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Abstract. The rapid development of deepfake has raised significant security 

and ethical concerns, requiring robust and generalizable detection methods. In 

this work, we propose a novel framework for deepfake detection that leverages 

the power of large-scale pre-trained vision-language models, specifically the 

Contrastive Language–Image Pre-training (CLIP) model. Our approach fine-

tunes the CLIP image encoder for deepfake detection by introducing a Dynamic 

Mixture-of-Adapters (MoA) architecture, which consists of multiple lightweight, 

domain-specific adapter modules that are dynamically activated based on input 

images. To further improve cross-domain performance, we introduce three aux-

iliary regularization terms for fine-tuning: attention alignment and similarity reg-

ularization, which enforce consistency in feature extraction, and cached domain 

regularization, which preserves domain-specific prototypes. The proposed 

framework effectively balances domain-specific adaptation and generalization, 

addressing critical challenges in generalized deepfake detection. Extensive ex-

periments on benchmark datasets, including FaceForensics++, CelebDF, DFDC, 

DFD, and DiFF, show that our method performs well in both in-domain and 

cross-domain deepfake detection tasks. 

Keywords: Deepfake Detection, Dynamic Mixture-of-Adapters, Contrastive 

Language–Image Pre-training (CLIP).  

1 Introduction 

In recent years, the emergence of Artificially Intelligent Generated Content 

(AIGC) has garnered significant attention from both academia and industry. Among 

these technologies, deepfake stands out as one of the most notable advancements in the 

domain of AIGC, primarily thanks to its ability to manipulate faces with high fidelity 

and capability. This technique has evolved from traditional image editing methods 

based on pixel manipulation to modern methods powered by deep learning. Early deep-

fake generation techniques leveraged models such as Variational Autoencoders (VAE) 

[1,2] and Generative Adversarial Networks (GAN) [3,4,5]. Although these models 

achieved substantial improvements over traditional image editing methods, they faced 

challenges in generating realistic human faces that could deceive the human eye, 
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limiting their large-scale applicability. Recently, diffusion-based models [6,7,8] have 

further improved the generation of realistic deepfake images and videos. 

Such deepfake content, when disseminated on the internet, has caused significant 

damage to personal reputation and privacy. Furthermore, manipulated content has been 

used as a propaganda tool. For example, works by Bounareli et al. [9], Hsu et al. [10], 

and Koujan et al. [11] showcased methods for synthesizing realistic facial reenact-

ments. As deepfake videos become increasingly realistic, deepfake detection tech-

niques have also advanced. However, many recent works perform well on training da-

tasets but experience a sharp decline when confronted with unseen types of deepfake 

forgeries. The biggest challenge in deepfake detection is improving generalization, 

which requires the ability of detection methods to perform effectively on unseen or 

novel deepfake techniques and datasets. Deepfake detection models trained on specific 

datasets or techniques often struggle to adapt to new types of manipulations, leading to 

reduced detection accuracy in real-world scenarios. Therefore, developing detectors 

with good generalization ability is a critical challenge that researchers in the field of 

deepfake detection must address. 

To address these challenges, we propose a novel framework that leverages the 

power of large-scale pre-trained vision-language models, specifically the Contrastive 

Language–Image Pre-training (CLIP) model [12], to enhance the generalization of 

deepfake detection. Specifically, we introduce a dynamic Mixture-of-Adapters (MoA) 

architecture, which augments CLIP's Vision Transformer (ViT) backbone with light-

weight and domain-specific adapter modules. These adapters are dynamically selected 

and activated based on the domain characteristics of the input, enabling the model to 

adapt to a wide range of forgery techniques while preserving its pre-trained generaliza-

tion capabilities. In addition, we incorporate attention alignment and similarity regular-

ization to enforce consistent feature extraction and cached domain regularization mech-

anism to enhance generalization against domain changes. We leverage the intrinsic ca-

pabilities of CLIP to align high-level semantic information with low-level visual fea-

tures, which is crucial for detecting subtle artifacts in generated fake content. The con-

tributions of this work are summarized as follows: 
⚫ A novel deepfake detection framework is proposed that integrates CLIP with a 

Dynamic Mixture-of-Adapters (MoA) architecture, improving generalization to 

diverse forgery techniques. 

