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Abstract. Federated learning has received significant attention for its ability to s

imultaneously protect customer privacy and leverage distributed data from multi

ple devices for model training. However, conventional approaches often focus o

n isolated heterogeneous scenarios, which results in skewed feature distributions

 or label distributions. Meanwhile, data heterogeneity is actually a key factor in 

improving model performance. To address this issue, we propose a new approac

h called PFPL in mixed heterogeneous scenarios. The method provides richer d

omain knowledge and unbiased convergence targets by constructing personalize

d, unbiased prototypes for each client. Moreover, in the local update phase, we i

ntroduce consistent regularization to align local instances with their personalize

d prototypes, which significantly improves the convergence of the loss function.

 Experimental results on Digits and Office Caltech datasets validate the effectiv

eness of our approach and successfully reduce the communication cost. 

Keywords: Skewed label distribution, Skewed distribution of features, Person-

alized Federal Learning, data heterogeneity. 

1 Introduction 

The rapid proliferation of mobile phones, wearables, tablets, and smart home devices 

has led to exponential growth in the volume of data generated and retained by these de

vices [1,2]. These data contain valuable insights for device owners. However, many us

ers have become increasingly concerned about privacy, demanding that their data rem

ain exclusively on local devices. Federated Learning (FL) [3] provides a privacy-prese

rving distributed machine learning framework. In FL, a cloud server coordinates with 

distributed clients while ensuring data privacy through localized storage. The foundati

onal FedAvg algorithm [4] iteratively aggregates client model parameters and distribu

tes averaged global models to clients, enabling collaborative training without privacy 

disclosure. However, real-world scenarios involve data from heterogeneous sources w



ith distinct characteristics, resulting in non-independent and identically distributed (no

n-IID) data [5,6]. Local client updates based on their data distributions often diverge f

rom the global optimization trajectory. Personalized Federated Learning (PFL) has em

erged as a prominent approach to developing client-specific models tailored to individ

ual data distributions. 

Personalized Federated Learning (PFL) addresses data heterogeneity by enabling cl

ients (e.g., mobile devices or organizations) to develop customized models aligned wit

h their unique data distributions [7]. Two fundamental challenges persist: (1) label dist

ribution skew across clients, and (2) feature distribution divergence within identical la

bel classes. Existing research predominantly focuses on single-mode heterogeneity (ei

ther label or feature skew), with limited exploration of cross-domain mixed heterogen

eity where data originates from divergent domains with varying label distributions. 

Under label skew conditions, the global model exhibits bias toward majority classe

s, leading to suboptimal generalization of personalized models on local client data. W

hile hybrid local-global optimization [8] and model decoupling techniques [9] show ef

ficacy in handling label skew, they fail to address feature distribution bias as the globa

l model struggles to capture client-specific feature representations—even for data inst

ances sharing identical labels across clients [10]. This feature space misalignment furt

her hinders effective inter-client model collaboration. In practical cross-domain deplo

yments with dual heterogeneity (concurrent label skew and feature divergence), these 

limitations not only degrade model performance but also hinder real-world applicabili

ty. Consequently, developing unified solutions for hybrid heterogeneous scenarios bec

omes imperative. 

Real-world applications frequently exhibit dual heterogeneity scenarios combining 

label distribution skew and feature distribution divergence, as exemplified by cross-in

stitutional CT image analysis where hospitals in different geographic regions possess 

distinct patient cohorts. This dual heterogeneity arises from two primary factors: (1) fe

ature variations caused by discrepancies in medical imaging equipment specifications,

 and (2) label distribution skew stemming from demographic differences in disease pr

evalence across hospital populations. 

