

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Pipeline Method for Domain-specific Language

Generation in Low-code Platforms Using Large

Language Models

Xin Cui1[0009-0001-9545-8844], Weixing Zhang1[0009-0002-1413-6024],

Linnan Jiang1[0009-0007-0443-9917], Aimin Pan1[0009-0004-9823-1436]

and Fei Yang1[0000-0003-4802-3191]

1 Zhejiang Lab, Kechuang Ave., 311121 Hangzhou, China
yangf@zhejianglab.org

Abstract. The advancements in language models, particularly Large Language

Models (LLMs) have propelled the evolution of front-end low-code platforms,

transitioning from the traditional drag-and-drop approach to an automated Do-

main-Specific Language (DSL) code-based generation process. Within this con-

text, the objective becomes to generate the appropriate DSL from textual descrip-

tions using large language models. Nonetheless, due to the limitation of DSL

data, challenges persist in training or fine-tuning LLMs for some DSL generation

tasks such as the front-end low code platform. This study proposes a novel pipe-

line approach for DSL generation, taking advantage of the potential of prompt

engineering. The methodology utilizes Named Entity Recognition (NER), a DSL

knowledge vector database, and LLMs. The experiments demonstrated signifi-

cant improvements in the quality of DSL generation while reducing token and

time costs.

Keywords: DSL generation, LLMs, Vector database, In-context learning,

Prompt engineering

1 Introduction

Artificial intelligence is revolutionizing production processes across various domains

by offering automated assistance. A typical example is that automatic code generation

gradually transforms how programmers approach their work, enabling them to focus

on the core logic of their programs while freeing them from repetitive and boilerplate

code details. Front-end low-code platform [1] stands out as a crucial application of au-

tomatic code generation. It facilitates the generation of DSL from textual descriptions,

consequently allowing users to obtain front-end pages.

In general, automatic code generation is implemented by natural language models.

The models take user input, typically brief kernel descriptions encompassing language,

logic, and function aspects of the target code, and generate the corresponding code

https://orcid.org/0009-0001-9545-8844

output by comprehending the key information. With the rapid development of LLMs

[2], in-context learning-based code generation has become increasingly prevalent,

showcasing remarkable reliability for programming languages.

Fig. 1. Pipeline Overview.

Nevertheless, it is still difficult for existing LLMs to produce satisfactory DSL [3] if

only provided with textual descriptions without the procedure of training or fine-

tuning on the DSL data. Fortunately, LLMs are distinguished largely from normal lan-

guage models due to the emergent ability and Chain-of-Thought [4]. This introduces

the construction of DSL prompts [3], [5] as a novel approach that eliminates the training

process. Consequently, LLMs can perform a wide range of tasks proficiently with min-

imal examples.

In this work, we concentrate on generating DSL of front-end low-code platforms,

where the DSL is subsequently compiled into visual pages. To achieve this objective,

we aim to produce DSL of superior quality utilizing refined prompts and leveraging the

capabilities of LLMs. The main challenge is that the quality of the generated DSL is

largely determined by the provided prompts. It is imperative to tailor the prompts pre-

cisely to the user's intentions and incorporate the most relevant DSL knowledge.

To address this issue, we propose a pipeline-based solution that integrates the Intent

Recognition (IR), Named Entity Recognition (NER), DSL vector database, and DSL

generation modules, as depicted in Fig. 1. Within the pipeline, we identify the user's

intentions from the textual description, match these intentions with relevant front-end

DSL knowledge to construct a prompt, and finally, concatenate the prompt with the

user's description, sending it to LLM to obtain the generated DSL. With GPT-3.5 [6]

and Qwen-72B [7] as the LLMs in the pipeline, we achieve average page-generation

scores of 95.92 and 94.5, respectively, to generate the DSL of the low-code front-end

platform.

In summary, this study has made notable progress in the following areas. Firstly, we

propose an innovative pipeline method for DSL generation leveraging LLMs, which

integrates key components such as IR, NER, and vector databases. Furthermore, we

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

validate the efficiency and accuracy of this approach, achieving a high score in DSL

generation with reduced token usage.