⚫ We integrate attention alignment and similarity regularization to ensure uniform 

feature extraction, along with a cached domain regularization approach to improve 

adaptability across varying domains. 

⚫ We extensively evaluate the proposed method on multiple benchmark datasets, 

demonstrating its superior performance in both in-domain and cross-domain deep-

fake detection tasks. 

2 Related Work 

2.1 Deepfake generative models 

Deepfake synthesis primarily relies on three types of face image generation mod-

els: VAE, GAN, and diffusion models. VAE models revolutionized the mapping 
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between the latent space of autoencoders and the RGB feature space. They incorporated 

high-dimensional Gaussian distributions and enabled image generation through inter-

polation. GAN models achieved high-quality generation by training a discriminator and 

generator in an adversarial framework. Diffusion models excelled in generating high-

quality images due to their ability to iteratively model data distributions, particularly 

for tasks involving large-scale complex distributions. Different generative models pro-

duce outputs with unique patterns and features. This domain divergence complicates 

detection, especially as hybrid forgeries—combining outputs from multiple models be-

come more prevalent. These developments necessitate sophisticated and multifaceted 

forensic approaches to tackle the multi-model and multi-domain challenges of modern 

deepfake generation, further intensifying the challenges of achieving generalization and 

robust detection. 

2.2 Generalized deepfake detection methods 

To enhance the generalization capability of the deepfake detection model, various 

strategies have been employed to expose it to a broader range of forgery types. Yu et 

al. [13] utilized data augmentation during training and introduced a common learning 

method. This involved training a dedicated forgery feature extractor across multiple 

forgery datasets to improve the model’s ability to detect previously unseen forgery 

techniques. Similarly, Wang et al. [14] explored data augmentation for GAN fingerprint 

analysis. They devised a method that separates the fingerprints and content of GAN-

generated images using an autoencoder-based GAN fingerprint extractor and applies 

random perturbations to these fingerprints. The resulting manipulated images effec-

tively simulate outputs from diverse GANs, thereby enhancing the detectors' capacity 

to generalize across different GAN-based synthesis methods.  

Other works focus more on forensic features, such as visual consistency, and mo-

tion coherence in spatial or frequency domains. Fei et al. [15] addressed feature anom-

alies in forged faces caused by common blending operations in face forgery techniques. 

They introduced a weakly supervised second-order local anomaly learning module, 

which leverages deep feature maps to detect localized anomalies, thereby improving 

generalization capability. Dai et al. [16] used explicit constraints to distinguish forged 

regions from genuine ones, constructing horizontal and vertical triplet sets with adja-

cent vectors to enhance universal feature extraction. Additionally, Luo et al. [17] pro-

posed a detection method based on latent reconstruction errors for diffusion-generated 

images, incorporating feature refinement techniques to significantly improve generali-

zation performance.  

3 Background and Preliminaries 

In this section, we provide an overview of the key concepts and methodologies 

that underpin our proposed framework, including the CLIP model, adapter-based fine-

tuning, and domain adaptation techniques. 

Contrastive Language–Image Pre-Training (CLIP). The CLIP model [12] rep-

resents a significant milestone in multimodal learning, demonstrating the ability to align 

visual and textual representations through contrastive learning. Trained on a large-scale 



dataset of 400 million image-text pairs, CLIP learns a shared embedding space where 

semantically similar images and text are closely aligned. Its architecture consists of two 

main components: a Vision Transformer (ViT) for image encoding and a transformer-

based text encoder for natural language processing. By leveraging this shared embed-

ding space, CLIP achieves state-of-the-art performance on a wide range of zero-shot 

and few-shot tasks, making it an ideal candidate for transfer learning in domain-specific 

applications.  

The ViT within CLIP processes images by dividing them into non-overlapping 

patches, which are linearly projected into a fixed-dimensional embedding space. These 

patch embeddings are then passed through multiple transformer layers, where self-at-

tention mechanisms capture long-range dependencies and contextual information. The 

pre-trained ViT weights encode rich visual features that are highly transferable, ena-

bling robust performance on downstream tasks even with minimal fine-tuning. 

