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Abstract. Transformer-based methods have achieved remarkable advances in 

multivariate time series forecasting for their long-range ability. However, the 

non-stationarity of real-world time series, make these models particularly prone 

to overfitting when data distribution changes over time. Recently, despite various 

attempts in existing studies, they either overlook cross-channel mutual infor-

mation gains or struggle to effectively capture cross-time features. To overcome 

these limitations, we review the characteristics of time series and develop a novel 

Short-term to Long-term network called S2LNet, which combines short-term 

cross-time features into long-term distributions and then models cross-channel 

dependencies models cross-time and cross-channel dependencies. For cross-time 

features, S2LNet first decomposes the input sequence into seasonal and trend 

items, then employs Transformers for capturing seasonal features seasonal items 

and multilayer perceptrons (MLPs) for trend items modeling trend features. 

These modeled short-term features are then fused and downsampled into long-

term relationships through the Long-term Fusion module, followed by a channel-

wise Transformer for long-term cointegration across channels. Extensive exper-

iments on various real-world benchmarks have verified the superiority of our 

model over other state-of-the-art baselines. 

Keywords: Non-stationary Time Series, Cross-time Dependencies, Cross-chan-

nel Dependencies. 

1 Introduction 

1.1 A Subsection Sample 

Multivariate time series forecasting (MTSF) promotes various real-world applications 

where future trends can be learned from historic multi-channel signals, such as weather 

prediction [1] and building energy consumption [2]. Recently, Transformer-based 

methods [3, 4] have been widely used in MTSF for their robust long-range ability [5, 

6]. However, real-world time series data are often non-stationary, with shifting distri-

butional statistics data distribution shifting over time (known as distribution drift). This 

problem leads to significant overfitting for Transformer-based methods [7-9]. 

 



 

Fig. 1. Seasonal-trend decomposition and cointegration. A stable mean reflects consistent distri-

bution over time, while non-stationary series show varying mean values. Cointegration describes 

the long-term relationships where two or more non-stationary time series are linearly combined 

to produce a stationary series. 

To this issue, recent approaches have proposed to employ channel-independent (CI) 

strategies, ignoring correlations across channels and focus on temporal dependencies, 

named channel-independent (CI). It avoids the challenges of spurious regression that 

may arise from irrelevant channels. Surprisingly, by avoiding disruptions of spurious 

regression that may arise from irrelevant channels, CI models [10, 11] even exhibit 

superior performance that surpasses other contemporary methods [12, 13]. Afterward, 

a novel channel-dependent (CD) model, iTransformer [14], proposes a simple but novel 

operation that treats the entire input sequence as a token and captures channel correla-

tions, outperforming previous elaborate CD methods [3, 15]. However, these CI and 

CD models still have certain limitations: the former typically overlooks the mutual in-

formation gain across channels, the latter lacks sufficient capability to model short-term 

temporal dependencies [16]. 

To illustrate our solution comprehensively, we review the non-stationary nature of 

the time series in Figure 1. For temporal modeling, decomposition effectively separates 

the seasonal item, with its stable mean, from the trend item. In channel-wise cointegra-

tion [17], non-stationary sequences are combined into a stationary one. Building on 

these concepts, we propose a Short-term to Long-term network S2LNet. S2LNet first 

decomposes each input series into seasonal and trend items, followed by a patching 

process which divides them into short-term subsequences. S2LNet leverages the fitting 

ability of the Transformer for seasonal features and the generalization of Linear for 

trend features. Finally, these short-term seasonal and trend features are fused into long-

term dependencies via a Long-term Fusion module and used to model long-term coin-

tegration with the Transformer. For these short-term components, S2LNet not only sep-

arately extracts their temporal-wise features, but also reconstruct a combined stationary 

distribution and further model their long-term cointegrated channel-wise dependencies. 

