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Abstract. While vision-language models (VLMs) like CLIP demonstrate strong
zero-shot classification capabilities, their robustness to group shifts remains a
critical challenge, as classification accuracy degrades significantly for minority
groups. Existing methods to improve group robustness often require costly full-
model retraining or rely on single-scale feature representations, which may inad-
equately capture diverse group characteristics. We propose the Multi-Scale Con-
trastive Adapter (MSCA) and related modules, a novel framework designed to
improve group robustness in VLMs with less computational cost. MSCA em-
ploys a multi-scale feature representation strategy, leveraging contrastive learn-
ing across multiple dimensions to alleviate the group shift of the model on the
dataset in multiple different dimensional spaces. A feature voting mechanism is
introduced to dynamically select the most relevant feature dimensions during in-
ference, further improving group robustness. Experiments across benchmarks
(Waterbirds, CelebA, CIFAR-10.02) show that MSCA significantly improves the
worst-group accuracy to 86.1% and reduces GAP from 55.2% to 4.1%, outper-
forming recent advanced methods like FairerCLIP. Our findings highlight that
MSCA offers a practical pathway toward more robust vision-language models.

Keywords: Group Robustness, Vision-Language Models, Multi-Scale

1 Introduction

With the development of Vision-Language Models (VLMs) such as CLIP on large-
scale image-text datasets [1, 2, 3, 4, 5], these models have demonstrated the ability to
learn highly correlated representations between image-text pairs, exhibiting powerful
zero-shot classification capabilities [1, 6]. CLIP learns from massive multimodal data
to establish a close correspondence between image content and text description, allow-
ing it to recognize and classify previously unseen categories or concepts without task-
specific training [1].

However, a question worthy exploration is: Does zero-shot inference maintain group
robustness—i.e. performing well on all groups—when confronted with group shift?
Group shifts occur when different groups within the same classification task form

* Corresponding author



distinctly different distribution patterns in the model's feature space, causing the model
to perform significantly worse on certain groups [7, 8, 9, 10, 11]. For example, in the
Waterbirds dataset [12], images of the "waterbird" category may appear against either
"water" or "land" backgrounds, and models tend to use the background as a basis for
classification, resulting in substantially decreased classification accuracy for samples
appearing in "atypical" backgrounds (such as waterbirds against land backgrounds).
Additionally, in the CelebA dataset [13], the group of blond-haired men may be mis-
classified more frequently due to the model's reliance on gender or hair color. In such
cases, "waterbird" or "landbird" and "blond hair" or "not blonde hair" are the class la-
bels for classification in the Waterbirds and CelebA datasets, respectively. "land back-
ground" or "water background" and "male" or "female" are the group labels in the Wa-
terbirds and CelebA datasets, respectively. Despite models demonstrating excellent
overall classification accuracy, their prediction accuracy may dramatically decrease
when identifying the same object under specific backgrounds or conditions, forming a
significant accuracy gap. This disparity in accuracy and the low classification accuracy
of the worst-performing group directly reflect poor group robustness in models.

The model's average classification accuracy on evaluation datasets often masks its
severe failures on specific challenging groups, forming significant classification accu-
racy gaps. Zhang and Ré confirmed this phenomenon on CLIP, finding through exper-
iments that CLIP's zero-shot classification across multiple standard benchmarks
showed up to 80.7% lower accuracy in the worst-performing groups compared to aver-
age accuracy [14], and classification accuracy is as low as 6.0% in some groups. These
findings reflect group robustness weakness in some VLM models. Most existing VLM
zero-shot classification evaluations primarily focus on overall or average accuracy met-
rics but neglect to examine these models' accuracy variations across diverse groups.
This evaluation limitation prevents a comprehensive understanding of these VLMs' true
capabilities. Therefore, improving VLMs' group robustness under diverse data distri-
butions, ensuring they maintain reliable accuracy rates across all relevant groups, has
become a key challenge in current studies [15].

Methods dedicated to improving model group robustness typically fall into two cat-
egories: one assumes the availability of group labels during training, balancing training
proportions across different groups through techniques such as sample balancing [16,
17, 18], importance weighting [19, 20], or robust optimization [21, 22]; some other
methods do not rely on training group labels, but adopt a two-stage strategy: first, they
train an initial model using Empirical Risk Minimization (ERM) [23, 24], then they use
this model's predictions to infer group labels, and finally train a second robust model
through sample balancing, importance weighting, or representation learning. Although
these methods have achieved significant effectiveness in improving group robustness,
they generally require training one or more complete models, which is computationally
costly and less practical for large-scale VLMs.