Fine tuning method based on adapters. Adapter modules [18], a lightweight and 

modular approach to fine-tuning large models, have become an efficient alternative to 

full model adaptation. Instead of updating all parameters of a pre-trained model, adapt-

ers introduce small task-specific layers that are inserted between the existing trans-

former layers. These layers learn task-specific mappings while the original pre-trained 

weights remain frozen, preserving the model’s generalization capabilities. The modular 

nature of adapters allows for efficient parameter sharing across tasks, making them par-

ticularly well-suited for scenarios involving multiple domains or data distributions. In 

the context of deepfake detection, adapter-based methods offer several advantages. By 

isolating task-specific adaptations within dedicated modules, they mitigate the risk of 

negative transfer, where conflicting domain-specific features degrade overall perfor-

mance. 

Domain adaptation for deepfake detection. Domain adaptation techniques aim 

to bridge the gap between training and testing distributions, a critical challenge in deep-

fake detection due to the diversity of forgery techniques and real-world data. Existing 

methods often rely on data augmentation [19], feature alignment [20], or reconstruc-

tion-based approaches [21] to enhance generalization. However, these methods typi-

cally assume a fixed domain structure and struggle with unseen or hybrid forgeries that 

combine characteristics from multiple generative models.  

Our proposed framework builds on these foundations by introducing a dynamic 

domain adaptation mechanism through the MoA architecture. By dynamically routing 

inputs through domain-specific adapters, the model effectively captures both shared 

and domain-specific features, enabling robust performance across a wide range of for-

gery techniques. 

4 Methodology 

4.1 Motivation 

Deepfake detection poses unique challenges due to the subtle and diverse artifacts 

introduced by different generative models, as well as the rapid evolution of these mod-

els. Large pre-trained vision-language models like CLIP offer strong generalization 
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capabilities on many vision tasks, but their direct application to deepfake detection is 

limited, as they are not optimized to capture the fine-grained discrepancies that distin-

guish real from generated content. The domain gap between real and deepfake images 

is often characterized by subtle differences in texture, lighting, and semantic con-

sistency, making it difficult for pre-trained models to adapt effectively. Furthermore, 

fully fine-tuning these models is computationally expensive and poses a risk of overfit-

ting, particularly in scenarios with limited annotated data. To this end, we propose a 

framework that enhances CLIP for deepfake detection by introducing a Mixture of 

Adapters. As shown in Fig. 1, our method incorporates lightweight adapters designed 

to capture domain-specific deep-fake features, and learns shared deepfake features to 

improve the model's generalization ability. Our method is designed to bridge the do-

main gap and adapt to the diverse characteristics of multiple-domain deepfake, ensuring 

generalizable detection performance. 

  

Fig. 1. We propose a CLIP image encoder with Mixture of Adapters (MoA) for multi-domain 

deepfake detection, where domain-specific adapters extract features and a router coordinates 

their collaboration. 

4.2 Overview 

The proposed method extends the pre-trained CLIP model by integrating several 

key components: Vision Transformer with MoA, attention alignment, cached domain 

regularization, and similarity regularization. Let the dataset consist of multiple deep-

fake domains , 1,..,
i

D i N= , where each domain , ,
{ , }, 1,...,

i i j i j i
D x y j n= = contains

i
n

samples, with input images ,

H W C

i j
x   and corresponding labels ,

{0,1}
i j

y  . Note 

that the datasets include the real domain. During training, input deepfake images from 

multiple domains are divided into patches and passed through a linear projection layer, 

followed by a ViT backbone enhanced with the MoA. Domain-specific deepfake im-

ages are processed by separate adapters, enabling the model to dynamically adapt to 

different domains while preserving a shared model structure. Additionally, images from 

all domains are processed by a shared adapter, denoted as Adapter 0.  



The training process alternates between two iterative steps as shown in Fig. 2. In 

the first step, domain-specific adapters are trained to promote domain-invariant atten-

tion patterns and regularize the feature space and encourage domain-invariant and dis-

criminative representations. In the second step, the parameters of the adapters are fro-

zen, and a router composed of an MLP and softmax is trained to dynamically route 

inputs to the most suitable adapters, improving the model's ability to process multi-

domain inputs. 