Building upon prototype learning foundations [9,11], we present Prototypical Feder

ated Partial Learning (PFPL), a novel framework for hybrid heterogeneity scenarios. P

FPL employs cross-domain Lipschitz-constrained prototype comparison to quantify d

omain-specific knowledge relevance. Through adaptive prototype aggregation weight

ed by inter-domain similarity metrics, it constructs client-specific prototypes that miti

gate dominant domain bias. Furthermore, we introduce Personalized Prototype Align

ment (PPA), a regularization mechanism that enforces consistency between local insta

nce embeddings and client-specific prototypes through feature-space distance minimiz

ation, ensuring robustness under hybrid heterogeneity. The main contributions of this 

paper are summarized as follows: 

• We propose a novel personalized prototype learning approach aimed at solving the 

problem of skewed label distribution and skewed feature distribution in hybrid hete

rogeneous scenarios. 
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• To cope with the label distribution imbalance problem, we introduce prototype lear

ning to capture domain knowledge and propose a novel aggregation scheme to gene

rate personalized prototypes for each client. Meanwhile, in the local update phase, 

we design personalized unbiased prototype consistency to provide fair and unbiase

d target signals by narrowing the feature distance between instance embeddings and

 personalized prototypes, thus effectively mitigating the impact of feature distributi

on imbalance on model performance. 

• We conduct extensive experiments on Digits and PACS tasks. The experimental res

ults show that our scheme outperforms some recent federated learning methods in c

all and heterogeneous scenarios. 

2 Related work 

2.1 Heterogeneous challenges in federated learning 

Data heterogeneity in federated learning primarily manifests as two distinct types [12,

13]: label distribution skew and feature distribution shift [14]. To address label distrib

ution skew, conventional methods often employ label-based dataset partitioning to con

struct pseudo-IID distributions, aiming to reduce training bias and enhance model gen

eralization. pFedKT [14] achieves personalized-generalized balance through dual kno

wledge transfer: (1) local hypernetworks preserve historical personalized knowledge, 

and (2) contrastive learning propagates updated global knowledge. Other methods like

 FedProto [15] and FedProc [16] enforce feature-level consistency through prototype a

lignment and procedural feature matching, respectively. However, these methods pred

ominantly focus on single-domain label skew scenarios while neglecting cross-domain

 feature shifts in real-world hybrid heterogeneity. 

Feature distribution shift poses a distinct challenge, where cross-domain client data

 leads to suboptimal cross-domain generalization [17]. FedBN [12] addresses feature s

hift through client-specific batch normalization layers prior to model aggregation. AD

COL [18] and FCCL [19] impose substantial resource overhead, requiring adversarial 

discriminators and public datasets for cross-client alignment. While FPL [13] mitigate

s feature shift via prototype clustering, it prioritizes global model convergence over cli

ent personalization. These approaches primarily target isolated feature shift scenarios 

while neglecting concurrent label distribution skew. Our work addresses hybrid hetero

geneity—simultaneous label skew and feature shift—by developing personalized mod

els tailored to individual client data characteristics. 

2.2 Personalized federated learning 

Personalized federated learning is extensively employed to address the data heterogen

eity issue in federated learning. This approach enables each client to customize and op

timize the personalized model in accordance with the characteristics and requirements

 of its local data, thereby facilitating more precise localized model training and adaptat

ion. 



Personalized federated learning has evolved diverse architectural strategies to addre

ss data heterogeneity. Among parameter decoupling approaches, Filip Hanzely et al. 

[11] have proposed a method that generates personalized models for each client by mi

xing local and global models to balance the two. FedBABU [20] extends this paradig

m through a three-stage process: local body training with fixed random-initialized hea

ds, server-side body aggregation, and post-training head fine-tuning for personalizatio

n. FedRoD [21] innovates further with a dual-head architecture comprising a shared g

eneral head optimized via class-balanced loss and client-specific private heads trained 

with empirical loss, where only the body and general head participate in aggregation. 

Prototype-enhanced methods offer complementary solutions. FedNH [22] integrates p

rototype-semantic consistency learning to enhance feature discriminability while empl

oying head regularization to prevent prototype collapse under class imbalance. This fr

amework adopts alternating optimization: frozen-body head updates precede fixed-hea

d body refinements. 

However, most of the above personalization methods only consider the heterogene

ous problem for a single scenario (skewed label distribution or skewed feature distribu

tion). There are relatively few personalization methods for mixed scenarios of both, w

hich limits the application of federated learning on more diverse non-IID data. Theref

ore, solving more diverse hybrid heterogeneous problems has become an important ch

allenge for federated learning research. 

