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Abstract. In this paper, we propose a new multi-view 3D detection paradigm, 

named FarDetect3D, to enhance the detection of long-range objects.FarDetect3D 

improves the existing sparse query-based multi-view 3D object detection frame-

work by introducing two modules: Remote Detection Denoising (ReDN) and 

Long-range Feature Attention (LrFA). In ReDN, we utilize the fake long-range 

depth information to generate sparse 3D queries, which improves the perfor-

mance of the long-range detection. In LrFA, we enhance the central features and 

capture the contextual relationships between the distant pixels, further boosting 

the detection accuracy. Experimental results show that our approach outperforms 

the state-of-the-art camera-based multiview 3D detection methods, which can 

provide a robust solution for safe autonomous driving in complex environments. 

Keywords: Multi-view 3D Object Detection, Denoising, Long-range Feature 

Attention. 

1 Introduction 

Multi-view 3D object detection[1–5] is an essential step for comprehending the 3D en-

vironments in autonomous driving systems, which aims to identify and classify the ob-

jects around the vehicle by surround-view cameras. Compared with LIDAR-based 

methods, camera-based methods are more economical and can provide valuable visual 

cues for long-range distance detection and vision-only element identification.   

Current multi-view 3D object detection methods can generally be divided into two 

main categories: dense Bird’s Eye View (BEV) and sparse query-based approaches. 

BEV-based techniques [1–3] often use a view transformer [6] to transform perspective 

features into BEV features, followed by the generation of 3D bounding boxes using a 

3D detector head. On the other hand, sparse query-based methods [4, 5] focus on learn-

ing 3D global object queries from representative training data and produce detection 

results by integrating DETR [7] style image features.  
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Fig. 1. (a) and (b) show the prediction results of StreamPETR[5] for the same scene at different 

moments. Some vehicles are successfully detected in (a) but missed in (b), as highlighted in the 

yellow dashed boxes. In addition, as shown in the pink dashed box, some vehicles are missed in 

both frames. This highlights the challenge of maintaining detection consistency across time, 

with some long-range objects being missed. 

However, the BEV-based and sparse query-based methods are skilled at short-range 

detection but struggle with long-range detection. The detection results for long-range 

objects are usually inaccurate and inconsistent. As shown in Fig. 1. (a) and (b) show the 

prediction results of StreamPETR[5] for the same scene at different moments. Some vehicles are 

successfully detected in (a) but missed in (b), as highlighted in the yellow dashed boxes. In ad-

dition, as shown in the pink dashed box, some vehicles are missed in both frames. This highlights 

the challenge of maintaining detection consistency across time, with some long-range objects 

being missed., some long-range objects cannot be detected in both the two frames, while 

other objects may be detected in one frame but missed in another. These unfavorable 

results have different causes for different categories of detection methods. In the BEV-

based methods, the computational complexity is too high to obtain a large enough BEV 

feature map for long-range detection, especially in real-time applications. Besides, the 

fixed number of queries in sparse query-based methods limits their ability to effectively 

capture the dynamic environment changes, resulting in missed detections of long-range 

objects. 
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In this paper, we propose a new multi-view 3D detection framework, FarDetect3D, 

based on traditional sparse query-based methods to overcome these challenges. Com-

pared with the existing methods, our proposed FarDetect3D can boost the detection of 

long-range objects in the following two aspects: First, we introduce the Remote Detec-

tion Denoising (ReDN) module, which presents a distance-based denoising mechanism. 

Given the real depth information of a long-range object, ReDN generates different fake 

depths and then obtains the corresponding 3D queries. In this way, ReDN improves the 

number of long-range 3D queries, then enables the model to learn the long-range depth 

information and reduces the noise from depth errors and object scale variations, which 

can help to improve the detection accuracy of long-range objects. Second, we introduce 

the Long-range Feature Attention (LrFA) module, which refines and enhances the fea-

tures relevant to long-range objects. LrFA works by focusing on the central features of 

the 3D objects, capturing contextual relationships between distant pixels, and aggregat-

ing information over long distances. This process improves the system’s ability to de-

tect and classify objects more holistically, taking into account not only the immediate 

surroundings but also the broader environment. By incorporating long-range contextual 

information, LrFA effectively mitigates the challenges posed by dynamic environ-

ments, where objects may appear and disappear rapidly, ensuring better accuracy and 

fewer missed detections. 

