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Abstract. Knowledge distillation has become a key technique for compressing 

pre-trained language models. However, existing methods suffer from some limi-

tations. First, the student model can only imitate the teacher model, but the 

teacher cannot adapt to the ability of the student model. Second, the student 

model should focus on learning the knowledge that it is unfamiliar with. Existing 

methods that distill all the knowledge of the teacher model may bring redundant 

information. To address these issues, we propose Dynamic Weighted Adaptive 

Knowledge Distillation, which can adaptively update the teacher model and 

weight distillation. Specifically, the teacher model is updated according to feed-

back on the performance of the distilled student model in the independent quiz 

dataset. We introduce a dynamic weight assignment mechanism that controls the 

knowledge learned by the student model based on the difference between the 

teacher model and the student model. Experimental results show that our method 

outperforms several state-of-the-art methods on multiple datasets. 

Keywords: Knowledge Distillation, Pre-trained Language Models, Adaptive 

Weight Distillation. 

1 Introduction 

The field of Natural Language Processing (NLP) has made significant progress in re-

cent years and the emergence of pre-trained language models (PLMs) is one of the key 

factors driving this progress, such as BERT [1] and RoBERTa [2]. They learn rich lin-

guistic knowledge by pre-training a large amount of textual data and can achieve ex-

cellent performance in a large number of NLP tasks. However the complexity and com-

putational resource requirements of pre-trained models also pose significant challenges. 

As a result, many model compression techniques have emerged. Among them, 

Knowledge Distillation (KD) is an effective PLMs compression technique designed to 

extract knowledge from larger teacher models to smaller student models with compa-

rable performance. 

 



Existing knowledge distillation methods can be divided into three categories: re-

sponse-based [3], feature-based [4], and relation-based [5]. Response-based methods 

directly distill the final output from the output layer of the teacher model, while feature-

based and relation-based methods perform distillation by minimizing the difference in 

the aligned features of the intermediate layers of the teacher and student models. Exist-

ing methods still have some limitations: First, in most methods, the student model 

simply imitates the teacher model. Even though the recent method [6] introduces stu-

dent perceptual refinement through joint training, the teacher model still cannot be up-

dated according to the capabilities of the student model. Second, recent research work 

AD-KD [7] combines attribution information to enhance soft-labeled knowledge distil-

lation. However, all the knowledge of the teacher model is averagely refined, which 

makes the student model unable to focus on learning unfamiliar knowledge, resulting 

in information redundancy. Moreover, the above methods ignore the high-level atten-

tion knowledge in the teacher model. 

In this paper, we propose a distillation framework that can adaptively update teacher 

models and weight distillation. First, we use the traditional distillation method to update 

the student copy obtained by copying the student model parameters. Then, we feed back 

its evaluation results on an independent test set to the teacher model through gradient 

descent, thereby achieving dynamic updating of the teacher model. Second, the adap-

tive dynamic weight assignment mechanism compares the student model with the 

teacher model and quantifies the difference indicators. It dynamically readjusts the dis-

tillation weights of the differences and the same parts, enabling the student to focus on 

unfamiliar knowledge. We add a final layer of the attention matrix distillation module 

to enrich the knowledge contained in the soft labels. 

In summary, the main contributions of our work are summarized as follows: 

• We introduce a dynamic update mechanism that enables the teacher model to better 

guide the student model through adaptive updates. 

• We propose a dynamic weight allocation method that allows the student model to 

focus on learning unfamiliar knowledge and reduce redundant information. 

• We validate our approach on NLP tasks, outperforming baselines and providing im-

plications for future model compression and optimization. 