In contrast, the Contrastive Adapter method leverages contrastive learning ideas
[14], using a lightweight adapter to process embeddings output by CLIP's image en-
coder, resulting in a model that not only maintains high group robustness but also
greatly reduces computational cost. Since only the adapter needs to be trained instead
of the entire CLIP model, this method requires training only about 1% of the VLM's
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parameters but can improve worst-group accuracy by 8.5% to 56.0% across multiple
benchmarks. However, the Contrastive Adapter still relies on a hidden assumption: the
feature dimensions of embeddings output by the VLM's image encoder are always ef-
fective representations to do downstream tasks for different groups across different da-
tasets, enabling the worst-performing groups in original zero-shot prediction to show
significant improvement in CLIP with the Contrastive Adapter. But this assumption
may not hold in practical applications because the key distinguishing features of differ-
ent groups may be distributed across feature spaces of different dimensions. Therefore,
it is necessary to combine feature representations of different granularities in the net-
work structure.

To verify this conjecture, we designed a simple experiment, observing model worst-
group accuracy by varying the hidden layer dimensions of the Contrastive Adapter.
Experiment shows that when the hidden layer dimensions change, the worst-group ac-
curacy of the model exhibits significant fluctuations. This fluctuation phenomenon in-
dicates that the selection of feature space dimensionality indeed has an important im-
pact on the model's group robustness, and there is no single optimal dimension that can
simultaneously satisfy the representational needs of all groups.

This finding led us to consider that different groups may behave differently depend-
ing on the feature dimensions. Based on this, can we design a mechanism that simulta-
neously exploits representations of multiple granularities, contrastively learns in sub-
spaces of different dimensions, and finally provides the most appropriate feature repre-
sentation for the downstream tasks of VLM? Based on this reasoning, we propose the
Multi-Scale Contrastive Adapter (MSCA).

The Multi-Scale Contrastive Adapter (MSCA) approach begins by extracting the
original embedding vectors from the Vision-Language Model (VLM) image encoder.
These embeddings are then processed using a matryoshka embedding strategy [25],
which generates nested multi-scale representations. Through contrastive learning in
these multi-dimensional spaces, the model ouuputs multiple new embeddings, allowing
features at various scales to be compared within their respective feature spaces. The
following up-projection layer ensures that each low-dimensional feature is mapped
back to the original input dimension. This restoration allows all processed features to
engage in similarity calculations within the same space as the original class query vec-
tors. During training, the model assigns weights to the logits from embeddings of dif-
ferent dimensions and queries, with these weights being learned by a feature voter.
During inference, the feature voter assesses the importance of features at each dimen-
sion and selects the embedding that will be used for the final dot product with the query,
thus generating logits for classification. Our method constitutes a complete framework
that both brings same-class samples closer together and adapts to group-specific repre-
sentations, thereby significantly enhancing the group robustness of VLMs.

In this work, we introduce several key contributions aimed at improving the effi-
ciency and group robustness of the CLIP model through a novel framework design.

Contribution 1: To the best of our knowledge, we first applied Matryoshka embed-
ding within the CLIP adapter as a more efficient and more suitable dimensionality re-
duction method for MSCA.



Contribution 2: Our Multi-Scale Contrastive Adapter pulls the positive anchor sam-
ples closer and pulls the anchor samples and hard negative samples farther away in
multiple dimensional spaces instead of only one original dimensional space. This can
alleviate the group shift and improve group robustness of the model on the dataset in
multiple dimensional spaces. Crucially, MSCA achieves these improvements without
requiring full model retraining or additional group labels, making it a computationally
efficient and scalable solution for addressing group shifts.

Contribution 3: Our up-projection layer restores all embeddings output by MSCA
to the original dimension, and then uses feature voters to obtain the most appropriate
feature representation for samples from different groups, further improving group ro-
bustness.

2 Related Work

Traditional Group Robustness Methods via Full Model Training: Traditional
Group Robustness Methods via Full Model Training: Various studies have focused on
enhancing group robustness. When group annotations are available during training, ex-
isting techniques frequently employ strategies such as group distribution balancing [16,
17, 18], weighted importance sampling [19, 20], or optimization for robustness [21,
22]. Under such conditions, a typical methodology includes approaches like ERM Lin-
ear Probe [26] - a linear classifier trained on frozen foundation model embeddings using
Empirical Risk Minimization, and ERM Adapter [27]- small bottleneck MLPs trained
with ERM that transform foundation model embeddings to improve downstream task
accuracy metrics. Other methods include DFR variants that balance group distributions
through subsampling instances before training a classifier on frozen features [28], or
upsampling minority group samples [28]. Despite their effectiveness in improving
group robustness, these approaches necessitate the training of at least one complete
model, and often multiple models. This requirement renders them computationally pro-
hibitive when applied to large-scale foundation models.