In summary, the contributions of this paper are as follows: 

– We propose the ReDN module to generate the long-range fake queries and the LrFA 

module to enhance the features relevant to long-range objects; both of them are help-

ful in detecting long-range objects. 

– By introducing ReDN and LrFA into the existing sparse query-based multi-view 3D 

detection model, we propose a novel detection framework, FarDetect3D. 

– Experimental results show that FarDetect3D achieves state-of-the-art in camera-

based multi-view 3D object detection methods. To be specific, we obtain 56.7% mAP 

and 64.7% NDS on the nuScenes dataset with V2-99 as the backbone. 

2 Related WorkMulti-View 3D Detection 

Multi-view 3D detection involves predicting 3D bounding boxes in a global framework 

using multiple cameras. Most prior methods [8–10] are extensions of monocular 3D 

object detection and fail to fully leverage the geometric details present in multi-view 

images. Recently, some studies [2, 6] have explored the use of explicit bird’s eye view 

(BEV) mapping for object perception within a global system. LSS [6] performs view 

transformation by estimating depth distributions and converting images into BEV. 

BEVFormer [2] combines spatial and temporal information by employing BEV queries 

arranged in a predefined grid pattern. BEVDepth incorporates a point cloud as a depth 

supervisor to encode camera parameters into a depth subnetwork.  

Following the DETR [7] framework, several approaches developed implicit BEV 

features. These approaches generally start with 3D sparse object queries and interact 

with 2D features using an attention mechanism to conduct 3D object detection directly. 

For instance, DETR3D [11] extracts 2D features from projected 3D reference points 

and updates the query using local cross-attention. PETR [12] introduces 3D positional 



embedding in a global context and updates the query through global cross-attention. 

PETRv2 [4] extends PETR with temporal modeling and integrates self-motion into the 

positional embedding concept.  

2.2 Denoising in Object Detection 

In the realm of 2D object detection, models such as DETR [7] and its variations [13–

15] frequently struggle with convergence, often due to the instability of bipartite graph 

matching and inconsistent optimization objectives during the early stages of training. 

DN-DETR [16] tackles this issue by employing the concept of input noise, incorporat-

ing ground truth bounding boxes into the Transformer decoder. This trains the model 

to reconstruct the original, clean boxes through a process known as denoising. Here, 

noisy ground truth bounding boxes are used to initialize queries, termed denoising que-

ries. DINO [17] builds upon this method by creating both positive and negative de-

noising queries for each ground truth bounding box, with the negative queries contain-

ing additional noise to improve the model’s ability to reject incorrect predictions. 

 In 3D object detection, DETR-style methods [4, 5, 18] use denoising techniques by 

generating denoising queries for each ground truth bounding box, distinguishing be-

tween objects and “no object” based on noise levels. However, these methods primarily 

focus on short-range sensing and struggle with detecting long-range objects. This lim-

itation is particularly evident in multi-view 3D object detection, where the model per-

forms poorly on long-range objects due to insufficient training samples and challenges 

like depth blurring and feature degradation. 

To overcome these challenges, we propose Remote Detection Denoising (ReDN), to 

incorporate the knowledge of the 3D structure of the scene. Different from the tradi-

tional denoising queries, which focus on nearby objects, ReDN generates separate neg-

ative denoising queries for long-range objects, which are spatially distinct from those 

used for nearby objects. This enables the model to better handle the detection of long-

range objects by accounting for depth inaccuracies and scale variations. 

3 Methodology 

The overall architecture of FarDetect3D is shown in Fig. 2, multi-view images are input 

into the backbone network to obtain the feature maps, and then enhance the feature of 

long-range objects by the LrFA module. Meanwhile, ReDN generates the fake depths 

and corresponding 3D queries of the objects. Finally, the generated fake queries and 

the original real queries are mixed and input into the Transformer Decoder to predict 

the detection results. Next, we introduce ReDN and LrFA in detail. 

3.1 Implementation Details 

We denote the center of the ground truth bounding box 𝐵𝐺𝑇 = (𝑥, 𝑦, 𝑧, 𝑤, ℎ, 𝑙) as 𝐶𝐺𝑇 =
(𝑥, 𝑦, 𝑧, 1) and its size as 𝑆𝐺𝑇 = (𝑤, ℎ, 𝑙), with all coordinates expressed in the camera's 

coordinate system. Using 𝐶𝐺𝑇 , we generate reference points for remote detection 
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denoising queries. The center of projection in the camera's truncated cone is represented 

as𝐶𝐺𝑇 = (𝑢  × 𝑑,  𝑣 × 𝑑,  𝑑,  1), where (𝑢, 𝑣) are the pixel coordinates and 𝑑 denotes 

the depth value. 