3 Methodology 

3.1  PRELIMINARY 

Following typical federated learning [3], there are M participants, and the private data 

set of the participants is
1{ , } == mN

m i i iD x y , where
mN represents the client side data size. 

These private data follow different label distributions and come from different domain

s. For example, data sets
iD and

jD on two client sides i and j  may have different label

 statistical distributions. This is common for photo classification apps installed on the 

mobile client side. The server needs to identify many classes { (1), ( ), }= k , w

hile each client side only needs to identify a few classes that make up a subset of . T

he class sets may vary from client side to client side, although there is overlap. And th

ese private data sets are derived from different domains, resulting in significant differe

nces in the features of the data even if the categories are the same. 

• Mixed heterogeneous scenarios in federated learning: ( | ) ( | ),i jP x y P x y

( ( ) ( )).i nP y P y  There is a skewed feature distribution and a skewed label distribut

ion between private data. Specifically, the label distribution before different client s

ides is different, and the data comes from different domains, presenting a unique fe

ature distribution despite the overlap between domains. 

In addition, participants agree to share models with the same architecture. We treat 

the model as two modules: 
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 Feature Extraction Module (i.e., the embeddings function) transforms the input from

 the raw feature space to the embedding space, ( , ) →  df x h R , the sample x coding 

d-dimensional feature vector .( , )=  dh f x R Decision Module   makes classificatio

n decisions for the given learning task. ˆ: ( , ) → g h y maps feature h to the logits o

utput ˆ ( , ) .= y g h So, the label function can be written as: ( , ) ( ) ( )   = F f g , a

nd we use to represent ( , )  for short. 

 Prototypes: Each prototype is the average of the feature vectors of the same class 

 
( )

( , )

1
( ; ).

| |




= 
k

k

k

x y D

C f x
D

 (1) 

where kD represents the data instances label K , and | |kD represents the number of dat

a instances label .K  

 Local Prototypes: We define a feature ( )kC to represent the k-th class in . For the

 i-th client, ( )kC is the average of the features obtained by inputting samples with the l

abel k into the feature extraction module. 

 
( )

( , )

1
( ; ).

| |




= 
k
i

k

i i ik

x y Di

C f x
D

 (2) 

where k

iD represents the data samples of class K in the i-th client. 

Global Prototypes: For a given class j , the server receives locally computed featu

res with class label j from a group of clients. These local features with labels j are agg

regated by taking their average to generate the global feature ( )jC for class .j  

 
( ) ( )| |1

.


=



k

k

k ki

ik k

i

D
C C

N
 (3) 

where ( )k

iC represents the local features of class K from the i-th client, k represents th

e set of clients that have class K , and kN represents the total number of data instances 

of all client-side classes label K . 

However, the global prototype is not suitable for the mixed heterogeneous scenario

 in this paper, which mainly has two problems: 1. A single global prototype blurs the d

ifference between different domains, and it is difficult to learn special knowledge betw

een different domains. 2. Since the weight parameter of the global prototype is determ

ined by the amount of data in the category sample, the final global prototype is biased 

towards the dominant user with a large amount of data, which makes it difficult for th

e client side with few data instances to learn. A simple approach is to build an unbiase

d prototype; that is, the prototype weight of each client is the same, but this approach s

till faces the challenge of problem 1, and this approach makes the client side with few



er sample instances benefit but hurts the client side with more sample instances to part

icipate in federated learning. 

3.2 Personalized federated prototyping learning 

We propose a solution for hybrid heterogeneous FL. This paper uses a prototype as th

e main component for exchanging information at the client side and server level. The f

ramework is shown in Fig.1. The central server receives local prototype sets

{ (1), (2), , ( )}   m from m local client sides and then clusters prototypes

{ (1), (2), , ( ), }   k of the same category. In a hybrid heterogeneous FL setup, th

ese prototype sets overlap but are not the same. Take the handwritten digit data set as 

an example. The first client side is the recognition numbers 2, 3, 4, from the MNIST d

ata set, while the other client side is the recognition numbers 4, 5, from the SYN data 

set. These are two sets of handwritten digits from different domains, with different sa

mple categories, albeit overlapping. For the prototype category of each client in the cl

uster, by assigning weights with the L2 distance of the other client-side prototypes, ag

gregation generates a personalized prototype specific to the client. 