2 Related Work 

2.1 Knowledge Distillation 

In recent years, with the growing demand for large neural network compression [8], 

KD has received widespread attention as a lightweight technique. Knowledge distilla-

tion methods can be categorized into three types, namely response-based, feature-

based, and relationship-based KD. Response-based KD was first proposed by Hinton 

[9], which uses the final output to transfer the knowledge of the tag. Previous work 

applied this idea from [10,3] to BERT, resulting in a smaller model with slightly re-

duced performance. For feature-based methods, knowledge is transferred by refining 

the internal representations of the teacher and student models. For example, TinyBERT 
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[11] extracts hidden states and attention distributions, while MINILM [12] distills self-

attention distributions and value relationships, focusing on intermediate-layer represen-

tations to enhance the student model’s learning ability. Relation-based KD methods 

transfer relationships between different layers or components of the teacher model. For 

example, CKD [6] distills structural knowledge by modeling token relationships in hor-

izontal and vertical directions. AD-KD [7] explores distillation from an attribution per-

spective, analyzing the teacher’s reasoning to transfer data-specific knowledge. 

2.2 Dynamic knowledge distillation 

In the field of NLP, Pro-KD [13] utilizes an adaptive temperature coefficient to enhance 

the distillation process by adjusting the output smoothness during training, thereby 

providing a crucial foundation for dynamic distillation. MetaDistil [14] leverages meta-

learning techniques to update the teacher model, enabling it to better guide the student 

model. However, the weight allocation mechanisms of these methods still lack precise 

awareness of the student model’s knowledge proficiency, which may result in the gen-

eration of redundant information. In the field of computer vision (CV), researchers have 

explored dynamic knowledge source distillation to enhance the diversity of knowledge. 

Adaptive-KD [15] achieves dynamic fusion of multi-layer features by adaptively ad-

justing the distillation weights of each layer; ATMKD [16] uses dynamic learnable 

temperature to adaptively control the difficulty of multi-teacher knowledge. These 

methods strengthen knowledge representation, but the teacher model cannot be adjusted 

based on student feedback, limiting its application potential in complex environments. 

3 Methodology 

Given a teacher model T and a student model S with parameters 𝜃𝑇 and 𝜃𝑆, the input is 

sample x and the output truth value is y. Our goal is to design an efficient distillation 

framework that enables S to learn from T with limited computational resources. The 

overall framework is shown in Fig. 1. 

3.1 Adaptive Distillation 

Parameter Updates S'. In theory, we first use traditional knowledge distillation meth-

ods to update the parameters of the student model and evaluate its performance on an 

independent validation set. In practice, to prevent the student model from overfitting, 

we first copy the student model S as a student copy S' and update S'. Subsequently, 

gradient descent is used to pass feedback to the teacher model so that it can dynamically 

adjust to the state of the student model. The parameters of the student model are updated 

as follows: 

 𝜃𝑆′
′ (𝜃𝑇) = 𝜃𝑆′ − 𝜂∇𝜃

𝑆′ ℒ𝑠(𝑥; 𝜃𝑆′; 𝜃𝑇) (1) 

where 𝜂 is the learning rate of the student model, and 𝜃𝑠′
′  represents its updated param-

eters, the loss function ℒ𝑆(𝑥; 𝜃𝑠′; 𝜃𝑇) is defined as: 

 ℒ𝑆(𝑥; 𝜃𝑆′; 𝜃𝑇) = αℒℎ(𝑦, 𝜃𝑆′) + (1 − α)ℒ𝐾𝐷(𝜃𝑆′ , 𝜃𝑇) (2) 



where 𝛼 is a hyperparameter that balances the relative importance of hard labeling loss 

ℒℎ and knowledge distillation loss ℒ𝐾𝐷. 

 

Fig. 1. Overview of our method framework. 

Parameter Updates T. The updated student copy computes the loss function of the 

student model on the test dataset 𝑄, which consists of a subset of questions taken from 

dev: 

 ℒ𝑞 = ℒℎ(𝑦, 𝜃𝑆
′(𝜃𝑇)) (3) 

We use this loss as a feedback signal to update teachers by computing second deriva-

tives and gradient descent: 

 𝜃𝑇
′ = 𝜃𝑇 − 𝜇∇𝜃𝑇

ℒℎ (𝑦𝑞 , 𝜃𝑆
′(𝜃𝑇)) (4) 

where 𝜇 is the learning rate of the teacher model. 