With the known depth of the center of the ground truth object, we can generate fake 

depth noise information based on the true depth: 

𝑑𝑓𝑎𝑘𝑒 = 𝑑 + 𝛽𝑖 ⋅ 𝑔(𝑆𝐺𝑇) (1) 

In this context, 𝑔 represents the function to calculate the average scale of the actual 

object, given by 𝑔(𝑆𝐺𝑇) = 𝑘 ⋅
(𝑤+ℎ+𝑙)

6
. Here, the radius  𝑘  determines the effective dis-

tribution range of the reference points, and 𝛽𝑖  denotes the offset for the  i -th reference 

point. 

By the above method, we obtain the fake depth information $d$ of the object, while 

the real coordinates of the object is (𝑋, 𝑌), where 𝑋 = 𝑢 × d and 𝑌 = 𝑣 × 𝑑. Here, 𝑢 

and 𝑣 are the pixel coordinates, and 𝑑 represents the depth value. According to the fake  

 

Fig. 2. Overview of FarDetect3D. Surround-view images are fed into the backbone to obtain 

image features, which are augmented with the LrFA module to refine and enhance the features 

relevant to long-range objects. Using the ReDN method, we generate the fake depths of the ob-

jects and the corresponding 3D queries. The generated 3d queries are then mixed with the origi-

nal 3d queries and iteratively improved by the decoder layer to predict the 3D bounding box. 

 

depth information, the fake coordinates 𝑋𝑓𝑎𝑘𝑒  and 𝑌𝑓𝑎𝑘𝑒  of the object can be calcu-

lated by the following formula: 

𝑋𝑓𝑎𝑘𝑒 =
𝑋 × 𝑑𝑓𝑎𝑘𝑒

𝑑
(2) 

𝑌𝑓𝑎𝑘𝑒 =
𝑌 × 𝑑𝑓𝑎𝑘𝑒

𝑑
(3) 

Then we use  𝑋𝑓𝑎𝑘𝑒 , 𝑌𝑓𝑎𝑘𝑒  and 𝑑𝑓𝑎𝑘𝑒  to compute the 3D proposal center 𝑐3𝑑. 

𝑐3𝑑 = (𝑋𝑓𝑎𝑘𝑒 , 𝑌𝑓𝑎𝑘𝑒 , 𝑑𝑓𝑎𝑘𝑒 , 1) (4) 

 
Finally, we encode 𝑐3𝑑 as a generated 3D query as follows: 



𝑄 = 𝐸𝑚𝑏𝑒𝑑(𝑐3𝑑) (5) 

Where 𝐸𝑚𝑏𝑒𝑑  denotes an embedding layer consisting of a sinusoidal transfor-

mation and an MLP. 

3.2 Implementation Details 

Directly scaling an existing 3D detector from short-range to long-range presents several 

challenges, including high computational demands, inefficient convergence, and de-

clining localization accuracy. For instance, to adequately cover a broader range of po-

tential objects, the number of queries must increase at least quadratically, which is im-

practical in real-world applications. Furthermore, the presence of small and sparse long-

range objects can obstruct convergence and negatively affect the localization of nearby 

objects.  

To address these issues, we introduce the Long-range Feature Attention (LrFA) 

module designed to process image features derived from the backbone. LrFA module 

focuses on enhancing central features while also capturing the contextual relationships 

among distant pixels, as depicted in Fig. 2. It employs average pooling and 1 × 1 con-

volution to extract features from local regions: 

𝑥𝑝𝑜𝑜𝑙 = 𝐶𝑜𝑛𝑣1×1 (𝑃𝑎𝑣𝑔(𝑥)) (6) 

Where 𝑃𝑎𝑣𝑔 denotes the average pooling operation,𝑥 denotes the image features ex-

tracted by the backbone network. 

We utilize two depth-wise strip convolutions as an approximation of a standard 

large-kernel depth-wise convolution: 

𝑥𝑤 = 𝐷𝑊𝐶𝑜𝑛𝑣1×𝑘𝑏
(𝑥𝑝𝑜𝑜𝑙) (7) 

𝑥ℎ = 𝐷𝑊𝐶𝑜𝑛𝑣𝑘𝑏×1(𝑥𝑤) (8) 

We chose the deep strip convolution based on one main consideration: its light-

weight nature. Compared to the traditional  𝑘𝑏 × 𝑘𝑏 2D depth convolution, the deep 

strip convolution achieves a similar effect with 
𝑘𝑏

2
 fewer parameters, making it more 

computationally efficient. 

