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Abstract. The advancements in language models, particularly Large Language 

Models (LLMs) have propelled the evolution of front-end low-code platforms, 

transitioning from the traditional drag-and-drop approach to an automated Do-

main-Specific Language (DSL) code-based generation process. Within this con-

text, the objective becomes to generate the appropriate DSL from textual descrip-

tions using large language models. Nonetheless, due to the limitation of DSL 

data, challenges persist in training or fine-tuning LLMs for some DSL generation 

tasks such as the front-end low code platform. This study proposes a novel pipe-

line approach for DSL generation, taking advantage of the potential of prompt 

engineering. The methodology utilizes Named Entity Recognition (NER), a DSL 

knowledge vector database, and LLMs. The experiments demonstrated signifi-

cant improvements in the quality of DSL generation while reducing token and 

time costs. 
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1 Introduction 

Artificial intelligence is revolutionizing production processes across various domains 

by offering automated assistance. A typical example is that automatic code generation 

gradually transforms how programmers approach their work, enabling them to focus 

on the core logic of their programs while freeing them from repetitive and boilerplate 

code details. Front-end low-code platform [1] stands out as a crucial application of au-

tomatic code generation. It facilitates the generation of DSL from textual descriptions, 

consequently allowing users to obtain front-end pages. 

In general, automatic code generation is implemented by natural language models. 

The models take user input, typically brief kernel descriptions encompassing language, 

logic, and function aspects of the target code, and generate the corresponding code 
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output by comprehending the key information. With the rapid development of LLMs 

[2], in-context learning-based code generation has become increasingly prevalent, 

showcasing remarkable reliability for programming languages.  

 

Fig. 1. Pipeline Overview. 

Nevertheless, it is still difficult for existing LLMs to produce satisfactory DSL [3] if 

only provided with textual descriptions without the procedure of training or fine- 

tuning on the DSL data. Fortunately, LLMs are distinguished largely from normal lan-

guage models due to the emergent ability and Chain-of-Thought [4]. This introduces 

the construction of DSL prompts [3], [5] as a novel approach that eliminates the training 

process. Consequently, LLMs can perform a wide range of tasks proficiently with min-

imal examples. 

In this work, we concentrate on generating DSL of front-end low-code platforms, 

where the DSL is subsequently compiled into visual pages. To achieve this objective, 

we aim to produce DSL of superior quality utilizing refined prompts and leveraging the 

capabilities of LLMs. The main challenge is that the quality of the generated DSL is 

largely determined by the provided prompts. It is imperative to tailor the prompts pre-

cisely to the user's intentions and incorporate the most relevant DSL knowledge. 

To address this issue, we propose a pipeline-based solution that integrates the Intent 

Recognition (IR), Named Entity Recognition (NER), DSL vector database, and DSL 

generation modules, as depicted in Fig. 1. Within the pipeline, we identify the user's 

intentions from the textual description, match these intentions with relevant front-end 

DSL knowledge to construct a prompt, and finally, concatenate the prompt with the 

user's description, sending it to LLM to obtain the generated DSL. With GPT-3.5 [6] 

and Qwen-72B [7] as the LLMs in the pipeline, we achieve average page-generation 

scores of 95.92 and 94.5, respectively, to generate the DSL of the low-code front-end 

platform. 

In summary, this study has made notable progress in the following areas. Firstly, we 

propose an innovative pipeline method for DSL generation leveraging LLMs, which 

integrates key components such as IR, NER, and vector databases. Furthermore, we 
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validate the efficiency and accuracy of this approach, achieving a high score in DSL 

generation with reduced token usage. 

2 Related Work 

2.1 Code Generation 

In recent years, numerous research efforts have focused on code-generation tasks em-

ploying deep-learning methods. TranX [8] studies a sequence-to-sequence methodol-

ogy, leveraging the Long Short-Term Memory (LSTM) backbone and an abstract syn-

tax description language. CodeT5 [9] is a code generation version of the Google T5 

model, which uses an encoder-decoder transformer structure and applies pre-training 

fine-tuning technique. However, these works have limitations in the quality of DSL 

generation due to the lack of high-quality training data. For our DSL generation task, it 

is challenging to obtain such a training dataset. 

With the rapid increase in training data and parameter scale, LLMs have demon-

strated remarkable proficiency both in zero-shot and few-shot generation across various 

code types, including program languages and domain-specific languages [5], [10], [11]. 