2 Related Work

2.1 Code Generation

In recent years, numerous research efforts have focused on code-generation tasks em-

ploying deep-learning methods. TranX [8] studies a sequence-to-sequence methodol-

ogy, leveraging the Long Short-Term Memory (LSTM) backbone and an abstract syn-

tax description language. CodeT5 [9] is a code generation version of the Google T5

model, which uses an encoder-decoder transformer structure and applies pre-training

fine-tuning technique. However, these works have limitations in the quality of DSL

generation due to the lack of high-quality training data. For our DSL generation task, it

is challenging to obtain such a training dataset.

With the rapid increase in training data and parameter scale, LLMs have demon-

strated remarkable proficiency both in zero-shot and few-shot generation across various

code types, including program languages and domain-specific languages [5], [10], [11].

The emergent and contextual understanding abilities brought by LLMs enable effective

few-shot in-context learning for DSL generation without the necessity of a large train-

ing dataset. LLMs outperform traditional deep-learning models in this context.

2.2 In-Context Learning (ICL)

ICL which relies on natural language descriptions instead of neural network training,

has demonstrated remarkable zero-shot and few-shot performance across various natu-

ral language processing (NLP) tasks. The progress is attributed to the exceptional

emerging abilities of LLMs [12]. The ongoing research in ICL focuses on improving

inference performance [13] and expanding example coverage structures [14]. This im-

plies the potential to achieve satisfactory answers from LLMs with minimal examples.

Despite the remarkable strides that LLMs have made, it remains challenging to con-

struct adequate DSL prompts for topics the LLMs have not been trained for. A method

proposed by [5] employs a BNF syntax, which enables LLMs to generate high-quality

responses. Furthermore, vector database [15] or the knowledge base has been demon-

strated to serve as reliable external references for DSL grammar, facilitating the gener-

ation of high-quality prompts.

In this work, we adopt a pipeline approach that integrates the NER technique, vector

database, and LLMs. This strategy enables the construction of effective prompts with

minimal redundancy, resulting in high accuracy for DSL generation.

3 Pipeline Methodology

The Overview of the pipeline is illustrated in Fig. 1, comprising four ordered modules:

IR, NER, DSL vector database, and DSL Generation.

3.1 IR

IR serves as the foundational module for each conversation task, guiding the overall

workflow, filtering out inputs irrelevant to front-end page construction, and signifi-

cantly reducing computational costs and susceptibility to potential attacks. It utilizes

the ICL capability of LLMs to construct prompts and classify user's natural language

input into three predefined request types: creating a new interface, modifying the inter-

face, and irrelevant requests. If the input is determined to be entirely irrelevant, the

system prompts the user to restructure the input into a more contextually relevant for-

mat for front-end interface construction. Otherwise, the system processes the input and

proceeds with subsequent operations. Let 𝑅 denote the initial user's request and 𝑰𝑹 de-

note the process of IR, then the request category ∁ can be denoted as (1):

 ∁ = 𝑰𝑹(𝑅), ∁ ∈ {𝑛𝑒𝑤,𝑚𝑜𝑑𝑖𝑓𝑦, 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡} . (1)

3.2 NER

After being verified by the IR module, the pipeline steps into the NER module, where

the NER technique is utilized to parse and extract the entities related to the front-end

page components. To formulate, given the user's initial textual request 𝑅, the NER pro-

cess is to recognize and then extract a set of predefined DSL components entities 𝜀 as

shown in (2)

 𝜀 = 𝑵𝑬𝑹(𝑅), 𝜀 ⊆ {𝑒1, … , 𝑒𝑛} (2)

3.3 DSL Vector Database

Throughout our pipeline, we incorporate a DSL vector database as the external

knowledge reference of front-end low-platform DSL. This serves as a resource for high-

quality prompt information, ensuring the reliability and quality of DSL generation re-

sults. Generally, DSL vector databases facilitate efficient vector retrieval and leverage

distance functions to rank the retrieved results by similarity, making them a crucial

component for providing external knowledge. As depicted in Fig. 2, we present an

overview of the DSL vector database, which comprises two main components: vector

database construction and data retrieval.