Finally, our LrFA module produces an attention weight 𝐴, which is further used to 

enhance the output of the image features: 

𝐴 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐶𝑜𝑛𝑣1×1(𝑥ℎ)) (9) 

𝑥𝑎𝑡𝑡𝑛 = λ1(𝐴 ⊙ 𝑥) ⊕ λ2𝑥 (10) 

Here, the Sigmoid function ensures that the attention graph 𝐴 is in the range (0,1),  

⊙ denotes element-by-element multiplication, ⊗  denotes element-by-element sum-

mation, and 𝑥𝑎𝑡𝑡𝑛 is an augmented feature. 

4 Experiment 

4.1 Dataset and Metrics 

Our model’s effectiveness is assessed using the nuScenes dataset [19] and Argoverse 2 

dataset[20]. The nuScenes dataset contains 1000 video sequences, categorized into a 
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training set (700 videos), a validation set (150 videos), and a test set (150 videos). Each 

video lasts around 20 seconds and is annotated every 0.5 seconds. This collection in-

cludes 1.4 million annotated 3D bounding boxes spanning ten object categories. The 

evaluation metrics encompass mean Average Precision (mAP) along with five accurate 

positive metrics: mean Average Translation Error (mATE), mean Average Scale Error 

(mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error 

(mAVE), and mean Average Attribute Error (mAAE), which evaluate errors in trans-

lation, scale, orientation, velocity, and attributes, respectively. The nuScenes Detection 

Score (NDS) combines these metrics to evaluate overall performance.  

The Argoverse 2 dataset contains 1000 unique scenes, each 15 seconds long, anno-

tated at 10 Hz. The scenes are divided into 700 for training, 150 for validation, and 150 

for testing. The evaluation covers 26 categories within a 150-meter range, addressing 

long-range perception tasks. Metrics include the mAP and the Composite Detection 

Score (CDS), which integrates three key true positive metrics: mean Average Transla-

tion Error (mATE), mean Average Scale Error (mASE), and mean Average Orientation 

Error (mAOE).  

4.2 Implementation Details 

Our experimental setup utilizes ResNet50, ResNet101[21], and V2-99[22] as the back-

bone, each initialized with different pre-training strategies. We thoroughly assess the 

performances of ResNet50 and ResNet101, both pre-trained on nuImages[19], using 

the nuScenes validation dataset. To illustrate the extensibility of our approach, we also 

include results on the nuScenes test set employing V2-99, which is initialized with 

DD3D[23] checkpoints. The optimization of the model is performed using the AdamW 

optimizer with a batch size of 16. For models trained solely on the training set, the 

learning rate is set at 4 × 10−4,whereas for those trained on both the training and vali-

dation sets, it is adjusted to 3 × 10−4. A cosine annealing schedule is applied to adjust 

the learning rate. To benchmark against top-performing methods, the model is trained 

for 60 epochs without a Class-Balanced Group. Sampling (CBGS)[24] and for 24 

epochs during the ablation study on the nuScenes. Our implementation is predomi-

nantly based on the StreamPETR[5] framework. 

4.3 Comparison with State-of-the-Art Methods 

We compare the FarDetect3D model with other state-of-the-art multi-view 3D object 

detectors on the validation and test sets of the nuScenes dataset, as well as the validation 

set of the Argoverse 2 dataset.  

nuScenes Validation Set. Table 1 presents a comparison with state-of-the-art meth-

ods on the nuScenes validation set. We evaluated both ResNet-50 and ResNet-101 

backbones. Using ResNet-50 as the backbone with an image size of 256 × 704,we 

achieved 46.8% mAP and 56.6% NDS, improving upon the previous state-of-the-art 

method StreamPETR by 1.8% mAP and 1.6% NDS. With the more powerful ResNet-

101 backbone and an increased image size of 512 × 1408,our performance reached 



51.6% mAP and 60.3% NDS, surpassing StreamPETR by 1.2% mAP and 1.1% NDS 

with the similar speed (FPS 6.3 v.s. 6.4). 