The emergent and contextual understanding abilities brought by LLMs enable effective 

few-shot in-context learning for DSL generation without the necessity of a large train-

ing dataset. LLMs outperform traditional deep-learning models in this context. 

2.2 In-Context Learning (ICL) 

ICL which relies on natural language descriptions instead of neural network training, 

has demonstrated remarkable zero-shot and few-shot performance across various natu-

ral language processing (NLP) tasks. The progress is attributed to the exceptional 

emerging abilities of LLMs [12]. The ongoing research in ICL focuses on improving 

inference performance [13] and expanding example coverage structures [14]. This im-

plies the potential to achieve satisfactory answers from LLMs with minimal examples. 

Despite the remarkable strides that LLMs have made, it remains challenging to con-

struct adequate DSL prompts for topics the LLMs have not been trained for. A method 

proposed by [5] employs a BNF syntax, which enables LLMs to generate high-quality 

responses. Furthermore, vector database [15] or the knowledge base has been demon-

strated to serve as reliable external references for DSL grammar, facilitating the gener-

ation of high-quality prompts. 

In this work, we adopt a pipeline approach that integrates the NER technique, vector 

database, and LLMs. This strategy enables the construction of effective prompts with 

minimal redundancy, resulting in high accuracy for DSL generation.  

3 Pipeline Methodology 

The Overview of the pipeline is illustrated in Fig. 1, comprising four ordered modules: 

IR, NER, DSL vector database, and DSL Generation. 



3.1 IR 

IR serves as the foundational module for each conversation task, guiding the overall 

workflow, filtering out inputs irrelevant to front-end page construction, and signifi-

cantly reducing computational costs and susceptibility to potential attacks. It utilizes 

the ICL capability of LLMs to construct prompts and classify user's natural language 

input into three predefined request types: creating a new interface, modifying the inter-

face, and irrelevant requests. If the input is determined to be entirely irrelevant, the 

system prompts the user to restructure the input into a more contextually relevant for-

mat for front-end interface construction. Otherwise, the system processes the input and 

proceeds with subsequent operations. Let 𝑅 denote the initial user's request and 𝑰𝑹 de-

note the process of IR, then the request category ∁ can be denoted as (1): 

 ∁ = 𝑰𝑹(𝑅), ∁ ∈  {𝑛𝑒𝑤,𝑚𝑜𝑑𝑖𝑓𝑦, 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡} .           (1) 

3.2 NER 

After being verified by the IR module, the pipeline steps into the NER module, where 

the NER technique is utilized to parse and extract the entities related to the front-end 

page components. To formulate, given the user's initial textual request 𝑅, the NER pro-

cess is to recognize and then extract a set of predefined DSL components entities 𝜀 as 

shown in (2) 

                                               𝜀 = 𝑵𝑬𝑹(𝑅), 𝜀 ⊆ {𝑒1, … , 𝑒𝑛}                                                (2) 

3.3 DSL Vector Database 

Throughout our pipeline, we incorporate a DSL vector database as the external 

knowledge reference of front-end low-platform DSL. This serves as a resource for high-

quality prompt information, ensuring the reliability and quality of DSL generation re-

sults. Generally, DSL vector databases facilitate efficient vector retrieval and leverage 

distance functions to rank the retrieved results by similarity, making them a crucial 

component for providing external knowledge. As depicted in Fig. 2, we present an 

overview of the DSL vector database, which comprises two main components: vector 

database construction and data retrieval. 

In the construction of the vector database, we establish knowledge vectors for all 

predefined components entities within the DSL. Each vector is represented by a com-

prehensive set of DSL descriptors, encompassing the entity's name and textual expla-

nations. The precision of retrieved DSL knowledge from the vector database signifi-

cantly impacts the accuracy of LLMs in generating DSL. Effective text embedding 

models play a pivotal role in augmenting retrieval accuracy. This study introduces text-

embedding-ada-002 [16], which outperforms previous embedding models in text search 

and sentence similarity tasks. In (3), we designate text-embedding-ada-002 as 

𝐸𝑚_𝑚𝑜𝑑𝑒𝑙, where the entity is denoted as 𝑒𝑖 and the explanation text for the entity as 

𝑒𝑖−𝑒𝑥𝑝. Subsequently, the entity and the explanation text are concatenated and the em-

bedding model processes each concatenated pair to generate a 512-dimensional vector: 
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 𝑋𝑖
⃗⃗  ⃗ = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(concat(𝑒𝑖, 𝑒𝑖−𝑒𝑥𝑝)) , (3) 

where each entry within the vector database corresponds to a front-end component, 

comprising the embedding vector, the associated component name, textual explana-

tions, and succinct examples of DSL. We construct the index based on the embedding 

vector to expedite similarity retrieval. 