Finally, we discard the experimental subject S and distill the real student model with 

the updated teacher model, through which the teacher model can dynamically adjust 

the knowledge expression and improve the knowledge transfer efficiency. 

3.2 Dynamic Weight Allocation Policy 

To optimize the learning effect of the student model on the saliency features of the 

teacher model, we used a dynamic weight adjustment policy. This strategy dynamically 

adjusts the weights according to the MSE of saliency differences to balance the atten-

tion of the student model to the same parts and different parts of the teacher model. 

Attribution Calculator. The significance is calculated using the Integrated Gradients 

(IG) method [17], a gradient-based estimation method that quantifies the impact of 
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input features on model predictions by synthesizing the differences between input fea-

tures and baseline features. Specifically, for the teacher model, the input gradient 

𝑡𝑖𝑛𝑝𝑢𝑡_𝑔𝑟𝑎𝑑  is obtained by calculating the gradient 𝑡ℎ𝑖𝑑𝑑𝑒𝑛[0]  of the hidden layer 

𝑡ℎ𝑖𝑑𝑑𝑒𝑛[0] with respect to the loss function 𝑡𝑙𝑜𝑠𝑠. Then, the element-wise product of 

input_grad and 𝑡ℎ𝑖𝑑𝑑𝑒𝑛[0] is taken, and the absolute value is calculated and normalized 

to obtain the significance 𝑆𝑇 of the teacher model: 

 𝑆𝑡 =
‖𝑡input_grad⊙𝑡hidden[0]‖

2

‖𝑡saliency‖
𝑝

 (5) 

where ⊙ denotes the element-wise product, ‖·‖2 denotes the L2 norm, and p denotes 

the norm for normalization. For the student model, we can compute the student signif-

icance 𝑆𝑆 using a similar method. 

Weight Allocation. It is unreasonable to assign the same learning weight to the 

knowledge of the familiar and unfamiliar parts of the student model. To address this, 

we introduce a dynamic weighting strategy based on the knowledge familiarity of the 

student model. First, we use the saliency scores of the teacher model and the student 

model to calculate the difference D: 

 𝐷 = |𝑆𝑡 − 𝑆𝑠|. (6) 

To control the impact of D, we introduce a dynamic threshold 𝜃 with an initial value 

of 𝜃0, which decays over time with a rate 𝛾: 

 𝜃(𝑡+1) = 𝛾𝜃(𝑡), (7) 

where t denotes the current training step. Based on this threshold, we construct two 

binary masks to distinguish between familiar and unfamiliar knowledge: 

 same_mask = (𝐷 < 𝜃),   diff_mask = (𝐷 ≥ 𝜃). (8) 

To dynamically balance the learning of familiar knowledge and unfamiliar 

knowledge, we adaptively update the weights 𝑤𝑠𝑎𝑚𝑒  and 𝑤𝑑𝑖𝑓𝑓  according to the ratio 

of the number of activated elements 𝑁𝑠, and 𝑁𝑑 in same_mask and diff_mask: 

 𝑤𝑑𝑖𝑓𝑓 = 𝑚𝑎𝑥 (𝑤𝑚𝑖𝑛 ,
𝑁𝑑

𝑁𝑠+𝑁𝑑
),   𝑤𝑠𝑎𝑚𝑒 = 𝑚𝑖𝑛 (𝑤𝑚𝑎𝑥 ,

𝑁𝑠

𝑁𝑠+𝑁𝑑
). (9) 

where 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥  denote the minimum and maximum values of the weights, re-

spectively. These parameters are determined by experimental validation to ensure the 

effectiveness of the weight adjustment strategy. Then the loss function of the similar 

part and the loss function of the dissimilar part are as follows: 

 ℒ𝑠𝑎𝑚𝑒 =
1

𝑁
∑ [(𝑆𝑡 × 𝑠𝑎𝑚𝑒_𝑚𝑎𝑠𝑘) − (𝑆𝑠 × 𝑠𝑎𝑚𝑒_𝑚𝑎𝑠𝑘)]𝑁

𝑖=1  (10)