The framework finally produces real/fake predictions by the MLP head for each 

input image, and the training process optimizes a combined loss function that integrates 

classification objectives and other regularizations, ensuring robust feature learning and 

generalization across all domains. 

4.3 Vision Transformer with Mixture of Adapters 

The ViT in CLIP image encoder serves as the backbone for image feature extrac-

tion. An input image H W Cx    is divided into M  patches, with each patch of size 

P P C  . These patches are flattened and linearly projected into a d -dimensional 

embedding space, followed by the addition of positional embeddings. Formally, the 

patch embeddings are computed as: 

 
0 1 2

[ ; ; ; ]
M

h x x x=  +E E E P  (1) 

Where 
P P C

i
x    represents the i -th image patch, 

2( )P C dE  is the learnable pro-

jection matrix, and M dP  denotes the positional embeddings. These embeddings 

are then processed by a stack of L  transformer layers, where each layer comprises a 

Multi-Head Self-Attention (MHSA) module and two Feed-Forward Network (FFN): 

 
1

TransformerBlock( ), 0, , 1
l l

h h l L
+
= =  −  (2) 

To adapt CLIP to domain-specific deepfake detection, each transformer block is 

augmented with MoA. MoA integrates multiple lightweight domain-specific adapters 

into the model, where each adapter is exclusively responsible for processing deepfake 

images from a specific domain. For a given input hidden state 
in

h , the MoA module 

processes the features using the adapter corresponding to the input's domain, and the 

adapter's output is combined with the original FFN output as follows: 

 
out FFN in

Adapter ( )
k

h h h= +  (3) 

where 
FFN

h  is the output of the original feed-forward network, and Adapter
k

 corre-

sponds to the k -th domain-specific adapter. Each adapter is a lightweight feed-forward 

layer designed to process domain-specific features and is defined as: 

 in in in out
Adapter ( ) k k

k
h h= W W  (4) 

where in
ad dk 

W  and out
ad dk 

W  are the learnable weights of the k -th adapter, 
a

d  

is the hidden dimension of the adapter. The adapters allow the model to handle the 
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unique characteristics of each deepfake domain while maintaining a shared transformer 

backbone.  

 

Fig. 2. The two-step training process of the proposed method. 

The training process alternates between two iterative steps to ensure effective 

learning from multiple domains: 

Step 1: Adapter Training. In this step, the domain-specific adapters are trained 

while the rest of the model is frozen. Note that the common adapter takes inputs of all 

domains. The model learns to capture domain-specific features while preserving gen-

eralization across domains. 

Step 2: Router Training. After the domain-specific adapters are trained, their 

parameters are frozen, and the router is optimized to dynamically route input images to 

the most suitable adapters. The router consists of a lightweight multi-layer perceptron 

(MLP) followed by a softmax layer, which computes routing weights 
k

  for each 

adapter based on the input's hidden state 
in

h . These weights determine the contribution 

of each adapter to the final output. Specifically, the router computes: 

 
in

softmax(Router( ))h =  (5) 

where 1 2
[ , , , ]

N
   =  •

. The final output of the MoA module is computed as a 

weighted sum of the adapter outputs: 

 out FFN in in

1

Adapter( ) Adapter ( )
N

k k

k

h h h h
=

= + +   (6) 

The router enables the model to dynamically aggregate domain-specific features 

from multiple adapters, improving its ability to handle multi-domain inputs efficiently. 



4.4 Optimization Objectives 

The proposed method employs a unified loss function to ensure accurate classifi-

cation, domain-invariant representation, and robust cross-domain generalization. The 

total loss consists of four components: classification, attention alignment, cached do-

main regularization, and similarity regularization. These components work together to 

align attention patterns, maintain compact feature spaces, and encourage consistent em-

beddings across domains. 

Classification Loss. To ensure accurate real/fake classification, we employ a 

standard cross-entropy loss. Let ŷ  denote the true label (real or fake) and ( | )p y x  de-

note the predicted probability for input x . The classification loss is defined as: 

 
cls

1
ˆ log ( | )

| |
x D

L y p y x
D



= −   (7) 

where D  represents inputs. This loss serves as the foundation for distinguishing real 

and fake images. 