In the construction of the vector database, we establish knowledge vectors for all

predefined components entities within the DSL. Each vector is represented by a com-

prehensive set of DSL descriptors, encompassing the entity's name and textual expla-

nations. The precision of retrieved DSL knowledge from the vector database signifi-

cantly impacts the accuracy of LLMs in generating DSL. Effective text embedding

models play a pivotal role in augmenting retrieval accuracy. This study introduces text-

embedding-ada-002 [16], which outperforms previous embedding models in text search

and sentence similarity tasks. In (3), we designate text-embedding-ada-002 as

𝐸𝑚_𝑚𝑜𝑑𝑒𝑙, where the entity is denoted as 𝑒𝑖 and the explanation text for the entity as

𝑒𝑖−𝑒𝑥𝑝. Subsequently, the entity and the explanation text are concatenated and the em-

bedding model processes each concatenated pair to generate a 512-dimensional vector:

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

 𝑋𝑖
⃗⃗ ⃗ = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(concat(𝑒𝑖, 𝑒𝑖−𝑒𝑥𝑝)) , (3)

where each entry within the vector database corresponds to a front-end component,

comprising the embedding vector, the associated component name, textual explana-

tions, and succinct examples of DSL. We construct the index based on the embedding

vector to expedite similarity retrieval.

Fig. 2. DSL Vector database Overview. The construction phase consists of three key steps. First,

we organize the component entity name and the corresponding explanation for each front-end

page component, which will serve as input to the embedding model. Second, we use the embed-

ding model to generate semantic vector. Finally, we create a collection in the Milvus [15], [19]

vector database, storing the embedded vectors along with their associated component names,

explanations, and DSL. Once the DSL vector database is established, the data retrieval phase is

carried out in four steps. Initially, we utilize the same embedding model employed during the

database construction phase to embed the entities extracted from the NER module. Subsequently,

in steps 3 and 4, we leverage the entity embedding vector to retrieve the item with the most

similar embedding vector. This retrieved knowledge is then utilized as a prompt to feed into

LLMs for generating DSL.

In the querying process, we initially extract all entities from the user's request 𝑅 us-

ing the NER module (2). As delineated in (4), for each entity 𝑒𝑖 𝜖 the set of extracted

entities, we employ the same embedding model utilized during the construction of the

vector database to transform the entity into a vector 𝑒𝑖⃗⃗ . Moreover, the choice of simi-

larity algorithms employed to retrieve the most similar item from the vector database,

such as the Inner Product function, Euclidean distance function, or Cosine distance

function, is also a critical factor that impacts retrieval accuracy. Drawing upon previous

studies [17], [18], we opt for cosine similarity due to its demonstrated effectiveness in

comparing transformer embeddings. This metric offers several advantages, including

scale invariance, robustness to varying text lengths, and suitability for high-dimensional

spaces, making it a widely adopted choice in NLP applications. We use 𝑐𝑜𝑠𝑆𝑖𝑚 to de-

note the cosine similarity function and 𝑋𝑗
⃗⃗ ⃗ to represent each embedding vector in the

database, calculating the similarity based on this metric to retrieve the most relevant

item.

𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗ , 𝑋𝑗
⃗⃗ ⃗) =

𝑒𝑖⃗⃗ ∙ 𝑋𝑗
⃗⃗ ⃗

‖𝑒𝑖⃗⃗ ‖, ‖𝑋𝑗
⃗⃗ ⃗‖

 ,

 𝑤ℎ𝑒𝑟𝑒 𝑒𝑖⃗⃗ = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(𝑒𝑖) 𝑒𝑖 𝜖 𝜀 (4)

3.4 DSL Generation

Given the vector database 𝑽𝑫𝑩, each embedding vector 𝑋𝑗
⃗⃗ ⃗ in 𝑽𝑫𝑩 and an extracted

entity embedding vector 𝑒𝑖⃗⃗ , the prompt construction aims to obtain the most similar

DSL knowledge from the vector database. The retrieved knowledge content can be de-

noted as (5):

 𝐾(𝑒𝑖⃗⃗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑗⃗⃗ ⃗⃗ 𝜖 𝑽𝑫𝑩 (𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗ , 𝑋𝑗
⃗⃗ ⃗)) (5)

Hence, for each entity embedding vector extracted from the user's textual request,

we select the DSL knowledge vector from the DSL vector database that exhibits the

highest similarity with it for prompt construction. In (6), 𝑅 denote the initial user's tex-

tual request, 𝐾(𝑒𝑖⃗⃗) be the DSL knowledge content (entity, explanation, and correspond-

ing DSL) retrieved from the vector database. we directly concatenate 𝑅 and 𝐾(𝑒𝑖⃗⃗) to

form the prompt, which is represented by 𝑃. Let 𝑳𝑳𝑴 denote the mapping function of

the LLM, the generated DSL can be presented as 𝑪𝒐𝒅𝒆:

𝑪𝒐𝒅𝒆 = 𝑳𝑳𝑴(𝑃) ,
 𝑤ℎ𝑒𝑟𝑒 𝑃 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑅, 𝐾(𝑒1⃗⃗ ⃗), …𝐾(𝑒𝑖⃗⃗) …) 𝑒𝑖 𝜖 𝜀 (6)

Fig. 3 illustrates a concrete example of the prompt generation process. Initially, user

input is received and preprocessed by the NER module to extract entities from the input

message. Subsequently, the most relevant DSL knowledge related to these entities' se-

mantic embeddings is retrieved from the DSL vector database. This retrieved DSL

knowledge, referred to as Part 2, is then combined with the predefined roles of the LLM

system (Part 1) and DSL generation rules (Part 3) to form a well-organized prompt.

Finally, this completed prompt is inputted into the LLMs for DSL generation.

3.5 Comprehensive Pipeline

We conclude the comprehensive pipeline process in Algorithm 1, which corresponds

to the workflow in Fig. 1.

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

Fig. 3. Prompt Example for DSL Generation

Algorithm 1 DSL generation

Input: Textual Request 𝑅

C ← 𝑰𝑹(𝑅)
if C is irrelevant then

 Inform the user to resubmit the request

else

 𝜀 ← 𝑵𝑬𝑹(𝑅)
 P ← 𝑅

 for all 𝑒𝑖𝜖𝜀 do

 𝑒𝑖⃗⃗ = 𝐸𝑚_𝑚𝑜𝑑𝑒𝑙(𝑒𝑖) 𝑒𝑖 𝜖 𝜀

 𝐾(𝑒𝑖⃗⃗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑋𝑗⃗⃗ ⃗⃗ 𝜖 𝑽𝑫𝑩 (𝑐𝑜𝑠𝑆𝑖𝑚(𝑒𝑖⃗⃗ , 𝑋𝑗
⃗⃗ ⃗))

 𝑃 ← 𝑐𝑜𝑛𝑐𝑎𝑡(𝑃, 𝐾(𝑒𝑖⃗⃗))
 end for

 𝑫𝑺𝑳 ← 𝑳𝑳𝑴(𝑃)
end if

Output: DSL

4 Experiments

We explore three primary issues in the experiments. Firstly, the effectiveness of the IR

module is verified in Section 4.2. Secondly, the impact of the NER module that extracts

front-end page entities is investigated in Section 4.3. Finally, a comprehensive perfor-

mance of the prompt construction and DSL generation is illustrated in Section 4.4.

4.1 Experiments Settings

To evaluate the efficacy of the proposed pipeline, we establish a customized testing

dataset, with examples shown in Table 1, tailored for each module in the pipeline. The

absence of a dataset for front-end low-code platform DSL is the reason behind this.

Moreover, we apply two LLMs, namely GPT-3.5 and Qwen-72B, for their exceptional

generation capacities.

Table 1. Samples of the validation dataset.

We have constructed a front-end low-code platform DSL generation validation dataset, consist-

ing of 100 natural language user-input requirements. The dataset includes 50 requests for front-

end page creation, 20 requests for page modifications, and 30 irrelevant requests. For illustration

purposes, we present only 9 sample items in this table. The Intent column indicates the type of

request: 0 denotes page creation, 1 represents page modification, and 2 signifies an irrelevant

request. In the Entities column, the ground truth entities extracted from the user requirements are

provided. No entity extraction is performed for irrelevant requests.

ID User requirements Intent Entities

1
I want to generate a login page that includes an account input box, a

password input box, a login button, and a cancel button.

0 Form, Input-

Field, Button

2
Build the registration page, including input fields for username,

password, and email.

0 Form, Input-

Field

3

Create a doctor display page for a medical system that showcases the

doctor's photo, medical experience, and honors, and presents some of

their academic achievements in a table.

0
Form, Input-

Field, Button

4

Add an avatar upload component on the personal information page,

allowing users to upload their own avatars and enhance personaliza-

tion customization.