 

Fig. 1. Architecture of personalized Federated Prototype Learning (PFPL). 

Personalized prototype: The server level collects the prototype set of the client an

d clusters it for the client side prototype category. Taking the prototype with the categ

ory K of client side i as an example, its personalized prototype is as follows: 

 
( )

( ) ( ) ( )

,( ) (1 )( ) 


= + − 
k

k k k

i i i m m

m M

C C k C  (4) 

where represents a hyperparameter that controls the degree of personalization, ( )kM

represents a client side cluster with a K-class label prototype, 
k

mC represents the K-clas

s label prototype uploaded by the m client side, and
,i mk represents the weight coefficie
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nt of the client side m to the i client. The calculation formula is determined by compari

ng the L2 distance of the two client side K-class prototypes, as follows: 

 
( ) ( )

2

, ( ) ( )

2

( )

,

,


=


k k

i m

i m k k

i m

m k

C C
k

C C

‖ ‖

‖ ‖
 (5) 

where ( ) k represents the cluster prototype with the server level label K, and the L2 d

istance between prototypes is calculated as,: 

 
( ) ( ) ( ) ( ) 2

2, ( )= −k k k k

i m i m

k

C C d C C‖ ‖  (6) 

where d  is the locally generated distance metrics of the prototype ( )k

iC  with label k  a

nd prototype ( )k

mC with the same label on the other client side .m Distance measures can

 take many forms, such as L1 distance, L2 distance, and bulldozer distance. Here we u

se L2 distance metrics. 

We generate its personalized prototype for each client side. In simple terms, person

alized prototypes with the same label on different clients are affected by domain migra

tion differently. When assigning weight, prototypes from the same domain will assign

 more weight, while the weight assigned from different domains will be less, making p

ersonalized prototypes tend to be more knowledge of the same domain and stay away 

from the influence of different domains, thus effectively solving the above problem 1 

and our weight is determined according to the L2 distance between different client sid

e prototypes, and is not determined by the amount of data on the client side, so it will 

not be affected by the dominant domain. Although the amount of data on individual pr

ototypes is small, it can also learn more from a large number of prototypes of the same

 domain, thus solving the problem 2. 

 

Fig. 2. Description of different prototypes. 



Local Model Update: The client side needs to update the local model to generate c

onsistent client-side functionality. We also introduce unbiased personalized prototype 

consistency, which allows the local prototype to approximate its personalized prototyp

e through regularization in local updates. Specifically, the loss function is defined as f

ollows: 

 ( )( ) ( )( , ) ( ( ; ), ) ,= +  k k

i i S i i i R i iD w F w x y C C  (7) 

where
iD stands for data from the i-th client,  is an important parameter for regulariz

ation. 

 

Algorithm 1: PFPL 

Input:
iD , 

iw , 1,=i m  

Output: The final personalization model{ }iw , 1, ,=i m  

1： Server executes: ( ( )( ), k

ii C ) 

2： Initialize w for all clines 

3： for each round 1,2,=T  do 

4：     for each client i in parallel do 

5：         { ( )} i ⎯⎯ LocalUpdate ( )( , )ki C  

6：     end for  

7：     Clustering prototype sets  uploaded by clines 

8：     Update personalized prototype sets by Eq.(4): 

9：      Send the personalized prototype to the corresponding 

10：      client side 

11： end for 

12： LocalUpdate
( ) )( , k

ii C : 

13： for each local epoch do 

14：     for batch ( , )i i ix y D  do 

15：         Compute local features by Eq.(2) 

16：         Compute loss by Eq.(7) using local prototype 

17：         Update local model according to the loss 

18：         Update local prototype sets ( ) i with personalized 

19：         prototypes in ( ){ }k

iC  

20：      end for 

21： end for 

22： return ( ), 1,... =i i m  

 

Discussion: We further explain the differences between the three prototypes in Fig.