Enhancing group robustness in the CLIP: Many works aim to improve group robust-
ness and debias in the CLIP. Debiasing refers to the process of mitigating unwanted
correlations and prejudices in model representations and outputs that can lead to unfair
or biased predictions across different demographic groups. Zhang & Ré employed a
contrastive adapter training strategy to enhance group robustness in foundation models
[14]. Berg et al. proposed a method that reduces bias in vision-language models by
using adversarial debiasing with contrastive loss [29]. Seth et al. introduced DeAR,
which uses additive residuals to offset image representations and ensure fairer outputs
in vision-language models [30]. Chuang et al. proposed a method to debias vision-lan-
guage models by projecting out biased directions in text embeddings [31]. Chen et al.
found that adapter-based methods outperform full fine-tuning in vision-language model
robustness [32]. Dehdashtian et al. FairerCLIP debiases CLIP's zero-shot predictions
using functions in RKHSs, enhancing fairness and robustness [33]. These methods may
lead to a large increase in computational overhead and poor adaptability to specific
data.
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Fig. 1. The overall architecture of our approach.

3 Method

The core idea of MSCA is that different groups in the same dataset may be better rep-
resented under different feature dimensions, thus, multiple dimensional feature repre-
sentations should be utilized simultaneously. Unlike simply selecting a single optimal
dimension, MSCA—small bottleneck MLPs—conducts contrastive learning across
multiple selected dimensional spaces: bringing the embeddings of anchor samples
closer to same-class positive samples while pushing away distances from negative sam-
ples across various dimensions, and choosing the best dimension after learning the op-
timal combination of these multi-scale representations. This nested multi-scale feature
learning strategy not only avoids the uncertainty of dimension selection but also simul-
taneously captures global consistency features and group-specific features, fundamen-
tally enhancing the model's capability to address group shifts and thereby improving
group robustness.

We acquire the original embedding vectors from the VLM's image encoder and con-
struct nested multi-scale representations with the matryoshka embedding strategy. Each
embedding undergoes adapter, contrastive learning in the selected multi-dimensional
space, producing n new embeddings, thus ensuring that features at different scales can
be compared in their feature space. To ensure that all features processed at different
dimensions can interact and be compared in a unified semantic space, we introduce an
up-projection layer. Specifically, for each low-dimensional feature (such as 512, 256,



128, and 64 dimensions), we apply a linear projection layer to map it back to the original
input dimension (such as 1024 dimensions). This dimension restoration mechanism en-
sures that all feature vectors processed through different scale MSCAs can perform
similarity calculations in the same space as the original class query vectors. During
training, the logits of different dimensions of embedding and query dot product will
have a weight, and this weight is trained by feature voter network training. During in-
ference, feature voter evaluates the importance of features at different dimensions and
selects embedding to dot product with query to get logits for classification. The overall
architecture of our approach is shown in Fig. 1.

3.1  Multi-Scale Embedding Construction

We use a pretrained Vision-Language Model (VLM) such as CLIP to extract embed-
dings for both the training samples and class descriptions. The process begins with ob-
taining image embeddings by passing the images through the model's image encoder.
For the class embeddings, we generate natural language prompts (e.g., "a picture of
[class name]") and pass them through the text encoder of the VLM. This ensures that
the zero-shot classification capability of the model is preserved.

We acquire the original embedding vectors from the VLM's image encoder and con-
struct nested multi-scale representations. Although PCA is a commonly used method
for dimensionality reduction, PCA's orthogonality properties may limit its reliability
for dimensionality reduction for vectors with highly non-linear relationships, especially
at high dimensionality [34]. Drawing inspiration from matryoshka embedding in our
classification task [25], we utilize different leading dimensions of the same embedding
to perform classification tasks with varying dimensional emphasis, achieving signifi-
cant efficiency improvements while maintaining dimensional characteristics through
the use of dimensionally decreasing nested embeddings. We can use only initial em-
bedding for downstream tasks. Specifically, as shown in Fig. 1, we employ a nested list
[di, da, ..., dn], where do > di > d2 > ... > d, (do is the original embedding dimension).
We first use the embeddings from the VLM's image encoder as input, then truncate
each to the leading d; dimensions, obtaining n different embeddings. Each embedding
passes through MSCA, undergoing contrastive learning across selected multiple dimen-
sional spaces, resulting in n new embeddings, thus ensuring that features of different
scales can be compared in their feature space.

3.2  Multi-Scale Contrastive Adapter

A crucial component of our method involves optimizing the model’s embeddings
through contrastive learning. We define three categories of samples for contrastive
learning:
e Anchor Samples: Misclassified samples during zero-shot classification.
e Positive Samples: Correctly classified samples from the same class as the an-
chor samples.
e Hard Negative Samples: Samples from different classes that are closest to
the anchor samples in the embedding space.
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The contrastive sampling process is shown in Fig. 2.