1
Form, Input-

Field, Button

5

Update the style of the login page by removing the "Cancel" button

and only keeping the "Login" button, simplifying the page and im-

proving user efficiency.

1

Button

6
Add a date picker component on the form page to allow users to eas-

ily select a date and improve data accuracy.

1 Date-

Field,Form

7

Plan and execute the marketing promotion for the company, increase

the brand exposure and sales, and improve the market share and cus-

tomer satisfaction of the company.

2

——

8
Learn how to design a data visualization page so that users can intui-

tively understand trends and changes in the data.

2
——

9 Great, web design is very useful in the workplace. 2 ——

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

IR: To validate the accuracy of the IR module, we collected a total of 100 natural lan-

guage user-input requirements, comprising 50 requests for front-end page creation, 20

requests for page modifications, and 3 irrelevant requests (with examples shown in Ta-

ble 1). We utilized GPT-3.5 and Qwen-72B as the classifiers for this validation process.

Front-end Page Entity Extraction: We collected 50-page generation requests from

front-end product managers and annotated 169 entities related to front-end pages. We

used the LLM ICL method (GPT-3.5 and Qwen-72B) on this data set to perform the

NER task, delivering promising results.

DSL Generation: When evaluating the effectiveness of the front-end low-code DSL

generated, we use the dataset described in Table 1. This experiment comprises three

distinct settings. Setting 1 serves as our baseline method, where only LLMs are used to

generate the DSL without the involvement of the NER module or the DSL vector data-

base. In this scenario, all knowledge of the front-end components, including textual

explanations and DSL examples, are concatenated to form the prompt for LLMs. Set-

ting 2 introduces the support of the DSL vector database compared to Setting 1, where

the user's textual request is directly embedded without undergoing the NER process,

and the embedding is matched in the vector database. We then concatenate the

knowledge retrieved with the prompt provided to the LLMs. Setting 3 represents the

pipeline approach proposed in the paper, which utilizes both the NER module and DSL

vector database, following the process outlined in Algorithm 1. In general, we refer to

the baseline Setting 1 as *S1, Setting 2 Setting 3 as S2 and S3 respectively, as indicated

in Table 2.

Table 2. Front-end DSL generation results

Settings Variance Model Token cost Time cost(s) Page genera-

tion score

*S1 LLM + raw knowledge GPT-3.5 4902.57 9.95 77.55

S2 LLM + Vector DB GPT-3.5 1067.82 6.81 87.24

S3
Pipeline method (LLM

+ NER + Vector DB)
GPT-3.5 924.84 7.46 95.92

*S1 LLM + raw knowledge Qwen-72B 4902.57 61.25 81.00

S2 LLM + Vector DB Qwen-72B 1067.82 51.96 84.50

S3
Pipeline method (LLM

+ NER + Vector DB)
Qwen-72B 911.24 51.63 94.50

4.2 Accuracy of IR

The detailed results of the IR exploration are provided in Table 3. The Qwen-72B

model achieves a prediction accuracy of 94%, while the GPT-3.5 model attains a pre-

diction accuracy of 99%. In particular, the GPT-3.5 model exhibits exceptional accu-

racy, with only one instance misclassified as a new creation type instead of a modifica-

tion type. These findings underscore the module's proficiency in efficiently screening

out extraneous user requests and precisely identifying requests for creating or

modifying front-end pages. This outcome ensures the efficacy and robustness of sub-

sequent stages in the pipeline.

Table 3. Intent classification

 Predict result

 New class Modify class Other class

New class GPT-3.5 50 0 0

New class Qwen-72B 50 0 0

Modify class GPT-3.5 1 19 0

Modify class Qwen-72B 4 16 0

Other class GPT-3.5 0 0 30

Other class Qwen-72B 1 1 28

4.3 Impact of NER

For the NER module, the Qwen-72B model achieves an entity extraction precision of

88.00%, with a recall rate of 90.59% and an F1 score of 89.28%. The GPT-3.5 model

achieves an impressive entity extraction precision of 92.82%, with a recall rate of

98.82%, and an F1 score of 95.73%. These results demonstrate excellent performance

by both LLMs on the NER task, as indicated by their high F1 scores. A higher recall

rate ensures the extraction of more components from natural language requirements,

facilitating the retrieval of relevant component knowledge from the vector database.