Attention Alignment Loss. To encourage consistent feature extraction across do-

mains, we introduce the attention alignment, which aligns the attention maps generated 

by the model for different domains. Let map

i M MA   denote the attention map for do-

main i , where M  is the number of patches. The loss is formulated as: 

 
2

att map map

,

|| ||i j

F

i j

L A A= −  (8) 

where 2|| ||
F

  denotes the Frobenius norm, and ,i j  iterate over all domain pairs. By min-

imizing 
att

L , the model learns to focus on similar regions of the image across domains, 

promoting domain-invariant attention patterns and improving cross-domain generali-

zation. 

Cached Domain Regularization Loss. To enhance domain invariance, we pro-

pose cached domain regularization, which maintains a prototype 
i

  for each domain i  

and regularizes the feature space to encourage compact and domain-aligned represen-

tations. The prototype is updated using an exponential moving average (EMA): 

 
( ) ( 1) 1

(1 ) ( )
| |

i

t t

i i

i x D

f x
D

   −



= − +    (9) 

where 
( )t

i
  is the prototype for domain i  at iteration t , 

i
D  is the set of samples in do-

main i , ( )f x  represents the model’s embedding for input x , and   is the EMA up-

date rate. The regularization loss is then defined as: 

 
2

cac 2
|| ( ) ||

i

i

L f x = −  (10) 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

where 
i

  corresponds to the prototype of the domain for input x . This loss encourages 

embeddings to cluster around their respective domain prototypes, reducing domain-

specific variability in the feature space. 

Similarity Regularization Loss. To further enhance consistency across domains, 

we introduce a similarity regularization that encourages embeddings from different do-

mains to be similar. For two inputs 
i

x  and j
x  from different domains, their embed-

dings ( )
i

f x  and ( )
j

f x  are aligned through: 

 
2

sim 2

( , )

1
|| ( ) ( ) ||

| |
i j

i j

x x P

L f x f x
P



= −  (11) 

where P  is the set of all domain-pair combinations. By minimizing 
sim

L , the model 

learns to produce consistent embeddings across domains, improving robustness against 

domain shifts. 

The final loss function combines all components: 

 
1 cls 2 att 3 cac 4 sim

L L L L L   = + + +  (12) 

where 
1 2 3 4
, , ,     are hyperparameters that control the contribution of each loss 

term. This joint objective ensures accurate classification, domain-invariant attention, 

compact feature spaces, and consistent embeddings, enabling robust multi-domain 

deepfake detection. 

5 Experiments 

5.1 Datasets and Implementation Details 

We use FaceForensics++ (FF++) dataset [22] that consists of four subsets: Deep-

Fake (DF), Face2Face (F2F), FaceSwap(FS), and NeuralTextures (NT), and four other 

datasets: CelebDF (CDF-v1, CDF-v2) [23], Deepfake Detection Challenge (DFDC) 

[24], DFD [25], and DiFF [26] to evaluate our proposed method. 

We employ the CLIP pre-trained ViT as the backbone for feature extraction. The 

backbone is initialized with publicly available pre-trained weights and remain frozen 

during training to preserve generalization capabilities. Task-specific modules, includ-

ing the MoA and the classification head, are updated during training. The MoA modules 

have a hidden dimension of 256 and use the Gaussian Error Linear Unit (GELU) as the 

activation function. We optimize the trainable components using the AdamW optimizer 

with a learning rate of 45 10− , weight decay of 0.01. A cosine annealing learning rate 

scheduler with 500 warmup steps and a minimum learning rate of 61 10−  is applied for 

smooth convergence. Gradient clipping with a maximum norm of 1.0 is used to stabilize 

training. The training process employs a batch size of 64 for 50 epochs.  