+ Anchor sample

- Positive sample

/\ Negative sample

Fig. 2. The contrastive sampling.

The reason for this choice is to simultaneously bring the same type of misclassified
samples closer to the correctly classified samples and push away the easily confused
samples of different categories, thereby enhancing the model's ability to distinguish
between groups. This contrastive learning strategy explicitly brings different groups
within the same class (particularly samples that are easily confused in zero-shot classi-
fication) closer in the feature space while maintaining discriminability between samples
of different classes, effectively addressing the group robustness issue.

To optimize sample representations simultaneously across multiple feature dimen-
sional spaces, we propose a multi-scale contrastive loss. This loss function inde-
pendently calculates contrastive loss at each dimension in the nested list, then uses hy-
perparameter weights to create a weighted combination of contrastive losses across all
dimensional spaces, which is backpropagated during adapter training to achieve multi-
scale collaborative optimization. That is to say, not only in the dimensional space of do,
but also in the dimensional space of di, d2, ..., dn, the anchor sample is getting closer to
the positive samples and farther away from the hard negative samples. As shown in Fig.
1, the original input embeddings of n different dimensions will get new embeddings of
n original dimensions after adapter. This multi-scale collaborative optimization ensures
that the model maintains good discrimination ability at different dimensional spaces. It
effectively solves the limitation that a single-dimensional representation is difficult to
adapt to all groups, and further enhances the model's ability to cope with group shifts.
To formalize the multi-scale contrastive loss. This loss function is specifically designed
for the MSCA to optimize the sample representations across multiple dimensional
spaces. We define the following objective function:

n _ "™ [di]
L= lTlp;,log exe (500 fop /) (1)

exp(fo (ul4N)T fo(pl4) /1) + Tinear exp(fo (Wl fo (mldid) /1)

where uldd | pldil mldd are respectively representing the anchor sample, positive
sample, and negative sample embeddings that are truncated to dimension d;. For each
class, we are identifying an "anchor" sample that is incorrectly predicted by zero-shot,
P "positive" samples that are correctly classified by zero-shot, and M hard "negative"
samples. 2; is representing the hyperparameter weight for the i-th sample. n is the num-
ber of feature dimensions that is being considered.



33 Feature Voter

As shown in Fig. 1. after the embeddings of different dimensions pass through MSCA,
all embeddings undergo a simple yet effective up-projection layer to restore them to the
original embedding dimensionality, while preserving the feature and semantic infor-
mation inherent to their original dimensions.

To dynamically balance the contributions of feature dimensions at different granu-
larities, we introduce a feature voting mechanism from ensemble learning—a light-
weight neural network that receives the original embedding vector and outputs a multi-
scale feature weight w; distribution. This voter independently calculates weight w;
for each embedding, which are used during the training phase to weight the classifica-
tion logits between embeddings of various granularities and the query, and are opti-
mized end-to-end through classification cross-entropy loss with respect to the labels.

We employ different strategies during training and inference phases: during training,
we use a batch-based weighted combination of logits from all scale features to compre-
hensively learn the weights of representations at each scale in the classification task.
During inference, we select the single-scale embedding with the highest weight in the
process of training to dot product with query and get logits for classification. This adap-
tive weight allocation mechanism enables the model to select the most appropriate fea-
ture representation for samples from different groups, thereby enhancing group robust-
ness.

The formula for calculating classification logits during training is:

logits = Z w;sim(z[i],query) 2)

i=1

where z[i] is the embeddings of various dimensions after passing through the up-
projection layer, sim(z[i],query) is the temperature-scaled cosine similarity between
embedding z[i] and class embedding query, w; is the weights trained by the feature
voter.

4 Experiments

4.1 Datasets

We conducted a series of classification task evaluations for MSCA across multiple da-
tasets. These include Waterbirds [12], which contains two classes of land birds and
waterbirds, exhibiting significant group imbalance where minority groups (such as wa-
terbirds on land) have extremely limited samples. We also used different configurations
of CelebA [13], which contains over 200,000 facial images of celebrities in the wild,
annotated with 40 binary attributes, where minority groups (such as "dark-haired fe-
males" and "blonde males") have notably fewer samples. Additionally, we utilized
CIFAR-10.02, which combines CIFAR-10 and CIFAR-10.2 datasets that are similar
but with slightly different visual styles [35], containing images across 10 categories,
including airplanes, cars, etc., demonstrating distribution shifts within the same class
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but from different data sources. So in CIFAR10.02, whether the sample is from
CIFAR10 or CIFAR10.02 is the group label.
4.2  Empirical Results

We report the results of MSCA and compare them with related baseline methods:
ERM Linear Probe (2022), ERM Adapter (2021), DFR (Subsample) (2022), DFR (Up-
sample) (2022), Contrastive Adapter (2022), FairerCLIP (2024).