 2 The global prototype inherently confuses the knowledge of different domains and s

hows a skewed feature space towards the potentially dominant domain in heterogeneo

us federated learning. Unbiased prototypes also have the problem of confusing the kno
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wledge of different domains, and giving the same weight to the client side with a large

 number of instance samples is itself an unfair allocation, which reduces the enthusias

m of the client side with a large data instance to participate in federated learning. Our 

personalized prototype solves the above two problems at the same time. Specifically, f

or problem 1, our personalized prototype is generated for different client side aggregat

es rather than a single global prototype or unbiased prototype, which effectively solve

s the problem that the client side data comes from different domains. For problem 2, o

ur weight coefficient is mainly determined by hyperparameter a and K, a guarantees th

e degree to which our personalized prototype is biased towards the local prototype. Th

e calculation formula of K guarantees that other client-side prototypes from the same 

domain assign more weight, while client-side prototypes from different domains assig

n less weight, so that the final personalized prototype is biased towards the real domai

n and deviates from other domains. Compared with the traditional model gradient para

meter, the dimension of the prototype is much smaller than that of the overall model, 

which brings less computational cost to the participants. In addition, prototype upload

s are privacy-safe because they are one-dimensional vectors generated by averaging lo

w-dimensional representations from the same class of samples, which is an irreversibl

e process. Second, an attacker cannot rebuild the original data source from the prototy

pe without accessing the local model. Therefore, prototype not only provides lower co

mputational cost, but also a privacy-preserving scheme in heterogeneous federated lea

rning. 

3.3 Optimization Objective 

The goal of PFPL is to solve joint optimization problems on distributed networks. PFP

L applies prototype-based communication, which allows a local model to align its loca

l prototype with its personalized prototype while minimizing the sum of losses for all 

client side local learning tasks. The learning goal of personalized federated prototypes

 across heterogeneous clients can be expressed as: 

 ( )
| |

( ) ( )

, 1 1 1

arg min ( ( ; ), ) , .
 


= = =

+  
m m

k ki

S i i i R i i

i k i

D
f w x y C C

N
 (8) 

where loss ( ( ; ), )S i iF wi x y represents the objective loss for the i-th client, and we use 

the standard cross-entropy loss as the objective loss function. N represents the sum of

 all client-side instance data, | | represents the number of classes for the labels, and 

R
 is the regularization term used to measure distance, with its expression as follows: 

 ( )( ) ( ) ( ) ( )

2, ,=k k k k

R i i i iC C C C‖ ‖  (9) 

where
R

is the distance metrics of the locally generated prototype
( )k

iC and the globally

 aggregated personalized prototype
( )k

iC . Here we use the L2 distance to measure the d

ifference between the two. The specific algorithm is shown in Algorithm 1. 



4 Convergence analysis 

We use the first-level model (decision module) as our objective loss function. 

Assumption 1. (Lipschitz Smooth). It is assumed that each local objective function is 

1L -Lipschitz Smooth, which also implies that the gradient of the local objective functi

on is
1L -Lipschitz continuous. 

 
2 2 1 21 , , 1 2

2 2
, , 0, {1,2, , }.−  −   t t i t i tL w w t t i m▽ ▽  (10) 

This also implies the following quadratic bound: 

 
1 2 2 1 2 1 2

2
1

, , , , 1 2
2

, ( ) , , 0, {1,2, , }.
2

−  − + −   t t t i t i t i t i t

L
w w w w t t i m▽  (11) 

Assumption 2. (Unbiased Gradient and Bounded Variance)The stochastic gradient

, ,( )=i t i tg w is an unbiased estimator of the local gradient for each client. Assuming th

at its expectation satisfies the following equation: 

 , ,~ ( ) , {1,2, , },   = =   i iD i t i t tE g w i m▽ ▽  (12) 

and its variance is bounded by 2 : 

 
,

2
2

, ( )
2

. − 
  i ti t wE g ▽  (13) 

Assumption 3. (Bounded Expectation of Euclidean norm of Stochastic Gradients). Th

e expectation of the random gradient is bounded by G : 

 , 2
, {1,2, , }.    

 i tE g G i m  (14) 

Assumption 4. The functions of each feature extraction module, commonly known as

 embedding functions, are 
2L -Lipschitz continuous. 