Our contributions are as follows: (1) We propose S2LNet, a Short-term to Long-

term network that addresses the limitations of existing models in capturing both cross-

time and cross-channel dependencies; (2) S2LNet introduces the Long-term Fusion 

module, which combines short-term non-stationary features into a long-term stationary 
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one, boosting the ability combines short-term seasonal and trend components into long-

term features, enhancing the effectiveness of channel-wise cointegration modeling; (3) 

S2LNet achieves state-of-the-art performance across a wide range of baselines on mul-

tiple real-world datasets. S2LNet presents stable advantages over other 8 state-of-the-

art models, ranking top-1 in 20 out of the 32 settings with various datasets, prediction 

lengths and metrics. 

2 Time Series Forecasting Via Transformer 

In the realm of multivariate time series forecasting (MTSF), Recently, the Transformer 

has seen widespread adoption in MTSF due to the long-range ability of its multi-head 

self-attention (MHSA) mechanism. MHSA parallelly calculates the attention score for 

each head and concatenate weighed outputs from all heads to form the final output. For 

a set of 𝑁𝑃 tokens 𝒙 ∈ ℝ𝑁𝑃×𝑃 with a feature dimension of 𝑃, the attention is calculated 

as follows: 

 

𝑸 = Linear(𝒙), 𝑲 = Linear(𝒙), 𝑽 = Linear(𝒙),

Attention(𝑸, 𝑲, 𝑽) = softmax (
𝑸𝑲⊤

√𝑑𝑘
) 𝑽,

 

where 𝑸, 𝑲, and 𝑽 represent the query, key, and value matrices projected by the re-

spective linear layer, and 𝑑𝑘 is the dimension of the key. Through this process, weights 

are dynamically reassigned to each token, allowing the model to capture how each ele-

ment in a sequence relates to other parts. 

To further illustrate, we reuse the previously defined notation 𝒙 ∈ ℝ𝑁𝑃×𝑃 as an ex-

ample. In cross-time modeling, 𝑁𝑃 represents the number of divided subsequences for 

each time series, with 𝐶 different channels treated as independent samples. In cross-

channel modeling, 𝑁𝑃 often refers to the number of channels, with subsequences treated 

as independent period samples. It is worth noting that the number of period samples is 

greater than 1 in short-term channel-wise modeling [15], while set to 1 in long-term 

modeling [14]. 

3 S2LNet: Short-term to Long-term network 

3.1 The overall framework 

As shown in Figure 2, S2LNet has three main components: input preprocessing, fore-

casting model, and output postprocessing. In the preprocessing stage, S2LNet first ap-

plies z-score standardization to align the global distribution of different sequences and 

then decompose the normalized input into the stationary seasonal item 𝑰𝑠 and the non-

stationary trend item 𝑰𝑡. In the forecasting model, 𝑰𝑠 and 𝑰𝑡 will be divided into subse-

quences for local semantic information aggregation through the Patching operation. 

These partitioned items are further fed into different modules for cross-time extraction.  



 

Fig. 2. The pipeline of S2LNet. (1)In Preprocessing, each input series will be normalized to align 

distribution and decomposed into seasonal and trend items; (2)The Forecasting Model captures 

cross-time and cross-channel features of two items the two decomposed items and then predicts 

future series; (3)In Postprocessing, denormalization restores the distribution, producing a final 

predicted series. 

Afterward, these outputs are fused by a Long-term Fusion module to obtain long-term 

features. Following this, S2LNet captures long-term cointegrations by the Cross-chan-

nel Transformer, and its outputs will be projected to a future series by a linear layer. 

Finally, in the postprocessing stage, de-normalization is applied to restore the global 

distribution of the output series. 