 

Fig. 2. DSL Vector database Overview. The construction phase consists of three key steps. First, 

we organize the component entity name and the corresponding explanation for each front-end 

page component, which will serve as input to the embedding model. Second, we use the embed-

ding model to generate semantic vector. Finally, we create a collection in the Milvus [15], [19] 

vector database, storing the embedded vectors along with their associated component names, 

explanations, and DSL. Once the DSL vector database is established, the data retrieval phase is 

carried out in four steps. Initially, we utilize the same embedding model employed during the 

database construction phase to embed the entities extracted from the NER module. Subsequently, 

in steps 3 and 4, we leverage the entity embedding vector to retrieve the item with the most 

similar embedding vector. This retrieved knowledge is then utilized as a prompt to feed into 

LLMs for generating DSL. 

In the querying process, we initially extract all entities from the user's request 𝑅 us-

ing the NER module (2). As delineated in (4), for each entity 𝑒𝑖 𝜖 the set of extracted 

entities, we employ the same embedding model utilized during the construction of the 

vector database to transform the entity into a vector 𝑒𝑖⃗⃗  . Moreover, the choice of simi-

larity algorithms employed to retrieve the most similar item from the vector database, 

such as the Inner Product function, Euclidean distance function, or Cosine distance 

function, is also a critical factor that impacts retrieval accuracy. Drawing upon previous 

studies [17], [18], we opt for cosine similarity due to its demonstrated effectiveness in 

comparing transformer embeddings. This metric offers several advantages, including 

scale invariance, robustness to varying text lengths, and suitability for high-dimensional 



spaces, making it a widely adopted choice in NLP applications. We use 𝑐𝑜𝑠𝑆𝑖𝑚 to de-

note the cosine similarity function and  𝑋𝑗
⃗⃗  ⃗ to represent each embedding vector in the 

database, calculating the similarity based on this metric to retrieve the most relevant 

item. 

𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗  , 𝑋𝑗
⃗⃗  ⃗) =  

𝑒𝑖⃗⃗  ∙ 𝑋𝑗
⃗⃗  ⃗

‖𝑒𝑖⃗⃗  ‖, ‖𝑋𝑗
⃗⃗  ⃗‖

 , 

                                            𝑤ℎ𝑒𝑟𝑒   𝑒𝑖⃗⃗  = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(𝑒𝑖)     𝑒𝑖  𝜖 𝜀       (4) 

3.4 DSL Generation 

Given the vector database 𝑽𝑫𝑩, each embedding vector 𝑋𝑗
⃗⃗  ⃗ in 𝑽𝑫𝑩 and an extracted 

entity embedding vector 𝑒𝑖⃗⃗  , the prompt construction aims to obtain the most similar 

DSL knowledge from the vector database. The retrieved knowledge content can be de-

noted as (5): 

                                             𝐾(𝑒𝑖⃗⃗  ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑗⃗⃗ ⃗⃗   𝜖 𝑽𝑫𝑩 (𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗  , 𝑋𝑗
⃗⃗  ⃗))                          (5) 

Hence, for each entity embedding vector extracted from the user's textual request, 

we select the DSL knowledge vector from the DSL vector database that exhibits the 

highest similarity with it for prompt construction. In (6), 𝑅 denote the initial user's tex-

tual request, 𝐾(𝑒𝑖⃗⃗  ) be the DSL knowledge content (entity, explanation, and correspond-

ing DSL) retrieved from the vector database. we directly concatenate 𝑅 and 𝐾(𝑒𝑖⃗⃗  ) to 

form the prompt, which is represented by 𝑃. Let 𝑳𝑳𝑴 denote the mapping function of 

the LLM, the generated DSL can be presented as 𝑪𝒐𝒅𝒆: 