 
1 2 1 2, , 2 , , 1 2

2
( ) ( ) , , 0, {1,2, , }.   −  −   i i t i i t i t i tf f L t t i m  (15) 

We can obtain theoretical results for non-convex problems if the above assumption 

holds. In Theorem 1, we provide the expected decrease in each round. We use

1
{ ,1,2, , }

2
e E to represent local iterations and t to represent global communication 

rounds. Here, tE represents the time step before global features aggregation, and

1

2
+tE represents the time step between global features aggregation and the first iterati

on of this round. 
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Theorem 1. (One-round deviation) Let Assumption 1 to 4 hold. For an arbitrary clien

t, after every communication round, we have, 

 
2 21

2 21 1

1 1 22( 1) 12 2
2

 .
2 2

 
   

−

+
+ + +

=

   
 − − + +   

    

E

tE e
t E tE

e

L L E
L EG▽  (16) 

Theorem 1 indicates the deviation bound of the local objective function for an arbit

rary client after each communication round. Convergence can be guaranteed when the

re is a certain expected one-round decrease, which can be achieved 

by choosing appropriate and  . 

Corollary 1. (Non-convex pFedPM convergence). The loss function of an arbitrary 

client monotonously decreases in every communication round when 

 

´

´

2

1 22
2

2

2( )

,




+=

−




e

tE ee

e

L EG

L EG

▽

 (17) 

where  
´ 1

{ ,1,2, , }
2

=e E and 

 

2

1

2 2

2

.
+


tE

t
L EG

▽

 (18) 

Thus, the loss function converges. Corollary 1 guarantees that the expected bias of t

he loss function is negative, ensuring the convergence of the loss function. We can fur

ther ensure the convergence of the algorithm by choosing appropriate learning rates

and importance weights  . 

5 Experiments 

Datasets: We evaluate our method on three classification tasks: 

• Digits [23] includes four domains: MNIST (M), USPS (U), SVHN (SV), and SYN 

(SY) with 10 categories (digit numbers from 0 to 9). 

• PACS [24] data set is a domain adaptive image dataset, including 4 domains: photo

s, art paintings, cartoons, and sketches. Each field contains 7 categories. 

Local models: For these three classification tasks, we use the classical ResNet18 [2

5] model as our base model, and all methods use the same network architecture to mak

e fair comparisons across different tasks. 

Baselines of FL: We investigate the performance of our method PFPL under mixe

d heterogeneous conditions and compare it with baselines, including FedAvg, Local. I



n addition, some FL methods in single-domain scenarios are also included. Feature dis

tribution skewed: FedBN [12], FRaug [17]. Label distribution skewed: FedProto [15], 

Ditto [26], APFL [27], FedRod [21], FedKD [28].   

Mixed heterogeneous setting: This paper considers a heterogeneous scenario whe

re the label distribution is skewed and the feature distribution is skewed. We borrow t

he concept of n-way, k-short from less sample learning, which n controls the number o

f classes on the client side and k controls the number of training instances per class. T

o simulate the label distribution skewed, we stochastic change the values of n and k fo

r each client side. For the feature distribution skewed, we stochastic assign instance da

ta from different domains to the client side. The final client-side data only has data for

 individual category labels and is sourced from different domains, albeit with overlap. 

Implementation Details: We implement the comparison of PFPL and general base

line methods in PyTorch. We use 20 client sides for all data sets. For Digits and PAPC

 Dataset, the average number of categories n for local clients is set to 3, 4, 5, and for O

ffice-31 [29] Dataset, the average number of categories n for local clients is set to 10, 

15, 20. And the number of each class in each client side is initially set to 100%. To ma

ke a fair comparison, we follow the same settings. For all methods, we use an SGD op

timizer with a learning rate of 0.01=lr . The corresponding weight decay is 5−e and the

 momentum is 0.9. The training batch size is 4, and we communicate epoch for 100=E

and the local update wheel 1=T . 

 

Fig. 3. t-SNE visualization of the prototype generated by the PFPL method. We consider clients 

from four different domains in the PACS dataset, corresponding to the (a),(b),(c) and (d) in the 

picture, and the number of classes for each client is uniformly set to n = 3. 