The final loss function combines cross-entropy classification loss (
cls

L , 
1

1.0 = ), 

attention alignment loss (
att

L , 
2

1.0 = ), cached domain regularization loss (
cac

L , 



3
0.5 = ), and similarity regularization loss (

sim
L , 

4
0.1 = ). The performance of our 

method is evaluated using Area Under the Receiver Operating Characteristic Curve 

(AUC). AUC measures the model's ability to distinguish between real and fake inputs 

independently of the decision threshold by TPR  (True Positive Rate) and FPR  (False 

Positive Rate). A higher AUC indicates better discrimination performance.  

5.2 Comparative experiments 

In the cross-dataset deepfake detection experiments, as shown in Table 1, our 

method demonstrates superior performance across multiple datasets, significantly out-

performing existing methods, including LSDA, SPSL, and FFD. Specifically, our 

model achieves AUC scores of 0.906, 0.875, 0.783, 0.872, and 0.908 on Celeb-DF v1, 

Celeb-DF v2, DFDC, DFDC-P, and DFD, respectively. These results surpass the pre-

vious best-performing method, LSDA, which achieved AUC scores of 0.867, 0.830, 

0.736, 0.815, and 0.880 on the same datasets. This highlights the strong generalization 

ability of our method, particularly on high-quality deepfake datasets such as Celeb-DF 

v2 and diverse datasets like DFDC. 

Table 1. Performance of cross-domain detection. All methods are trained on FF++ (all 4 

subsets) and evaluated on other datasets (AUC). 

Method CDFv1 CDFv2 DFDC DFDCP DFD Avg 

CLIP[12] 0.711 0.727 0.728 0.726 0.824 0.744 

F3Net[27] 0.777 0.735 0.702 0.735 0.798 0.749 

X-ray[28] 0.709 0.679 0.633 0.694 0.766 0.696 

FFD[29] 0.784 0.744 0.703 0.743 0.802 0.755 

SPSL[30] 0.815 0.765 0.704 0.741 0.812 0.767 

SRM[31] 0.793 0.755 0.700 0.741 0.812 0.760 

Recce[32] 0.768 0.732 0.713 0.734 0.812 0.752 

UCF[33] 0.779 0.753 0.719 0.759 0.807 0.763 

LSDA[34] 0.867 0.830 0.736 0.815 0.880 0.826 

Ours 0.906 0.875 0.783 0.872 0.908 0.868 

Our method achieves an average AUC of 0.868 across all datasets, representing a 

4.2% improvement over LSDA (0.826). Other methods, such as SPSL and FFD, exhibit 

average AUC of 0.767 and 0.755, respectively, showing a notable gap compared to our 

method. This significant performance gain can be attributed to our model's architecture, 

which effectively combines pre-trained features with task-specific modules and lever-

ages multiple regularization techniques, to enhance generalization. Moreover, our 

model achieves an AUC of 0.908 on DFD, demonstrating its robustness in detecting 

high-resolution manipulated videos. 

Table 2 presents the cross-dataset evaluation results on the DiFF dataset, which 

includes four categories: DiFF-T2I, DiFF-I2I, DiFF-FS, and DiFF-FE, evaluated using 

AUC (%). Our method consistently surpasses the baselines (CLIP and Xception) in 

both in-domain and cross-domain testing scenarios, demonstrating superior generaliza-

tion. For instance, when trained on DiFF-T2I, our method achieves an average AUC of 

0.855, surpassing Xception (0.828) and CLIP (0.755). Similarly, training on DiFF-I2I 

results in an AUC of 0.845, outperforming Xception (0.789) and CLIP (0.741). Our 
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model also exhibits strong cross-category generalization. For example, when trained on 

DiFF-T2I, it achieves an AUC of 0.897 on DiFF-I2I and 0.773 on DiFF-FS. In cate-

gory-specific evaluations, our method achieves stronger performance, such as an AUC 

of 0.977 on DiFF-FE (compared to 0.933 for Xception and 0.915 for CLIP). These 

results highlight the model's ability to generalize across diverse forgery types while 

avoiding overfitting. Overall, our method achieves the best average AUC across all 

training scenarios, demonstrating its generalization. Fig. 3 shows the t-Distributed Sto-

chastic Neighbor Embedding (t-SNE) graphs on different datasets. Although only 

trained on the FF++ dataset, our model is still able to distinguish between real and var-

ious forged datasets, demonstrating its strong generalization ability. 