Moreover, high precision ensures that the knowledge retrieved is concise and relevant,

thus enhancing the quality of generated DSL and reducing token costs.

4.4 Efficacy of Front-end low-code platform DSL Generation

We investigate the token cost, time expenditure, and page generation quality across

three distinct experimental setups: *S1, S2, and S3. The page generation quality is eval-

uated on a scale from 0 to 100, with intervals of 25 points, by a team comprising 5

front-end engineers and 5 product managers. They assess the front-end pages generated

by our proposed pipeline and assign scores based on the degree of user requirement

fulfillment. A score of 0 signifies complete non-compliance with user needs, while

scores of 25, 50, 75, and 100 correspond to minimal, partial, substantial, and complete

fulfillment, respectively. The distribution of scores for the three experimental settings

is depicted in Fig. 4, it is apparent that the setting S3 pipeline method, employing both

Qwen-72b and GPT-3.5, yields 41 out of 50 results that entirely meet user requirements.

Notably, setting S3 exhibits fewer outputs in the low-score range (≤50), distinguishing

it from settings *S1 and S2, which produce a considerable number of low-score outputs.

Further insights into performance are presented in Table 2, revealing that both GPT-

3.5 and Qwen-72B achieve the highest-rated pages under the setting S3 pipeline

method, with average scores of 95.92 and 94.5, respectively. Moreover, S3 demon-

strates the lowest average token consumption and the shortest API response time among

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

the three settings. Conversely, setting S1, which excludes both the NER module and

the vector database, exhibits significantly higher LLM token consumption, prolonged

API response time, and diminished generation efficacy, with average scores of 77.55

for GPT-3.5 and 81.00 for Qwen-72B. Incorporating the vector database into the base-

line (as in setting S2) reduces both time and token costs, while significantly improving

the page generation scores. This comparison underscores the importance of the vector

database. Furthermore, comparing the performance of settings S2 and S3 across the two

LLMs, it is evident from Table 2 that the NER process contributes to producing higher-

quality pages while reducing token and time costs.

(a) GPT-3.5 generation results distribution

(b) Qwen-72B generation results distribution

Fig. 4. Rating distribution for DSL generation.

In summary, the experiments demonstrate that the vector database and NER module,

integral components of our pipeline approach, significantly advance front-end low-

code platform DSL generation. Nevertheless, it is noteworthy that Qwen-72B exhibits

considerably higher time consumption compared to GPT-3.5, which attributed to dif-

ferences in API response times between the two models. Fig. 5 depicts an exemplary

case of the structured prompt and the resulting DSL generated by our proposed pipeline.

In Fig. 5(a), this prompt comprises three main components: the system role, pertinent

DSL details, and DSL generation directives, appended with the original user input. Ad-

ditionally, the example showcases the output DSL, subsequently utilized in rendering

the visual page displayed in Fig. 5 (b) through the front-end low-code platform. Nota-

bly, the generated page fully satisfies the user's input requirement.

(a) Prompt details

(b) Generated DSL and webpage

Fig. 5. DSL Generation Example

2025 International Conference on Intelligent Computing

July 26-29, Ningbo, China

https://www.ic-icc.cn/2025/index.php

5 Discussion

Our proposed pipeline significantly enhances the capability of LLMs in front-end low-

code platform DSL generation. Key observations and remarks regarding the pipeline

are summarized below:

• The incorporation of the IR module enhances the precision of LLMs in understand-

ing human instructions by filtering out irrelevant information.

• The NER module and the vector database aid in the concise construction of prompts.

A precise matching of entities from the NER module with DSL knowledge from the

vector DB results in more effective and concise prompts.

• The well-organized prompts stimulate the understanding and generation capabilities

of LLMs for DSL generation, further bolstering the effectiveness of the pipeline.

However, our pipeline does have some limitations. As it is not an end-to-end method,

the quality of the generated DSL is directly influenced by each component in the pipe-

line. Incorrect identification by the NER module or insufficient DSL knowledge in the

vector DB will impact DSL generation. Therefore, considerable effort is required to

ensure the effectiveness of each module within the pipeline.