PFPL under varying :As shown in Equation (4), in the server-level personalize

d prototype aggregation stage, a controls the weight of the local prototype. As shown i

n Fig.3, in the range of 0-1, the optimal values of three different data sets a are 0.3, 0.

5, and 0.6. 

The model performance under the number of classes n of different clients: Tab

le 1 reports the average test accuracy for all clients. It can be seen that PFPL has the hi

ghest accuracy in most cases among FL under different n controls. 
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Fig. 4. (a) Average test accuracy of PFPL and FedAvg on PACS with varying numbers of sam-

ples in each class. (b) Model accuracy corresponding to different  . (c) Comparison of the num-

ber of parameters transferred in each round of global iteration. 

Table 1. Results for the Digits dataset on different algorithms. 

Algo-

rithms 

Acc n=3 Acc n=4 

AVG 

Acc n=5 

AVG 
Rounds 

MNIST USPS SVHN SYN AVG 

Local 98.32 93.64 85.42 53.18 91.15 92.17 92.86 0 

FedAvg 98.64 92.17 86.35 54.16 87.56 88.42 88.75 200 

Ditto 96.35 90.86 85.44 53.12 86.74 87.14 87.56 200 

APFL 98.42 91.24 86.14 53.42 87.98 88.58 89.43 200 

FedRod 95.58 90.33 85.18 52.47 85.61 86.47 86.21 200 

FedKD 97.74 92.58 83.22 54.16 86.32 87.36 88.22 200 

FedGen 96.35 91.42 82.96 54.88 85.48 86.44 87.64 200 

FedBN 98.56 93.10 86.37 53.35 87.54 88.63 89.48 200 

FRAug 98.17 92.58 84.51 52.67 93.64 94.51 95.16 200 

FedProto 98.42 93.17 88.15 54.42 93.16 94.16 94.23 200 

PFPL 98.68 93.94 87.63 60.28 94.75 95.84 96.17 200 

 

Scalability of PFPL on varying number of samples: Fig.4a shows that PFPL can

 scale to scenarios with fewer samples available on clients. The test accuracy consiste

ntly decreases when there are fewer samples for training, but PFPL drops more slowly

 than FedAvg as a result of its adaptability and scalability on various data sizes. 

PFPL under varying  :Fig.4b  shows the change in performance at different valu

es of  in Equation (7). We specify the initial range of  at [0,4] and extract a set of va

lues from it. We record the average test accuracy of the PAPC data set, K = 100%, n =

 4, and the distance loss of the prototype. In this case, as  increases, the original dista

nce loss (regularizer) decreases, while the average test accuracy decreases sharply afte

r 1 = , and finally we take the optimal value of  as 1. 



 

Fig. 5. Precision comparison between PFPL and a single heterogeneous personalized federated 

learning method in mixed heterogeneous scenarios. (a) indicates the skewed feature distribution 

scenario, and (b) indicates the skewed label distribution scenario. 

PFPL communication efficiency comparison: Fig.4c depicts the number of para

meters to be transmitted by each client in each communication round. In comparison 

with the classical approach, our method transmits the minimal number of parameters i

n each round, thereby effectively minimizing the volume of communication throughou

t the entire communication round, lowering the communication cost and enhancing th

e transmission efficiency. 

Performance of PFPL compared to the single-domain FL method: As shown in

 Fig.5, PFPL achieves higher accuracy than the FL method in single heterogeneous sc

enarios with skewed label distributions and skewed feature distributions. We suspect t

hat this is due to the fact that previous FL methods focused on solving the heterogeneo

us federation problem in single scenarios and ignored other heterogeneous scenarios, r

esulting in lower performance in mixed heterogeneous scenarios. 

6 Conclusion 

In this paper, we explore the personalized federated learning PFPL for handling mixed

 heterogeneous scenarios. Our work introduces prototype as a communication standar

d. We use prototype (prototype-like representation) to learn knowledge of different do

mains and stable convergence goals by generating specific personalized prototypes for

 different client sides and introducing personalized prototype consistency during the lo

cal update phase. Ultimately, our method achieves higher accuracy than single-scenari

o heterogeneous federated learning methods. 
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