𝑪𝒐𝒅𝒆 =  𝑳𝑳𝑴(𝑃) , 
                                𝑤ℎ𝑒𝑟𝑒   𝑃 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑅, 𝐾(𝑒1⃗⃗  ⃗), …𝐾(𝑒𝑖⃗⃗  ) … )     𝑒𝑖  𝜖 𝜀       (6) 

Fig. 3 illustrates a concrete example of the prompt generation process. Initially, user 

input is received and preprocessed by the NER module to extract entities from the input 

message. Subsequently, the most relevant DSL knowledge related to these entities' se-

mantic embeddings is retrieved from the DSL vector database. This retrieved DSL 

knowledge, referred to as Part 2, is then combined with the predefined roles of the LLM 

system (Part 1) and DSL generation rules (Part 3) to form a well-organized prompt. 

Finally, this completed prompt is inputted into the LLMs for DSL generation. 

3.5 Comprehensive Pipeline 

We conclude the comprehensive pipeline process in Algorithm 1, which corresponds 

to the workflow in Fig. 1. 
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Fig. 3. Prompt Example for DSL Generation 

 

Algorithm 1 DSL generation 

Input: Textual Request 𝑅 

C ← 𝑰𝑹(𝑅) 
if C is irrelevant then 

       Inform the user to resubmit the request 

else 

       𝜀 ← 𝑵𝑬𝑹(𝑅) 
       P ← 𝑅  

       for all 𝑒𝑖𝜖𝜀 do  

              𝑒𝑖⃗⃗  = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(𝑒𝑖)     𝑒𝑖  𝜖 𝜀 

              𝐾(𝑒𝑖⃗⃗  ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑗⃗⃗ ⃗⃗   𝜖 𝑽𝑫𝑩 (𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗  , 𝑋𝑗
⃗⃗  ⃗)) 

              𝑃 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑃, 𝐾(𝑒𝑖⃗⃗  )) 
       end for 

       𝑫𝑺𝑳 ← 𝑳𝑳𝑴(𝑃) 
end if 

Output: DSL 

 



4 Experiments 

We explore three primary issues in the experiments. Firstly, the effectiveness of the IR 

module is verified in Section 4.2. Secondly, the impact of the NER module that extracts 

front-end page entities is investigated in Section 4.3. Finally, a comprehensive perfor-

mance of the prompt construction and DSL generation is illustrated in Section 4.4. 

4.1 Experiments Settings 

To evaluate the efficacy of the proposed pipeline, we establish a customized testing 

dataset, with examples shown in Table 1, tailored for each module in the pipeline. The 

absence of a dataset for front-end low-code platform DSL is the reason behind this. 

Moreover, we apply two LLMs, namely GPT-3.5 and Qwen-72B, for their exceptional 

generation capacities. 

Table 1. Samples of the validation dataset. 

We have constructed a front-end low-code platform DSL generation validation dataset, consist-

ing of 100 natural language user-input requirements. The dataset includes 50 requests for front-

end page creation, 20 requests for page modifications, and 30 irrelevant requests. For illustration 

purposes, we present only 9 sample items in this table. The Intent column indicates the type of 

request: 0 denotes page creation, 1 represents page modification, and 2 signifies an irrelevant 

request. In the Entities column, the ground truth entities extracted from the user requirements are 

provided. No entity extraction is performed for irrelevant requests. 

ID User requirements Intent Entities 

1 
I want to generate a login page that includes an account input box, a 

password input box, a login button, and a cancel button. 

0 Form, Input-

Field, Button 

2 
Build the registration page, including input fields for username, 

password, and email. 

0 Form, Input-

Field 

3 

Create a doctor display page for a medical system that showcases the 

doctor's photo, medical experience, and honors, and presents some of 

their academic achievements in a table. 

0 
Form, Input-

Field, Button 

4 

Add an avatar upload component on the personal information page, 

allowing users to upload their own avatars and enhance personaliza-

tion customization. 

1 
Form, Input-

Field, Button 

5 

Update the style of the login page by removing the "Cancel" button 

and only keeping the "Login" button, simplifying the page and im-

proving user efficiency. 

1 

Button 

6 
Add a date picker component on the form page to allow users to eas-

ily select a date and improve data accuracy. 

1 Date-

Field,Form 

7 

Plan and execute the marketing promotion for the company, increase 

the brand exposure and sales, and improve the market share and cus-

tomer satisfaction of the company. 