Long-range Results. We introduce a new test set specifically designed for 3D long-

range car detection on the nuScenes validation dataset. In our experiments, we define 

the objects with a depth farther than 50 meters from the camera as the long-range. The 

3D long-range car detection evaluation results are presented in Table 2. Our method 

outperforms StreamPETR [5] with a notable improvement in both mAP and NDS. Spe-

cifically, we achieve an mAP of 34.3% and an NDS of 48.5%, compared to Stream-

PETR’s mAP of 31.7% and NDS of 45.6%. These results for StreamPETR were ob-

tained by running the original author’s code. 

Argoverse 2 Validation Set. To evaluate the generalization ability of the model, we 

performed additional experiments on the Argoverse 2 dataset, as shown in  

Table 4. Our method clearly outperforms previous StreamPETR, achieving a 2.3% 

mAP and 1.9% CDS improvement on the validation set. These metrics emphasize the 

generalization ability of our method. 

Table 1. Evaluation on the nuScenes validation set. † Marks techniques that gain advantages 

from pre-training in a perspective view. FPS is measured on RTX3090 with fp32. 

Methods Backbone Image Size mAP NDS mATE mASE mAOE mAVE mAAE FPS 

BevDet4D [1] ResNet50 256x704 32.2 45.7 0.703 0.278 0.495 0.354 0.206 16.7 

PETRv2 [4] ResNet50 256x704 34.9 45.6 0.700 0.275 0.58 0.437 0.187 16.7 

BEVDepth [25] ResNet50 256x704 35.1 47.5 0.629 0.267 0.479 0.428 0.198 15.7 

BEVStereo [26] ResNet50 256x704 37.2 50 0.598 0.270 0.438 0.367 0.190 12.2 

BEVFormerv2 [3] † ResNet50 - 42.3 52.9 0.618 0.273 0.413 0.333 0.188 - 

SOLOFusion[27] ResNet50 256x704 42.7 53.4 0.567 0.274 0.511 0.252 0.181 11.4 

SparseBEV[18]† ResNet50 256x704 44.8 55.8 0.581 0.271 0.373 0.247 0.190 - 

StreamPETR[5]† ResNet50 256x704 45 55 0.613 0.267 0.413 0.265 0.198 31.7 

DVPE [28] ResNet50 256x704 46.6 55.9 0.608 0.271 0.386 0.274 0.202 - 

FarDetect3D (Ours) ResNet50 256x704 46.8 56.6 0.556 0.261 0.412 0.252 0.196 30.6 

BEVDepth [25] ResNet101 512x1408 41.2 53.5 0.565 0.266 0.358 0.331 0.190 - 

PETRv2 [4] ResNet101 640x1600 42.1 52.4 0.681 0.267 0.357 0.377 0.186 - 

Sparse4D [29] ResNet101 900x1600 43.6 54.1 0.633 0.279 0.363 0.317 0.177 4.3 

SOLOFusion [27] ResNet101 512x1408 48.3 58.2 0.503 0.264 0.381 0.246 0.207 - 

SparseBEV [18] † ResNet101 512x1408 50.1 59.2 0.562 0.265 0.321 0.243 0.195 - 

StreamPETR [5] † ResNet101 512x1408 50.4 59.2 0.569 0.262 0.315 0.257 0.199 6.4 

FarDetect3D (Ours) ResNet101 512x1408 51.6 60.3 0.541 0.260 0.314 0.236 0.198 6.3 

 

Table 2. Comparing the performance of StreamPETR and ReDN on 3D long-range car detection. 

Methods Backbone mAP↓ NDS↓ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ 

StreamPETR [5]  ResNet50 31.7 45.6 0.713 0.275 0.493 0.332 0.203 

FarDetect3D (Ours) ResNet50 34.3 48.5 0.631 0.257 0.489 0.311 0.196 
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Table 3. Evaluation on the nuScenes test dataset. 