 ℒ𝑑𝑖𝑓𝑓 =
1

𝑁
∑ [(𝑆𝑡 × 𝑑𝑖𝑓𝑓_𝑚𝑎𝑠𝑘) − (𝑆𝑠 × 𝑑𝑖𝑓𝑓_𝑚𝑎𝑠𝑘)]𝑁

𝑖=1  (11) 

Finally, the knowledge distillation loss function ℒ𝐾𝐷 can be expressed as: 



 ℒ𝑘𝑑 = (1 − 𝛼)ℒ𝑐𝑒 + 𝛼ℒ𝑙𝑜𝑔𝑖𝑡 + β(𝑤𝑠𝑎𝑚𝑒 × ℒ𝑠𝑎𝑚𝑒 + 𝑤𝑑𝑖𝑓𝑓 × ℒ𝑑𝑖𝑓𝑓) (12) 

where ℒ𝑐𝑒 is the cross-entropy loss concerning the truth value 𝑦 and ℒ𝑙𝑜𝑔𝑖𝑡  is the loss 

on the output logits of the teacher and student models. Where 𝛼 and 𝛽 are two hyperpa-

rameters. 

Our method can more flexibly adapt to the learning progress of the student model, 

allowing the student model to focus on learning unfamiliar knowledge. In this way, we 

can effectively adjust the weights during the knowledge distillation process, thereby 

improving the performance of the student model. 

3.3 Attention Distillation 

The last layer of the attention matrix has rich high-level semantic patterns and long-

distance dependencies, which are particularly effective in capturing the discriminative 

characteristics of the input data. So our method also utilizes the final layer attention 

matrices of the teacher and student models denoted as 𝐴𝑇 and 𝐴𝑆 respectively. By dis-

tilling this layer of the attention matrix, we enrich the cognitive dimension in the un-

derdeveloped student model. So the loss function for attention matrix distillation is as 

follows: 

 ℒ𝑎𝑡𝑡 = ℒ𝐾𝐿(𝐴𝑆, 𝐴𝑇). (13) 

3.4 Overall 

In the above distillation framework, multiple modules collaborate to optimize the stu-

dent model. To unify their goals, we define a total loss function ℒ𝑡𝑜𝑡𝑎𝑙 to improve per-

formance under limited computing resources: 

 ℒ𝑡𝑜𝑡𝑎𝑙 = λ𝑆ℒ𝑆 + λ𝑎𝑡𝑡ℒ𝑎𝑡𝑡 + λ𝑘𝑑ℒ𝑘𝑑 . (14) 

The parameters 𝜆𝑆 , 𝜆𝑎𝑡𝑡 , 𝜆𝑘𝑑  are hyperparameters used to balance the relative im-

portance of loss functions of different modules. By minimizing ℒ𝑡𝑜𝑡𝑎𝑙, our goal is to 

enable the student model to better learn the performance of the teacher model under 

limited computational resources. 

4 Experiments 

4.1 Datasets And Baselines 

Datasets. We evaluate our method on eight tasks on the GLUE benchmark [18], cov-

ering a range of different language understanding challenges. These include two single-

sentence tasks, three similarity and paraphrase tasks, and three inference tasks. Follow-

ing standard practice, we use the official evaluation metrics for each task, including 

accuracy, F1 score, Matthews correlation coefficient, and Spearman rank correlation, 

which is consistent with previous studies. 
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Baselines. We compare our method with several state-of-the-art baseline methods, in-

cluding response-based, feature-based, and relation-based KD methods. Response-

based methods include Vanilla KD [9] and PD [3]. Feature and relation-based methods 

include PKD [4] for intermediate representations, TinyBERT [11] for attention matri-

ces, and CKD [6] and MGSKD [5] for relational knowledge. In addition, we also in-

clude ADKD [7], which incorporates attribution knowledge into the distillation process 

to improve the efficiency of knowledge distillation. 