3.2 Input Preprocessing 

In the preprocessing stage, we first apply z-score normalization to normalize the input 

sequence. Specifically, given a channel of, the normalized output 𝒙 is defined as fol-

lows: 

 𝜇 =
1

𝐼
∑  𝐼

𝑘=1 𝑥𝑘 , 𝜎2 =
1

𝐼
∑  𝐼

𝑘=1 (𝑥𝑘 − 𝜇)2, 𝒙 =
𝒙−𝜇

𝜎
, 

where 𝜇 and 𝜎 are the mean and standard deviation of 𝒙, respectively. The counted 

global distribution statistics of different channels and sample sequences are used for 

aligning their distribution. 

Later, as demonstrated in existing works [3, 4], we leverage the seasonal-trend de-

composition to facilitate cross-time modeling. Similarly, a decomposition is employed 

to extract the mean variations within the input sequence as a trend item (𝐼𝑡). Then, 𝒙 is 

decomposed into a relative stationary seasonal item (𝐼𝑠) via subtracting 𝐼𝑡. The process 

is as follows: 

𝑰𝑡 = AvgPool(Padding((𝒙)), 𝑰𝑠 = 𝒙 − 𝑰𝑡 , 
where AvgPool is used to obtain the trend item 𝑰𝑡 ∈ ℝ𝐼 with an average kernel, with a 

kernel size of 25 and a stride of 1. Padding is applied using terminal values to ensure a 

consistent length of all the input sequences. 
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3.3 Forecasting Model 

Patching aggregates adjacent time steps into cohesive patch-based tokens, which can 

effectively aggregate local semantic information and promote subsequent dependencies 

modeling. Notably, to further enhance the stationary of the trend item to improve pre-

dictive ability [9] and facilitate subsequent modeling [16], the following operations are 

conducted: 

Notably, before patching, re-normalization and sliding aggregation [18] are addi-

tionally applied to 𝐼𝑡 to further enhance the stationarity of the trend item and to smooth 

away outlier values: 

𝐼𝑡̅ =
1

𝐼
∑  

𝐼

𝑘=1

𝐼𝑡𝑘
, 𝑰̂𝑡 = 𝑰𝑡 − 𝐼𝑡̅       (re-normalization) 

𝑰̂𝑡 = DWC(𝑰̂𝑡) + 𝑰̂𝑡       (sliding aggregation) 

Here, 𝐼𝑡̅ represents the mean of 𝑰𝑡, and DWC refers to a depth-wise 1D convolution. 

Afterward, the patching step divides 𝑰𝑠 and 𝑰̂𝑡 into two sets of 𝑁𝑃 subsequences with 

length 𝑃. This process is equivalent to transforming the shape of 𝑰𝑠 and 𝑰̂𝑡 and from ℝ𝐼 

into ℝ𝑁𝑃×𝑃 . Finally, the patched matrices of 𝑰𝑠  and 𝑰̂𝑡  are mapped to latent space 

ℝ𝑁𝑃×𝑑1  and ℝ𝑁𝑃×𝑑2 respectively, where 𝑑1 and 𝑑2 are the last dimensions of the out-

put matrices. 

Cross-time Transformer aims at capturing the cross-time seasonal features 𝒛𝑠 ∈
ℝ𝑁𝑝×𝑑1 . Due to the stable distribution within the seasonal item, a stack of Transformer 

layers is ideally suited for fitting robust seasonal features. The modeling process of 

each layer is defined in the following equations: 

 
𝒛𝑠 = LayerNorm(𝒛𝑠 + MHSA(𝒛𝑠, 𝒛𝑠, 𝒛𝑠)),

𝒛𝑠 = LayerNorm(𝒛𝑠 + FFN(𝒛𝑠)),
 

where 𝒛𝑠 is initially set to 𝑰𝑠, LayerNorm refers to layer normalization, FFN stands for 

feed-forward network, and MHSA represents temporal-wise multi-head self-attention. 

These components are generally adopted to form the Transformer layer. We use two 

Transformer layers in this module. 