Table 2. Performance of cross-domain detection on DiFF (AUC) 

Method Train Set 
Test Set 

Avg 
DiFF-T2I DiFF-I2I DiFF-FS DiFF-FE 

CLIP[1] 

DiFF-T2I 

0.928 0.769 0.637 0.687 0.755 

Xception[35] 0.963 0.863 0.744 0.722 0.828 

Ours 0.976 0.897 0.773 0.753 0.855 

CLIP[1] 

DiFF-I2I 

0.726 0.902 0.612 0.722 0.741 

Xception[35] 0.769 0.912 0.727 0.750 0.789 

Ours 0.814 0.968 0.786 0.792 0.845 

CLIP[1] 

DiFF-FS 

0.577 0.726 0.902 0.594 0.690 

Xception[35] 0.605 0.771 0.929 0.585 0.722 

Ours 0.768 0.844 0.941 0.669 0.800 

CLIP[1] 

DiFF-FE 

0.570 0.599 0.680 0.915 0.691 

Xception[35] 0.582 0.595 0.729 0.933 0.715 

Ours 0.765 0.691 0.738 0.977 0.798 

 

Fig. 3 t-SNE visualization on different datasets. 



5.3 Ablation Studies 

The effect of Losses. Table 3 highlights the contributions of similarity regulari-

zation (
sim

L ), attention alignment (
att

L ), and cached domain regularization (
cac

L ). 

Without 
sim

L , the AUC on DFDC drops from 0.783 to 0.763, showing that 
sim

L  en-

hances cross-domain feature consistency. Removing 
att

L  reduces the AUC on DFD 

from 0.908 to 0.876, demonstrating its role in aligning attention maps for stable feature 

extraction. 
cac

L  has the most significant impact, as the DFDC AUC decreases from 

0.783 to 0.738 without it, indicating its importance in combating domain shifts by en-

forcing domain-invariant representations. When all three losses are combined, the 

model achieves the best results across datasets (CDF-v2: 0.875, DFDC: 0.783, DFD: 

0.908), proving their complementary effects in improving robustness and generaliza-

tion.  
These results demonstrate that each loss addresses a specific challenge: 

sim
L  en-

hances similarity across domains, 
att

L  ensures consistent attention mechanisms, and 

cac
L  mitigates domain shifts. These losses form a robust regularization framework that 

achieves superior performance in cross-domain deepfake detection.  

Table 3. Ablation studies on the effect of three losses. 

Lsim Latt Lcac CDF-v2 DFDC DFD 

× √ √ 0.866 0.763 0.879 

√ × √ 0.854 0.761 0.876 

√ √ × 0.870 0.738 0.861 

√ √ √ 0.875 0.783 0.908 

The effect of Different Backbones. Table 4 evaluates the impact of different 

CLIP ViT backbones. ViT-B/16 achieves the best average AUC (0.855), with strong 

performance on CDF-v2 (0.875) and DFD (0.908). Its smaller patch size allows it to 

capture fine-grained details critical for distinguishing real and fake images, while its 

moderate capacity avoids overfitting. ViT-L/14 achieves the highest DFD AUC (0.915) 

but underperforms on DFDC (0.779), likely due to overfitting caused by its larger ca-

pacity. ViT-B/32 performs the worst (average AUC: 0.820), as its larger patch size re-

duces its ability to capture subtle local forgery artifacts.  

Table 4. The effect of using various backbones. 

BackBone CDF-V2 DFDC DFD Avg 

CLIP ViT-B/32 0.849 0.750 0.862 0.820 

CLIP ViT-B/16 0.875 0.783 0.908 0.855 

CLIP ViT-B/14 0.862 0.779 0.915 0.852 

The results suggest that ViT-B/16 achieves the optimal balance between feature 

resolution and generalization. Its ability to capture high-resolution details while 
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maintaining computational efficiency makes it well-suited for cross-domain tasks 

where both subtle artifacts and diverse forgery types must be detected effectively. 