2 

—— 

8 
Learn how to design a data visualization page so that users can intui-

tively understand trends and changes in the data. 

2 
—— 

9 Great, web design is very useful in the workplace. 2 —— 
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IR: To validate the accuracy of the IR module, we collected a total of 100 natural lan-

guage user-input requirements, comprising 50 requests for front-end page creation, 20 

requests for page modifications, and 3 irrelevant requests (with examples shown in Ta-

ble 1). We utilized GPT-3.5 and Qwen-72B as the classifiers for this validation process. 

Front-end Page Entity Extraction: We collected 50-page generation requests from 

front-end product managers and annotated 169 entities related to front-end pages. We 

used the LLM ICL method (GPT-3.5 and Qwen-72B) on this data set to perform the 

NER task, delivering promising results. 

DSL Generation: When evaluating the effectiveness of the front-end low-code DSL 

generated, we use the dataset described in Table 1. This experiment comprises three 

distinct settings. Setting 1 serves as our baseline method, where only LLMs are used to 

generate the DSL without the involvement of the NER module or the DSL vector data-

base. In this scenario, all knowledge of the front-end components, including textual 

explanations and DSL examples, are concatenated to form the prompt for LLMs. Set-

ting 2 introduces the support of the DSL vector database compared to Setting 1, where 

the user's textual request is directly embedded without undergoing the NER process, 

and the embedding is matched in the vector database. We then concatenate the 

knowledge retrieved with the prompt provided to the LLMs. Setting 3 represents the 

pipeline approach proposed in the paper, which utilizes both the NER module and DSL 

vector database, following the process outlined in Algorithm 1. In general, we refer to 

the baseline Setting 1 as *S1, Setting 2 Setting 3 as S2 and S3 respectively, as indicated 

in Table 2. 

Table 2. Front-end DSL generation results 

Settings Variance Model Token cost Time cost(s) Page genera-

tion score 

*S1 LLM + raw knowledge GPT-3.5 4902.57 9.95 77.55 

S2 LLM + Vector DB GPT-3.5 1067.82 6.81 87.24 

S3 
Pipeline method (LLM 

+ NER + Vector DB) 
GPT-3.5 924.84 7.46 95.92 

*S1 LLM + raw knowledge Qwen-72B 4902.57 61.25 81.00 

S2 LLM + Vector DB Qwen-72B 1067.82 51.96 84.50 

S3 
Pipeline method (LLM 

+ NER + Vector DB) 
Qwen-72B 911.24 51.63 94.50 

 

4.2 Accuracy of IR 

The detailed results of the IR exploration are provided in Table 3. The Qwen-72B 

model achieves a prediction accuracy of 94%, while the GPT-3.5 model attains a pre-

diction accuracy of 99%. In particular, the GPT-3.5 model exhibits exceptional accu-

racy, with only one instance misclassified as a new creation type instead of a modifica-

tion type. These findings underscore the module's proficiency in efficiently screening 

out extraneous user requests and precisely identifying requests for creating or 



modifying front-end pages. This outcome ensures the efficacy and robustness of sub-

sequent stages in the pipeline. 

Table 3. Intent classification 

   Predict result  

  New class Modify class Other class 

New class GPT-3.5 50 0 0 

New class Qwen-72B 50 0 0 

Modify class GPT-3.5 1 19 0 

Modify class Qwen-72B 4 16 0 

Other class GPT-3.5 0 0 30 

Other class Qwen-72B 1 1 28 

 

4.3 Impact of NER 

For the NER module, the Qwen-72B model achieves an entity extraction precision of 

88.00%, with a recall rate of 90.59% and an F1 score of 89.28%. The GPT-3.5 model 

achieves an impressive entity extraction precision of 92.82%, with a recall rate of 

98.82%, and an F1 score of 95.73%. These results demonstrate excellent performance 

by both LLMs on the NER task, as indicated by their high F1 scores. A higher recall 

rate ensures the extraction of more components from natural language requirements, 

facilitating the retrieval of relevant component knowledge from the vector database. 

Moreover, high precision ensures that the knowledge retrieved is concise and relevant, 

thus enhancing the quality of generated DSL and reducing token costs. 