Cross-time MLP is used to model the cross-time dependencies of the trend item 

𝑰̂𝑡 ∈ ℝ𝑁𝑝×𝑑2 . For a less stationary trend item 𝑰̂𝑡, a simple linear module can provide 

strong generalization capability. The process is as follows: 

 𝒛𝑡 = 𝑰̂𝑡 + FFN(𝑰̂𝑡), 

where FFN stands for a two-layer feed-forward network. Similar to the Cross-time 

Transformer, the shape of the trend feature 𝒛𝑡 is kept as the same of the original trend 

item 𝑰̂𝑡. 

 𝒛𝑡 = 𝑰̂𝑡 + FFN(𝑰̂𝑡)×𝑙2
, 

where 𝑙2 (default 𝑙2=1) layers of FFN are stacked for cross-time modeling, resulting in 

trend features 𝒛𝑡 ∈ ℝ𝑁𝑝×𝑑1 . 



Long-term Fusion is used to restore the decomposed seasonal and trend items, re-

sulting in long-term features with original mean variations within a sequence. For each 

univariate sequence, the modeled seasonal and trend features are fused via the follow-

ing operations: 

 
𝒛 = Linear(𝒛𝑠) + Linear(𝒛𝑡) + 𝐼𝑡̅ ,

𝒛𝑙 = Linear(𝒛),
 

where 𝒛𝑠 and 𝒛𝑡 are aligned to same shape, then integrated to 𝒛 ∈ ℝ𝑁𝑝×𝐷 by addition. 

Later, 𝒛 is aggregated along the temporal dimension to produce long-term relationships 

𝒛𝑙 ∈ ℝ×𝐷, which compresses information of the entire sequence. 

Cross-channel Transformer models the Long-term Fusion outputs of non-station-

ary period features for cross-channel correlations. In contrast, existing works either 

overly focus on short-term channel dependencies or directly disregard channel-wise 

mutual information gains. Given a multivariate series 𝑿 ∈ ℝ𝐶×𝐼 , after all the above 

cross-time modules, the long-term features𝒛𝑙 of 𝐶 channels will be mixed to form the 

multi-channel long term features 𝒁 ∈ ℝ𝐶×𝐷.  The cross-channel correlation will be ob-

tained and modeled as follows: 

 
𝒁𝑐 = LayerNorm(𝒁 + MHSA(𝒁, 𝒁, 𝒁)),

𝒁𝑐 = LayerNorm(𝒁𝑐 + FFN(𝒁𝑐)),
 

where 𝒁𝑐 ∈ ℝ𝐶×𝐷  represents long-term cointegrated features of 𝐶  channels, 

LayerNorm and FFN are similar to those mentioned in the Cross-time Transformer. 

Specifically, MHSA here is channel-wise multi-head self-attention. 

Projection maps the intermediate features to a future sequence. Regarding the supe-

rior performance of encoder-only architectures [19], a linear layer is applied to project 

𝒁𝑐 from ℝ𝐶×𝐷 to ℝ𝐶×𝑂, resulting in a output sequence 𝒀̅. 

3.4 Output Postprocessing 

In the postprocessing stage, reversed z-score normalization is applied to each channel 

sequence based on its distribution statistics. Given a channel of sequence 𝒙 and its pre-

dicted output 𝒚̅ ∈ 𝒀̅, the final predicted series 𝒚̂ is generated by restoring the original 

distribution: 

 𝒚̂ = 𝒚̅ ⋅ 𝜎 + 𝜇, 

where 𝜇 and 𝜎 are the mean and standard deviation of 𝒙 respectively, counted in the 

input preprocessing. 
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4 Performance Evaluation 

4.1 Experimental Setup 

Setups. Our experiments are mainly conducted on extensively used real-world datasets 

open-sourced in previous works [3, 12]: ETT-small (ETTh1), Weather, Solar-Energy, 

Electricity, with the. For a comprehensive evaluation, we select a range of representa-

tive baselines in time series forecasting, including the following categories: (1) Trans-

former-based models: iTransformer [14], Crossformer [15], Autoformer [3], and 

PatchTST [10]; (2) CNN-based model: TimesNet [12] and SCINet [13]; and (3) Linear 

models: DLinear [20] and TiDE [21]. 