Implementing Details. In this paper, the experiments of the baseline model are re-
produced with their default parameters. To optimize model worst group accuracy, we
configured the learning rate to le—3. The multi-scale list is set to [64,128,256,512].
The hyperparameter A; are set to 0.25, 0.2, 0.1, 0.2, 0.25, the batch_size is configured
at 128.

4.2.1 The Impact of Dimensionality on the Group Robustness of CA

To comprehensively understand the impact of feature dimension selection on group
robustness, we systematically evaluated the original Contrastive Adapter (CA) model's
worst-group accuracy across various hidden layer dimensions. We conducted three tests
on the Waterbirds dataset using different random seeds. When random seeds differ,
significant variations occur in the random sampling of anchor samples, positive sam-
ples, and negative samples. Additionally, the model may prioritize learning different
group feature patterns during representation learning, causing changes in sensitivity to
different dimensional representations. We experimented with four distinct hidden layer
dimension configurations: 512, 256, 128, and 64.

Table 1. Effects of different hidden layer dimensions on the robustness of CA

Waterbirds-1st Waterbirds-2nd Waterbirds-3rd
Method WG GAP WG GAP WG GAP
CA-512 82.9 7.2 84.6 5.7 834 7.4
CA-256 83.5 7.1 82.5 72 84.3 6.7
CA-128 84.1 6.3 84.2 6.2 82.5 7.9
CA-64 84.3 5.5 83.8 6.3 83.1 6.7

Table 1 demonstrates two phenomena: First, variations in hidden layer dimensions
indeed affect the model's group robustness. For instance, in the first experiment (wa-
terbirds-1st), as the hidden layer dimension decreases from 512 to 64, the worst-group
accuracy (WG) improves from 82.9% to 84.3%, while the GAP decreases from 7.2%
to 5.5%. Second, the optimal dimension setting differs across experimental runs, indi-
cating that no single "best" dimension consistently performs optimally across all sce-
narios. These observations support our hypothesis that different groups may require
feature representations of varying granularity, and adapters with a single dimension
may not simultaneously satisfy the representational needs of all groups. This finding
also provides empirical foundation for our proposed nested multi-scale feature learning
strategy, suggesting that combining features from multiple scales may more effectively
improve model group robustness than selecting a single "best" dimension.



4.2.2 Evaluation Metrics Comparison of MSCA and Baseline Methods

To assess the effectiveness of our MSCA in improving group robustness, we conducted
experiments on multiple group shift benchmark datasets, including Waterbirds,
CelebA, and CIFAR-10.02. As our method primarily focuses on effectively addressing
classification accuracy disparities across different groups, we compared it with various
existing group robustness methods. For comprehensive metrics evaluation, we em-
ployed two key metrics: 1) Worst Group Accuracy (WG), defined as the lowest accu-
racy among all groups, reflecting the model's performance on the most challenging
groups; and 2) Gap, the difference between average accuracy and worst group accuracy,
where a smaller gap indicates more balanced cross-group performance.

Table 2. The worst group accuracy (WG) and the GAP between the previous methods and
MLCA are compared on two different CLIP variants, CLIP ResNet-50 and CLIP ViT-L/14, on
the WaterBirds, CelebA and CIFAR10.02 datasets.

Waterbirds CelebA CIFAR-10.02
Method WG GAP WG GAP WG GAP
CLIP RN50
Zero-shot(ZS) 36.9 552 753 6.2 39.8 29.7
ERM Linear Probe 14.5 79.4 14.2 80.5 52.1 25.8
ERM Adapter 63.1 322 42.8 51.8 65.9 20.2
DFR(Subsample) 66.7 26.2 81.3 104 45.5 29.7
DFR(Upsample) 54.4 358 88.9 2.5 38.7 394
Contrastive Adapter 84.5 59 874 3.1 60.8 19.7
FairerCLIP 75.4 8.9 81.5 35 N/A N/A
MSCA(Ours) 86.1 4.1 87.5 35 67.6 16.8
CLIP ViT L/14

Zero-shot(ZS) 26.5 61.1 62.8 9.3 71.8 214
ERM Linear Probe 65.6 319 30.9 63.2 87.0 9.3
ERM Adapter 76.6 21.3 40.5 53.5 87.1 9.8
DFR(Subsample) 59.5 36.2 79.1 12.2 85.6 11.1
DFR(Upsample) 66.8 29.5 83.9 74 72.4 214
Contrastive Adapter 85.3 9.2 83.8 6.9 82.2 139
FairerCLIP 86.0 6.2 85.2 2.6 N/A N/A
MSCA(Ours) 87.1 6.0 83.5 6.7 87.4 9.0