4.2 Implementation Details 

Our experiments were implemented by Pytorch and the Huggingface Transformers li-

brary [19]. We fine-tuned 𝐵𝐸𝑅𝑇𝑏𝑎𝑠𝑒  as the teacher model θ𝑇 and used asmaller BERT 

variant with 6 transformer layers, 768 hidden neurons, and 12 attention heads as the 

student model θ𝑠 . For hyperparameter tuning, we searched for the optimal student 

model learning rate η, in {2𝑒 − 5, 3𝑒 − 5, 4𝑒 − 5}, the optimal teacher model learning 

rate μ in {1𝑒 − 5, 2𝑒 − 5, 3𝑒 − 5}, the optimal α in {0.5, 0.6, 0.7, 0.8}, and the optimal 

𝛽 in {0.5, 1.0, 1.5, 2.0}. The initial value of the dynamic threshold θ0 is set to 0.2 and 

the decay rate γ is 0.9. For 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 , we set 𝑤𝑚𝑖𝑛 = 0.5 and 𝑤𝑚𝑎𝑥 = 0.5 accord-

ing to the ablation experiment verification in Section 5.7 to ensure the efficiency of the 

weight allocation policy. The weighting coefficients 𝜆𝑆, 𝜆𝑎𝑡𝑡, and 𝜆𝑘𝑑 are tuned in the 

range of {0.2, 0.5, 0.8, 1.0}. 

5 Results and Analysis 

5.1 Main Results 

We report the experimental results on the development and test sets of eight GLUE 

tasks [20] in Table 1. Overall, our method outperforms all baselines on most datasets. 

Specifically, on the development set, our method improves on average by 0.6 points 

over the second-best method ADKD [7]; on the test set, it also improves on ADKD by 

0.6 points. In addition, the experimental results show that our method does not perform 

well on the SST-2 dataset. We believe that this is mainly because the sentences in the 

SST-2 task are shorter, and the soft labels output by the teacher model already contain 

most of the knowledge, so the room for improvement of our method is relatively lim-

ited. 

5.2 Ablation Study 

From the ablation experiment results in Table 2, it can be seen that the model perfor-

mance is significantly reduced after removing the adaptive update module, indicating 

that the dynamic adjustment of the teacher model plays a key role in improving the 

knowledge transfer effect. When the dynamic weight allocation policy is canceled, the 

performance also drops significantly, indicating that this strategy is of great value in 

guiding the student model to reasonably allocate attention to familiar and unfamiliar 

knowledge. In contrast, removing the attention distillation module only brings a slight 

performance degradation. Although there is an impact, it is not as significant as the 

previous two. 



In summary, the adaptive update mechanism and dynamic weight allocation policy 

of the teacher model play a vital role in improving the knowledge distillation effect. 

Table 1. Overall results on the GLUE benchmark, except for Vanilla KD and AD-KD, are from 

[7]. Test scores are from the official GLUE server. Averages exclude MNLI-mm; best and sec-

ond-best student results are bolded and underlined. 

Method Params 

Evaluation Metrics 

Avg CoLA 

(Mcc) 

MNLI-

m/mm 

(Acc) 

SST-2 

(Acc) 

QNLI 

(Acc) 

MRPC 

(F1) 

QQP 

(Acc) 

RTE 

(Acc) 

STS-B 

(Spear) 