Setting. In our training configuration, we primarily adhere to the settings from [14]. 

For our architecture, we set 𝑃 = 24,𝑁𝑝 = ⌈
𝐼

24
⌉,𝑑1 = 96, 𝑑2 = 𝐷 = 512. We utilize 

Mean Square Error (MSE) and Mean Absolute Error (MAE) as performance metrics, 

aligning with previous methods [3, 22]. 

4.2 Main Results 

As shown in Table 1, S2LNet consistently demonstrates the best or second-best perfor-

mance across various datasets and prediction ranges. Specifically, S2LNet outperforms 

channel-independent approaches such as PatchTST and DLinear, as well as traditional 

channel-dependent transformers such as iTransformer, Crossformer, and Autoformer. 

Moreover, compared to the most state-of-the-art method, iTransformer, our approach 

also shows considerable advantages, with the Count of best performance being four 

times those of iTransformer. 

4.3 Channel-wise Attentions 

To validate the feasibility of modeling long-term channel dependencies, we visualize 

the channel-wise attention maps on the Weather dataset in Figure 3, where the Long-

term map is obtained using our full model with the Long-term Fusion module and the 

Short-term map is obtained without it. The two maps share significant commonalities, 

while the attention maps for long-term channel dependencies are typically less blurred 

and clearer, highlighting the effectiveness of our Short-term to Long-term mechanism. 

Moreover, the quantitative comparison is shown in Table 2. Cross-channel correla-

tions between long-term sequences outperform the short-term variant. This result is 

reasonable because short-term cross-channel correlations are highly susceptible to dis-

tribution shifts, noise, and other short-term fluctuations, leading to severe spurious re-

gression issues [23]. In contrast, long-term cross-channel correlations can better avoid 

these fluctuations and effectively capture cointegration, which typically exists between 

a long-term temporal span of channels [17]. 

 



Table 1. Results for four prediction lengths 𝑂 ∈ {96,192,336,720}, with lower MSE and MAE 

indicating better performance. All baselines use an input length of 𝐼 = 96. We highlight the 

best results in bold and the second-best with underline. The last row (Count) shows the times 

each method achieves the best results. 

Models 
S2Lnet 

(Ours) 

iTransformer 

[14] 

Crossformer 

[15] 

Autoformer 

[3] 

PatchTST 

[10] 

TimesNet 

[12] 

SCINet 

[13] 

DLinear 

[20] 

TiDE 

[21] 

Metric MSE  MAE MSE  MAE MSE  MAE MSE  MAE MSE  MAE MSE  MAE MSE  MAE MSE  MAE MSE  MAE 

E
T

T
h

1
 

96 0.383 0.401 0.386 0.405 0.423 0.448 0.449 0.459 0.414 0.419 0.384 0.402 0.654 0.599 0.386 0.4 0.479 0.464 

192 0.434 0.43 0.441 0.436 0.471 0.474 0.5 0.482 0.46 0.445 0.436 0.429 0.719 0.631 0.437 0.432 0.525 0.492 

336 0.475 0.453 0.487 0.458 0.57 0.546 0.521 0.496 0.501 0.466 0.491 0.469 0.778 0.659 0.565 0.515 0.481 0.459 

720 0.468 0.471 0.503 0.491 0.653 0.621 0.514 0.512 0.5 0.488 0.521 0.5 0.836 0.699 0.519 0.516 0.594 0.558 

W
ea

th
er

 

96 0.17 0.211 0.174 0.214 0.158 0.23 0.266 0.336 0.177 0.218 0.172 0.22 0.221 0.306 0.196 0.255 0.202 0.261 

192 0.216 0.254 0.221 0.254 0.206 0.277 0.307 0.367 0.225 0.259 0.219 0.261 0.261 0.34 0.237 0.296 0.242 0.298 