Table 2 clearly demonstrates the significant advantages of our MSCA method in
terms of group robustness. Our method, MSCA, achieved first place in 8 categories and
second place in 2 categories. Compared to existing methods, MSCA brings substantial
improvements across all tested datasets. On CIFAR-10.02, our method shows the most
significant enhancement, increasing the worst-group accuracy to 87.4% with ViT-L/14
while reducing the GAP to 9.0%, the highest WG and lowest GAP among all methods.
On the WaterBirds dataset, the improvements are equally effective, with MSCA raising
the worst group accuracy from the zero-shot's 36.9% to 86.1% on CLIP RN50, while
significantly reducing the GAP from 55.2% to just 4.1%. For CelebA, our method
maintains competitive performance on worst-group accuracy comparable to the
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strongest baselines. These results demonstrate MSCA's group robustness across differ-
ent types of group shift scenarios.

4.2.3 Ablation Experiment of Multi-Scale Feature Combination list

Table 3. Impact of Different Multi-Scale Lists of MSCA on Group Robustness

Waterbirds CelebA CIFAR-10.02
Method WG GAP WG GAP WG GAP
CLIP RN50
Contrastive Adapter 84.5 59 87.7 3.1 60.8 19.7
[64,128,256,512] 86.1 4.1 87.5 2.5 67.6 16.8
[64,512] 85.7 4.1 87.7 32 66.8 18.3
[64] 85.9 4.7 86.2 3.4 65.4 17.8
CLIP ViT L/14
Contrastive Adapter 85.3 9.2 83.8 6.6 82.2 13.9
[64,128,256,512] 87.1 6.0 83.5 6.7 874 9.0
[64,512] 86.7 7.2 83.1 7.0 87.2 89
[64] 86.7 6.9 82.5 7.5 86.1 9.8

We choose the lists of [64], [64,512], [64,128,256,512] dimensions based on the strat-
egy of gradually increasing the feature dimensions, starting from smaller dimensions
and gradually expanding. Table 3 illustrates the impact of different multi-scale feature
combinations on group robustness. The results indicate that the choice of feature com-
binations significantly affects WG, and GAP. For CLIP RNS50, the combination
[64,128,256,512] achieves the best worst-group accuracy on CIFAR-10.02 (67.6%) and
competitive results on CelebA (87.5%), while showing the lowest GAP on Waterbirds
(4.1%). For CLIP ViT L/14, the same combination [64,128,256,512] achieves the best
worst-group accuracy on CIFAR-10.02 (87.4%) and high worst-group accuracy on Wa-
terbirds (87.1%), with the lowest GAP on CIFAR-10.02 (9.0%) and one of the lowest
on Waterbirds (6.0%). Notably, even simpler feature combinations like [64,512] per-
form well across datasets, sometimes matching the worst-group accuracy of more com-
plex combinations. The baseline Contrastive Adapter shows competitive evaluation re-
sults on Waterbirds with both model architectures but is outperformed by multi-scale
feature combinations on other datasets. Overall, these results confirm our hypothesis:
appropriate selection of multi-scale feature combinations can significantly improve
model robustness across different groups, while the optimal combination may vary de-
pending on the specific task and model architecture.

4.2.4 The Impact of Feature Voting

Table 4. Impact of Feature Voter of MSCA on Group Robustness

Waterbirds CelebA CIFAR-10.02

Method WG GAP WG GAP WG GAP

CLIP RNS0



Contrastive Adapter 84.5 59 87.7 3.1 60.8 19.7

MSCA-input dim 84.2 6.6 87.1 34 62.4 19.0
MSCA-512 85.3 4.5 86.9 33 63.2 19.1
MSCA-128 86.0 4.1 86.8 3.0 65.6 16.3
MSCA-random 85.6 43 872 3.6 66.1 17.8
MSCA-voting 86.1 4.1 875 3.5 67.6 16.8
CLIP ViT L/14
Contrastive Adapter 85.3 9.2 83.8 6.6 82.2 13.9
MSCA-input dim 85.9 8.0 83.5 7.4 87.0 9.7
MSCA-512 852 8.1 82.6 7.1 87.1 9.2
MSCA-128 86.7 7.4 83.7 7.8 86.8 9.3
MSCA-random 85.7 7.9 825 8.0 86.1 9.8
MSCA-voting 87.1 6.0 83.5 6.7 874 9.0