The effect of Adapter Structures. Table 5 investigates the effect of varying the 

hidden dimension of the Mixture-of-Adapters (MoA) modules. The 128-dimension 

adapter achieves the best performance, with an average AUC of 0.860 and the highest 

scores on CDF-v2 (0.875) and DFD (0.908). This configuration balances expressive-

ness and computational efficiency, enabling the model to effectively capture domain-

specific features. The smaller 64-dimension adapter underperforms (average AUC: 

0.853), as its limited capacity restricts the model’s ability to represent complex forgery 

patterns. Conversely, the 256-dimension adapter achieves the lowest average AUC 

(0.827), with substantial overfitting evident on DFDC (AUC: 0.740).  

Table 5. The effect of using various adapter structures. 

Adapter CDF-v2 DFDC DFDCP DFD Avg 

64 0.869 0.771 0.876 0.897 0.853 

128 0.875 0.783 0.872 0.908 0.860 

256 0.863 0.740 0.851 0.855 0.827 

These findings emphasize that a carefully tuned adapter size is critical. The 128-

dimension configuration provides sufficient capacity to capture diverse forgery types 

without introducing redundancy or overfitting, making it the most effective design 

choice for cross-domain deepfake detection. 

The effect of Number of adapters. Table 6 evaluates the impact of varying the 

number of adapters (N) in the MoA framework on the model's performance across 

FF++, CDF-v2, and DFD. As the number of adapters increases, the model's ability to 

capture diverse domain-specific features improves, leading to better generalization per-

formance. With N=2 (DeepFake + FaceSwap), the model achieves an average AUC of 

0.835. Although it performs well on FF++ (0.899), its generalization to cross-domain 

datasets such as CDF-v2 (0.824) and DFD (0.783) is limited due to insufficient domain 

coverage. Increasing to N=3 (DeepFake + FaceSwap + NeuralTextures) results in a 

significant improvement, raising the average AUC to 0.859. This indicates that the in-

clusion of a third adapter helps the model better adapt to more complex forgery types. 

Finally, with N=4, where adapters cover all FF++ subsets, the model achieves the best 

performance with an average AUC of 0.926, excelling on FF++ (0.995), CDF-v2 

(0.875), and DFD (0.908). 

Table 6. Ablation studies on the effect of the number of adapters. 

N Train set Method FF++ CDF-v2 DFD Avg 

2 DF+FS 
CLIP 0.899 0.824 0.783 0.835 

Ours 0.907 0.828 0.805 0.847 

3 DF+FS+NT 
CLIP 0.960 0.821 0.796 0.859 

Ours 0.974 0.843 0.821 0.879 

4 FF++(all) 
CLIP 0.982 0.727 0.824 0.844 

Ours 0.995 0.875 0.908 0.926 



These results demonstrate that increasing the number of adapters allows the model 

to handle a broader diversity of forgery techniques, improving its ability to extract do-

main-specific features while maintaining robust generalization across unseen datasets. 

However, this improvement plateaus once the adapters fully cover the training data, as 

observed with N=4. Fig. 4 presents the heatmaps of our model on the DiFF dataset, 

demonstrating its ability to distinguish between forged facial regions and background. 

DiFF-T2I DiFF-I2I DiFF-FS DiFF-FE 

    

    

Fig. 4. Heatmaps on the DiFF dataset. 

6 Conclusion 

In this work, we propose a novel framework that bridges the gap between domain-

specific adaptation and cross-domain generalization by enhancing the pre-trained CLIP 

model with a dynamic MoA architecture. The lightweight adapter modules enable the 

model to dynamically adapt to diverse forgery techniques while preserving CLIP’s in-

herent generalization capabilities. Extensive evaluations demonstrate that the proposed 

framework outperforms recent research across multiple datasets, excelling in both in-

domain and cross-domain scenarios. Notably, the modular design of MoA achieves this 

performance with minimal computational overhead, making the approach scalable and 

practical for real-world applications. Our work provides a significant step forward in 

digital media forensics and establishes a foundation for future research into robust and 

generalizable detection frameworks. Our future work will focus on extending the 

framework to other generative modalities, such as audio and text, while further enhanc-

ing computational efficiency to enable deployment in resource-constrained environ-

ments. 
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