Dev 

(T)BERTbase 110M 60.1 84.7/84.4 93.5 91.5 91.3 91.5 69.7 89.4 84.0 

(S)BERT6 66M 51.2 81.3/82.3 90.7 89.3 89.2 90.4 65.9 88.2 80.8 

Vanilla KD[9] 66M 53.4 82.6/82.9 91.2 90.3 89.0 90.5 67.4 88.6 81.6 

PD[3] 66M - 82.5/83.4 91.1 89.4 89.4 90.7 66.7 - - 

PKD[4] 66M 45.5 81.3/- 91.3 88.4 85.7 88.4 66.5 86.2 79.2 

TinyBERT [11] 66M 53.8 83.1/83.4 92.3 88.9 88.8 90.5 66.9 88.3 81.7 

CKD [6] 66M 55.1 83.6/84.1 93.0 90.5 89.6 91.2 67.3 89.0 82.4 

MSKGD [5] 66M 49.1 83.3/83.9 91.7 90.3 89.8 91.2 67.9 88.5 81.5 

AD-KD[7] 66M 57.5 82.5/83.2 91.7 91.0 90.8 91.0 69.2 88.3 82.6 

Ours 66M 57.3 83.8/84.3 91.5 91.5 90.5 91.4 70.7 89.0 83.2 

Test 

(T)BERTbase 110M 51.4 84.3/84.0 93.9 90.8 87.6 89.2 67.6 85.3 81.2 

(S)BERT6 66M 41.6 81.7/80.8 91.3 88.7 85.2 88.0 63.9 82.1 77.8 

Vanilla KD[9] 66M 42.2 82.6/81.8 92.0 89.1 86.3 88.2 65.1 82.5 78.5 

PD[3] 66M - 82.8/82.2 91.8 88.9 86.8 88.9 65.3 - - 

PKD[4] 66M 43.5 81.5/81.0 92.0 89.0 85.0 88.9 65.5 81.6 78.4 

MSKGD [5] 66M 42.8 83.4/82.8 92.1 89.5 87.0 89.1 63.7 82.2 78.7 

AD-KD[7] 66M 45.8 82.3/81.9 91.6 89.8 86.8 88.8 65.6 82.6 79.1 

Ours 66M 45.6 83.8/82.6 91.3 90.6 87.0 89.0 66.7 83.8 79.7 

5.3 Student Model Size 

To evaluate the effectiveness of different student sizes, we compare our method with 

vanilla KD [3] on MRPC and QNLI. BERT-Base is compressed into BERT-6L, Me-

dium, Small, Mini, and Tiny. The performance versus the number of student parameters 

is shown in Fig. 2. Our method consistently outperforms vanilla KD, demonstrating its 

effectiveness and robustness. 

5.4 Attention Distillation Layer 

To determine the optimal attentional distillation layer, we systematically compared the 

effects of distillation from different layers. As shown in Fig. 3, using the twelfth layer 
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of the BERT attention matrix yields significantly better performance than using middle 

or lower layers on both the SST-2 sentiment classification task and the STS-B semantic 

similarity task. This improvement is attributed to the stronger semantic abstraction ca-

pability of the final layer, which tends to focus on task-relevant keywords. In contrast, 

lower layers attend more to structural or less informative tokens, resulting in reduced 

accuracy. These findings suggest that the final attention layer encodes richer high-level 

semantic information, which is more beneficial for downstream decision-making. 

5.5 Impact of Teacher Model Updates 

To validate the instructional benefits of teacher model updating, we compared static 

and dynamic teacher attribution maps and their effects on student learning. As shown 

in Fig. 4, the information conveyed by the static teacher model may be confusing to the 

student model, resulting in erroneous judgments from the student model. However, dy-

namic teachers significantly increase their attention to the points that are confounded 

by students through an adaptive updating mechanism. The ablation experiment further 

demonstrates that student accuracy decreases by 2.6 percentage points when no adap-

tive updating of the teacher model is performed. This suggests that dynamic teachers 

achieve more efficient knowledge transfer through adaptive updating by both improv-

ing knowledge representation and pinpointing student needs. 

Table 2. Ablation study based on GLUE development set. 