Table 4 demonstrates the impact of different feature selection strategies on the group
robustness of the MSCA model. Results indicate that our proposed feature voting mech-
anism (MSCA-feature voting) has optimal metrics in most scenarios. On CLIP RNS50,
the feature voting mechanism achieves 86.1% worst-group accuracy and 4.1% GAP on
the Waterbirds dataset, while improving worst-group accuracy to 67.6% on CIFAR-
10.02, substantially outperforming methods using fixed input dimensions. On CLIP
ViT-L/14, this mechanism also performs excellently, reaching 87.1% worst-group ac-
curacy on Waterbirds. Notably, fixed dimension strategies can also perform well on
specific datasets, such as MSCA-128 achieving 86.8% worst-group accuracy and 3.0%
GAP on the CelebA dataset with CLIP RN50. This suggests varying sensitivity to fea-
ture dimensions across different datasets, with certain types of group shifts potentially
better suited to feature representations at specific scales. However, considering overall
evaluation results across datasets and model architectures, the feature voting mecha-
nism provides the most group robustness. By learning to dynamically allocate weights
to features at different scales, this mechanism better adapts to the characteristics of dif-
ferent datasets, confirming our hypothesis: Different groups require feature representa-
tions of varying granularity, and adaptively combining multi-scale features more effec-
tively captures features of different groups, enhancing the model's overall group robust-
ness.

5 Conclusion

In this paper, we introduced Multi-Scale Contrastive Adapter (MSCA), which signifi-
cantly enhances the group robustness of vision-language models. By leveraging multi-
scale feature representations, multi-scale contrastive learning strategy and a dynamic
feature voting mechanism, MSCA effectively addresses group shifts, significantly im-
proving worst-group accuracy without requiring full model retraining or group labels.
Our experiments demonstrate that MSCA outperforms existing methods across multi-
ple benchmark datasets, offering a robust approach to tackling group-specific chal-
lenges in zero-shot classification tasks. Importantly, multi-scale feature representations
and a dynamic feature voting mechanism could also offer valuable insights for
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improving other vision-language models, such as ALBEF and BLIP [3, 4], potentially
extending the benefits of our approach to a broader range of VLMs without requiring
full model retraining.

References

10.

12.

. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., et al.:

Learning transferable visual models from natural language supervision. In: Proceedings of
the International Conference on Machine Learning, PMLR, vol. 2021, pp. 8748—8763 (2021)
Kim, W., Son, B., Kim, L.: Vilt: Vision-and-language transformer without convolution or
region supervision. In: Proceedings of the International Conference on Machine Learning,
PMLR, vol. 2021, pp. 5583-5594 (2021)

. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hong Hoi, S.: Align before fuse: Vi-

sion and language representation learning with momentum distillation. In: Advances in Neu-
ral Information Processing Systems, vol. 34, pp. 9694-9705 (2021)

. Li,J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training for unified

vision-language understanding and generation. In: Proceedings of the International Confer-
ence on Machine Learning, PMLR, pp. 12888-12900 (2022)

Liu, H., Li, C., Wu, Q., Lee, Y. J.: Visual instruction tuning. In: Advances in Neural Infor-
mation Processing Systems, vol. 36, pp. 34892-34916 (2023)

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
et al.: Language models are few-shot learners. In: Advances in Neural Information Pro-
cessing Systems, vol. 33, pp. 1877-1901 (2020)

. Beery, S., Van Horn, G., Perona, P.: Recognition in terra incognita. In: Proceedings of the

European Conference on Computer Vision, vol. 2018, pp. 456—473 (2018)

Buolamwini, J., Gebru, T.: Gender shades: Intersectional accuracy disparities in commercial
gender classification. In: Proceedings of the Conference on Fairness, Accountability, and
Transparency, PMLR, vol. 2018, pp. 77-91 (2018)

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., et
al.: Wilds: A benchmark of in-the-wild distribution shifts. In: Proceedings of the Interna-
tional Conference on Machine Learning, PMLR, vol. 2021, pp. 5637-5664 (2021)

Nam, J., Cha, H., Ahn, S., Lee, J., Shin, J.: Learning from failure: De-biasing classifier from
biased classifier. In: Advances in Neural Information Processing Systems, vol. 33, pp.
20673-20684 (2020)

. Sohoni, N., Dunnmon, J., Angus, G., Gu, A., R¢, C.: No subclass left behind: Fine-grained

robustness in coarse-grained classification problems. In: Advances in Neural Information
Processing Systems, vol. 33, pp. 19339-19352 (2020)

Sagawa, S., Koh, P. W., Hashimoto, T. B., Liang, P.: Distributionally robust neural networks
for group shifts: On the importance of regularization for worst-case generalization. arXiv
preprint arXiv:1911.08731 (2019)

. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceed-

ings of the IEEE International Conference on Computer Vision, pp. 3730-3738 (2015)

. Zhang, M., R¢, C.: Contrastive adapters for foundation model group robustness. In: Ad-

vances in Neural Information Processing Systems, vol. 35, pp. 21682-21697 (2022)

. Rezaei, A., Liu, A., Memarrast, O., Ziebart, B. D.: Robust fairness under covariate shift. In:

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 11, pp. 9419—
9427 (2021)



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., Belongie, S.: Class-balanced loss based on effective
number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9268-9277 (2019)

He, H., Garcia, E. A.: Learning from imbalanced data. In: IEEE Transactions on Knowledge
and Data Engineering, vol. 21, no. 9, pp. 1263—1284 (2009)

Idrissi, B. Y., Arjovsky, M., Pezeshki, M., Lopez-Paz, D.: Simple data balancing achieves
competitive worst-group-accuracy. In: Proceedings of the Conference on Causal Learning
and Reasoning, PMLR, pp. 336-351 (2022)

Byrd, J., Lipton, Z.: What is the effect of importance weighting in deep learning?. In: Pro-
ceedings of the International Conference on Machine Learning, PMLR, pp. 872-881 (2019)
Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log-
likelihood function. In: Journal of Statistical Planning and Inference, vol. 90, no. 2, pp. 227—
244 (2000)

Arjovsky, M., Bottou, L., Gulrajani, ., Lopez-Paz, D.: Invariant risk minimization. arXiv
preprint arXiv:1907.02893 (2019)

Sagawa, S., Koh, P. W., Hashimoto, T. B., Liang, P.: Distributionally robust neural networks
for group shifts: On the importance of regularization for worst-case generalization. arXiv
preprint arXiv:1911.08731 (2019)

Addepalli, S., Asokan, A. R., Sharma, L., Babu, R. V.: Leveraging vision-language models
for improving domain generalization in image classification. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23922-23932
(2024)

Varma, M., Delbrouck, J.-B., Chen, Z., Chaudhari, A., Langlotz, C.: Ravl: Discovering and
mitigating spurious correlations in fine-tuned vision-language models. In: Advances in Neu-
ral Information Processing Systems, vol. 37, pp. 82235-82264 (2024)

Kusupati, A., Bhatt, G., Rege, A., Wallingford, M., Sinha, A., Ramanujan, V., Howard-
Snyder, W., et al.: Matryoshka representation learning. In: Advances in Neural Information
Processing Systems, vol. 35, pp. 30233-30249 (2022)

Kumar, A., Raghunathan, A., Jones, R., Ma, T., Liang, P.: Fine-tuning can distort pretrained
features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054 (2022)
Gao, P., Geng, S., Zhang, R., Ma, T., Fang, R., Zhang, Y., Li, H., Qiao, Y.: Clip-adapter:
Better vision-language models with feature adapters. In: International Journal of Computer
Vision, vol. 132, no. 2, pp. 581-595 (2024)

Kirichenko, P., Izmailov, P., Wilson, A. G.: Last layer re-training is sufficient for robustness
to spurious correlations. arXiv preprint arXiv:2204.02937 (2022)

Berg, H., Hall, S. M., Bhalgat, Y., Yang, W., Kirk, H. R., Shtedritski, A., Bain, M.: A prompt
array keeps the bias away: Debiasing vision-language models with adversarial learning.
arXiv preprint arXiv:2203.11933 (2022)

Seth, A., Hemani, M., Agarwal, C.: Dear: Debiasing vision-language models with additive
residuals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6820-6829 (2023)

Chuang, C.-Y., Jampani, V., Li, Y., Torralba, A., Jegelka, S.: Debiasing vision-language
models via biased prompts. arXiv preprint arXiv:2302.00070 (2023)

Chen, S., Gu, J., Han, Z., Ma, Y., Torr, P., Tresp, V.: Benchmarking robustness of adaptation
methods on pre-trained vision-language models. In: Advances in Neural Information Pro-
cessing Systems, vol. 36, pp. 51758-51777 (2023)

Dehdashtian, S., Wang, L., Boddeti, V. N.: Fairerclip: Debiasing clip's zero-shot predictions
using functions in rkhss. arXiv preprint arXiv:2403.15593 (2024)



2025 International Conference on Intelligent Computing
July 26-29, Ningbo, China
https://www.ic-icc.cn/2025/index.php

34. Jolliffe, I. T., Cadima, J.: Principal component analysis: a review and recent developments.
In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, vol. 374, no. 2065, pp. 20150202 (2016)

35. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. In: Tech-
nical Report, University of Toronto, pp. 7 (2009)



