in terms 

of service coverage and total travel distance compared with other popular strategies. 

In our work, the assumption of no inter-grid bottleneck may not fully capture real-

world network dynamics, but our future extensions will explicitly model bandwidth 

allocation and congestion control. In addition, our VES energy replenishment mecha-

nism and the homogeneous task assumption might be to idealistic. In our future re-

search, we will extend the model to consider charging latency as well as heterogeneous 

task priorities, to further enhancing the robustness and adaptability of our solution. 
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