6 Conclusion

In this study, we present an innovative DSL generation pipeline for front-end low-code

platforms, which incorporates IR, NER module, and DSL vector database along with

LLM-based DSL generation. The NER module precisely extracts front-end page com-

ponents from user requirements, facilitating an accurate match with the DSL vector

database. The retrieved DSL knowledge is tailored for LLM to produce satisfactory

results. Consequently, the pipeline method allows users to swiftly construct desired

pages with simple natural language descriptions.

Acknowledgments. This work was supported by the National Natural Science Foundation of

China (Grant No. U22A6001), the National Key Research and Development Program of China

(No. 2023YFE0108600), and the Pioneer and "Leading Goose" R&D Program of Zhejiang Prov-

ince (No. 2024SSYS0002).

References

1. Cai, Yuzhe, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu

et al. "Low-code llm: Visual programming over llms." arXiv preprint arXiv:2304.08103 2

(2023).

2. Zhao, Wayne Xin, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang et al. "A survey of large

language models." arXiv preprint arXiv:2303.18223 (2023).

3. Yang, Zhen, Jacky Wai Keung, Zeyu Sun, Yunfei Zhao, Ge Li et al. "Improving domain-spe-

cific neural code generation with few-shot meta-learning." Information and Software Technol-

ogy 166 (2024): 107365.

4. Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph et al. "Emergent abilities of

large language models." arXiv preprint arXiv:2206.07682 (2022).

5. Wang, Bailin, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. "Grammar

prompting for domain-specific language generation with large language models." Advances in

Neural Information Processing Systems 36 (2024).

6. Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright et al. "Training lan-

guage models to follow instructions with human feedback." Advances in neural information

processing systems 35 (2022): 27730-27744.

7. Bai, Jinze, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang et al. "Qwen technical report." arXiv

preprint arXiv:2309.16609 (2023).

8. Yin, Pengcheng, and Graham Neubig. "Tranx: A transition-based neural abstract syntax parser

for semantic parsing and code generation." arXiv preprint arXiv:1810.02720 (2018).

9. Wang, Yue, Weishi Wang, Shafiq Joty, and Steven CH Hoi. "Codet5: Identifier-aware unified

pre-trained encoder-decoder models for code understanding and generation." arXiv preprint

arXiv:2109.00859 (2021).

10. Liu, Aiwei, Xuming Hu, Lijie Wen, and Philip S. Yu. "A comprehensive evaluation of

ChatGPT's zero-shot Text-to-SQL capability." arXiv preprint arXiv:2303.13547 (2023).

11. Tang, Xiangru, Bill Qian, Rick Gao, Jiakang Chen et al. "BioCoder: a benchmark for bioinfor-

matics code generation with contextual pragmatic knowledge." arXiv preprint

arXiv:2308.16458 (2023).

12. Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhari-

wal, Arvind Neelakantan et al. "Language models are few-shot learners." Advances in neural

information processing systems 33 (2020): 1877-1901.

13. Li, Jiazheng, Runcong Zhao, Yulan He, and Lin Gui. "Overprompt: Enhancing chatgpt capa-

bilities through an efficient in-context learning approach." CoRR (2023).

14. Levy, Itay, Ben Bogin, and Jonathan Berant. "Diverse demonstrations improve in-context com-

positional generalization." arXiv preprint arXiv:2212.06800 (2022).

15. Wang, Jianguo, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu et al. "Milvus: A purpose-built

vector data management system." In Proceedings of the 2021 International Conference on Man-

agement of Data, pp. 2614-2627. 2021.

16. Neelakantan, Arvind, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han et al. "Text and

code embeddings by contrastive pre-training." arXiv preprint arXiv:2201.10005 (2022).

17. Steck, Harald, Chaitanya Ekanadham, and Nathan Kallus. "Is cosine-similarity of embeddings

really about similarity?." In Companion Proceedings of the ACM on Web Conference 2024,

pp. 887-890. 2024.

18. Sitikhu, Pinky, Kritish Pahi, Pujan Thapa, and Subarna Shakya. "A comparison of semantic

similarity methods for maximum human interpretability." In 2019 artificial intelligence for

transforming business and society (AITB), vol. 1, pp. 1-4. IEEE, 2019.

19. Guo, Rentong, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi et al. "Manu: a cloud native

vector database management system." arXiv preprint arXiv:2206.13843 (2022).