Method 
CoLA 

(Mcc) 

MNLI-

m/mm 

(Acc) 

SST-2 

(Acc) 

QNLI 

(Acc) 

MRPC 

(F1) 

QQP 

(Acc) 

RTE 

(Acc) 

STS-B 

(Spear) 

Ours 57.3 83.8/84.3 91.5 91.5 90.5 91.4 70.7 89.0 

w/o Update 56.8 82.7/83.3 91.0 91.1 90.1 91.1 69.8 88.7 

w/o Attention 57.2 83.6/84.1 91.3 91.4 90.3 91.2 70.4 88.9 

w/o Dynamic Weight 56.9 83.2/83.7 91.2 91.2 89.9 90.9 69.5 88.5 

 

Fig. 2. Results for different student sizes. 
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5.6 Impact of 𝜽𝟎 and 𝜸 

To distinguish between acquired and unacquired knowledge, we introduce a threshold 

𝜃 and an attenuation rate 𝛾. Fig. 5 shows the results of varying 𝜃0 and 𝛾 on MRPC and 

QNLI, with one fixed while the other is adjusted. When 𝜃0 is too large, the student 

model tends to overlook signifcant differences, with accuracy/Fl scores peaking at 𝜃0 =
0.2 and then gradually decreasing. For 𝛾, performance follows a rising and then falling 

trend as 𝛾 increases. A low 𝛾 causes the threshold to decay too quickly, reducing tar-

geted guidance and leading the model to a local optimum. On the other hand, a high 𝛾 

results in slow decay, retaining a high threshold that inhibits convergence speed. The 

best performanceis achieved at 𝛾 = 0.9.  

 

Fig. 3. Results of using different attention layers. 

 

Fig. 4. Attribution weights for static and dynamic teacher models based on student model 

states. 

 

Fig. 5. Results of using different 𝜃0 and 𝛾. 
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5.7 Impact of 𝒘𝒎𝒊𝒏 and 𝒘𝒎𝒂𝒙 

To explore the impact of the optimal configuration of 𝑤𝑚𝑖𝑛  and 𝑤𝑚𝑎𝑥  on the perfor-

mance of the student model, we designed an ablation experiment to compare the model 

performance under different weight settings. The experimental results are shown in Ta-

ble 3. When 𝑤𝑚𝑖𝑛 = 𝑤𝑚𝑎𝑥 = 0.5 the student model performs best on both tasks. If 

𝑤𝑚𝑖𝑛 is set too small, the model may ignore the difference area, resulting in insufficient 

learning of unfamiliar knowledge, thereby reducing the accuracy; when the 𝑤𝑑𝑖𝑓𝑓  value 

is too large, the student model may try to overfit those areas that it is not familiar with, 

This over-adaptation may lead to overfitting, thereby sacrificing the generalization abil-

ity of the model, and in actual training, setting an appropriate lower limit can ensure 

that the student model always focuses on the difference part, while limiting 𝑤𝑠𝑎𝑚𝑒 can 

prevent the model from over-focusing on the familiar part and improve its generaliza-

tion ability, The results verify that our proposed "focus on learning unfamiliar 

knowledge" policy shows stability and versatility in different tasks. 

Table 3. Results of different 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 settings. 

𝑤𝑚𝑖𝑛/𝑤𝑚𝑎𝑥  
MNLI Dev 

(Acc) 

MNLI Test 

(Acc) 

QQP Dev 

(Acc) 

QQP Test 

(Acc) 

0.3 / 0.7 82.5 82.2 89.8 88.0 

0.4 / 0.6 83.0 82.8 90.7 88.4 

0.5 / 0.5 83.8 83.8 91.4 89 

0.6 / 0.4 82.0 81.7 90.5 88.1 

6 Conclusion 

In this paper, we propose a novel dynamic knowledge distillation framework to im-

prove the efficiency and effectiveness of pre-trained language model compression. Un-

like traditional methods where the student model passively imitates the teacher, our 

framework supports two-way interaction: the teacher model dynamically adjusts its 

output based on the student’s reverse gradient feedback. We introduce a dynamic 

weight allocation policy that adjusts the learning focus according to the student’s mas-

tery of different knowledge components, thereby emphasizing less familiar areas for 

more targeted distillation. In addition, to help the student model understand richer se-

mantic information, we also distill the last layer of the attention matrix. Our method 

combines an adaptive teacher update mechanism with a dynamic weight allocation pol-

icy to more effectively guide the learning of the student model. Extensive experiments, 

including ablation studies, demonstrate the superior performance of our method and 

verify the contribution of each component. 
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