336 0.273 0.295 0.278 0.296 0.272 0.335 0.359 0.395 0.278 0.297 0.28 0.306 0.309 0.378 0.283 0.335 0.287 0.335 

720 0.353 0.348 0.358 0.347 0.398 0.418 0.419 0.428 0.354 0.348 0.365 0.359 0.377 0.427 0.345 0.381 0.351 0.386 

S
o

la
r-

E
n

-

er
g

y
 

96 0.198 0.238 0.203 0.237 0.31 0.331 0.884 0.711 0.234 0.286 0.25 0.292 0.237 0.344 0.29 0.378 0.312 0.399 

192 0.232 0.266 0.233 0.261 0.734 0.725 0.834 0.692 0.267 0.31 0.296 0.318 0.28 0.38 0.32 0.398 0.339 0.416 

336 0.244 0.277 0.248 0.273 0.75 0.735 0.941 0.723 0.29 0.315 0.319 0.33 0.304 0.389 0.353 0.415 0.368 0.43 

720 0.247 0.281 0.249 0.275 0.769 0.765 0.882 0.717 0.289 0.317 0.338 0.337 0.308 0.388 0.356 0.413 0.37 0.425 

E
le

ct
ri

ci
ty

 96 0.139 0.233 0.148 0.24 0.219 0.314 0.201 0.317 0.181 0.27 0.168 0.272 0.247 0.345 0.197 0.282 0.237 0.329 

192 0.155 0.248 0.162 0.253 0.231 0.322 0.222 0.334 0.188 0.274 0.184 0.289 0.257 0.355 0.196 0.285 0.236 0.33 

336 0.17 0.265 0.178 0.269 0.246 0.337 0.231 0.338 0.204 0.293 0.198 0.3 0.269 0.369 0.209 0.301 0.249 0.344 

720 0.226 0.312 0.225 0.317 0.28 0.363 0.254 0.361 0.246 0.363 0.22 0.32 0.299 0.39 0.245 0.333 0.284 0.373 

Count 20 5 3 0 0 2 0 2 0 

 

Fig. 3. Visualization of attention maps from the channel-wise Transformer on the Weather da-

taset, showcasing the channel correlations between Short-term period and Long-term series. The 

input length 𝐼 and the prediction length 𝑂 are fixed to 96. 

Table 2. Ablation of Short-term period and Long-term series on  Weather, Solar-Energy, and 

Electricity datasets, bold notes better results. The input length 𝐼 is fixed to 96. 

Datasets Weather Solar-Enegry Electricity 

Type Metric 96 192 336 720 96 192 336 720 96 192 336 720 

Long-term 
MSE 0.170 0.216 0.273 0.353 0.198 0.232 0.244 0.247 0.139 0.155 0.170 0.226 

MAE 0.211 0.254 0.295 0.348 0.238 0.266 0.277 0.281 0.233 0.248 0.265 0.312 

Short-term 
MSE 0.173 0.220 0.275 0.359 0.201 0.230 0.246 0.248 0.144 0.164 0.177 0.219 

MAE 0.216 0.258 0.298 0.350 0.239 0.266 0.280 0.284 0.237 0.252 0.268 0.316 
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5 Conclusion 

In this paper, we propose S2LNet, a novel approach for long-term time series fore-

casting that effectively models both cross-time and cross-channel dependencies. 

S2LNet tackles the challenges of distribution shift posed by the non-stationary nature 

of real-world time series. Concretely, S2LNet decomposes input sequences into sea-

sonal and trend components, utilizing the Transformer for seasonal features and the 

MLP for trend features. These features are then fed to a Long-term Fusion module and 

a cross-channel Transformer for capturing long-term integrated relationships. Experi-

mental results on four real-world datasets demonstrate the ability of S2LNet to outper-

form state-of-the-art baselines. 
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