 

4.4 Efficacy of Front-end low-code platform DSL Generation 

We investigate the token cost, time expenditure, and page generation quality across 

three distinct experimental setups: *S1, S2, and S3. The page generation quality is eval-

uated on a scale from 0 to 100, with intervals of 25 points, by a team comprising 5 

front-end engineers and 5 product managers. They assess the front-end pages generated 

by our proposed pipeline and assign scores based on the degree of user requirement 

fulfillment. A score of 0 signifies complete non-compliance with user needs, while 

scores of 25, 50, 75, and 100 correspond to minimal, partial, substantial, and complete 

fulfillment, respectively. The distribution of scores for the three experimental settings 

is depicted in Fig. 4, it is apparent that the setting S3 pipeline method, employing both 

Qwen-72b and GPT-3.5, yields 41 out of 50 results that entirely meet user requirements. 

Notably, setting S3 exhibits fewer outputs in the low-score range (≤50), distinguishing 

it from settings *S1 and S2, which produce a considerable number of low-score outputs. 

Further insights into performance are presented in Table 2, revealing that both GPT-

3.5 and Qwen-72B achieve the highest-rated pages under the setting S3 pipeline 

method, with average scores of 95.92 and 94.5, respectively. Moreover, S3 demon-

strates the lowest average token consumption and the shortest API response time among 
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the three settings. Conversely, setting S1, which excludes both the NER module and 

the vector database, exhibits significantly higher LLM token consumption, prolonged 

API response time, and diminished generation efficacy, with average scores of 77.55 

for GPT-3.5 and 81.00 for Qwen-72B. Incorporating the vector database into the base-

line (as in setting S2) reduces both time and token costs, while significantly improving 

the page generation scores. This comparison underscores the importance of the vector 

database. Furthermore, comparing the performance of settings S2 and S3 across the two 

LLMs, it is evident from Table 2 that the NER process contributes to producing higher-

quality pages while reducing token and time costs. 

 

(a) GPT-3.5 generation results distribution 

 

(b) Qwen-72B generation results distribution 

Fig. 4. Rating distribution for DSL generation. 

In summary, the experiments demonstrate that the vector database and NER module, 

integral components of our pipeline approach, significantly advance front-end low-

code platform DSL generation. Nevertheless, it is noteworthy that Qwen-72B exhibits 

considerably higher time consumption compared to GPT-3.5, which attributed to dif-

ferences in API response times between the two models. Fig. 5 depicts an exemplary 

case of the structured prompt and the resulting DSL generated by our proposed pipeline. 

In Fig. 5(a), this prompt comprises three main components: the system role, pertinent 

DSL details, and DSL generation directives, appended with the original user input. Ad-

ditionally, the example showcases the output DSL, subsequently utilized in rendering 



the visual page displayed in Fig. 5 (b) through the front-end low-code platform. Nota-

bly, the generated page fully satisfies the user's input requirement. 

 

(a) Prompt details 

 

(b) Generated DSL and webpage 

Fig. 5. DSL Generation Example 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

5 Discussion 

Our proposed pipeline significantly enhances the capability of LLMs in front-end low-

code platform DSL generation. Key observations and remarks regarding the pipeline 

are summarized below: 

• The incorporation of the IR module enhances the precision of LLMs in understand-

ing human instructions by filtering out irrelevant information. 

• The NER module and the vector database aid in the concise construction of prompts. 

A precise matching of entities from the NER module with DSL knowledge from the 

vector DB results in more effective and concise prompts. 

• The well-organized prompts stimulate the understanding and generation capabilities 

of LLMs for DSL generation, further bolstering the effectiveness of the pipeline.  

However, our pipeline does have some limitations. As it is not an end-to-end method, 

the quality of the generated DSL is directly influenced by each component in the pipe-

line. Incorrect identification by the NER module or insufficient DSL knowledge in the 

vector DB will impact DSL generation. Therefore, considerable effort is required to 

ensure the effectiveness of each module within the pipeline. 

6 Conclusion 

In this study, we present an innovative DSL generation pipeline for front-end low-code 

platforms, which incorporates IR, NER module, and DSL vector database along with 

LLM-based DSL generation. The NER module precisely extracts front-end page com-

ponents from user requirements, facilitating an accurate match with the DSL vector 

database. The retrieved DSL knowledge is tailored for LLM to produce satisfactory 

results. Consequently, the pipeline method allows users to swiftly construct desired 

pages with simple natural language descriptions. 
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