Methods Backbone Image Size mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ 

DETR3D [11] V2-99 900×1600 41.2 47.9 0.641 0.255 0.394 0.845 0.133 

MV2D [30] V2-99 640×1600 46.3 51.4 0.542 0.247 0.403 0.857 0.127 

BEVFormer [2] V2-99 900×1600 48.1 56.9 0.582 0.256 0.375 0.378 0.126 

PETRv2 [4] V2-99 640×1600 49.0 58.2 0.561 0.243 0.361 0.343 0.120 

PolarFormer [31] V2-99 900×1600 49.3 57.2 0.556 0.256 0.364 0.439 0.127 

BEVStereo [26] V2-99 900×1600 52.5 61.0 0.431 0.246 0.358 0.357 0.138 

HoP [32] V2-99 640×1600 52.8 61.2 0.491 0.242 0.332 0.343 0.109 

SparseBEV [18] V2-99 640×1600 54.3 62.7 0.502 0.244 0.324 0.251 0.126 

StreamPETR [5] V2-99 640×1600 55.0 63.6 0.479 0.239 0.317 0.241 0.119 

DualBEV [33] V2-99 640×1600 55.2 63.4 0.414 0.245 0.377 0.252 0.129 

FarDetect3D (Ours) V2-99 640×1600 56.7 64.7 0.461 0.240 0.310 0.239 0.114 

 

Table 4. Comparisons on the Argoverse 2 validation set. 

Methods Backbone Resolution mAP↑(%) CDS↑(%) mATE↓ mASE↓ mAOE↓ 

PETR [12] V2-99 900×640 17.6 12.2 0.911 0.339 0.819 

Sparse4Dv2 [34] V2-99 900×640 18.6 13.4 0.832 0.343 0.723 

StreamPETR [5] V2-99 900×640 20.3 14.6 0.843 0.321 0.650 

FarDetect3D (Ours) V2-99 900×640 22.6 16.5 0.825 0.319 0.624 

 

Table 5. Ablation studies of LrFA and ReDN in FarDetect3D. 

LrFA ReDN mAP↑(%) NDS↑(%) mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ 

  42.1 51.0 0.703 0.278 0.455 0.354 0.206 

✓  42.7 51.9 0.700 0.275 0.431 0.351 0.185 

 ✓ 43.0 52.1 0.630 0.267 0.430 0.420 0.190 

✓ ✓ 43.9 52.5 0.670 0.290 0.452 0.345 0.184 

 

4.4 Ablation Studies 

This part delves into the ablation studies carried out using validation sets from the 

nuScenes. Unless specified otherwise, our experiments on nuScenes use a ResNet50 

backbone that has been pre-trained on the nuImages dataset. We take 8frames as input, 

each with a resolution of 256 × 704 pixels. The decoder uses 428 queries, and the model 

undergoes training for 24 epochs without utilizing CBGS. 

We conduct an ablation study to evaluate the contributions of Long-range Feature 

Attention (LrFA) and Remote Detection Denoising (ReDN) in improving long-range 

3D object detection. The results are summarized in Table 5. 



LrFA Ablation. We first evaluate the impact of LrFA by comparing the perfor-

mance of our model with and without the LrFA module. As shown in Row #1 and #2 

of Table 5, the inclusion of LrFA results in an improvement of 0.6% mAP and 0.9% 

NDS. The LrFA module enhances the ability of the model to capture contextual rela-

tionships between distant pixels, which significantly boosts the accuracy of detecting 

objects at long distances. This demonstrates the importance of context awareness in 

handling long-range objects and improving feature representation. 

ReDN Ablation. Next, we assess the effectiveness of ReDN by comparing the base-

line method (without ReDN) to our full model that incorporates ReDN. As shown in 

Row #1 and #3 of Table 5, ReDN brings a substantial performance boost of 0.9% mAP 

and 1.1% NDS. The ReDN module addresses the challenge of depth ambiguity and 

resolution degradation in long-range object detection by introducing a remote detection 

denoising mechanism. This mechanism enhances depth estimation and reduces fake 

positives, particularly in long-range scenarios. The results clearly highlight the crucial 

role of ReDN in improving detection accuracy and robustness in complex environ-

ments. 

 

Combined Effect of LrFA and ReDN. Finally, we analyze the combined effect of 

both LrFA and ReDN in Table 5. The joint use of these two modules results in a sig-

nificant overall improvement of 1.8% mAP and 1.5% NDS, demonstrating that LrFA 

and ReDN complement each other effectively. LrFA boosts feature attention for long-

range objects, while ReDN improves the precision of depth estimation and reduces 

noise in long-range detections. Together, they provide a robust solution for enhancing 

detection accuracy in autonomous driving, particularly in complex, large-scale envi-

ronments. 

 

 

Fig. 3. Visualization of the images and BEV spatial detection results for comparison with Stream-

PETR, each set of images shows the detection results of StreamPETR on the top and those of 

FarDetect3D on the bottom. 
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Fig. 4. Visualization of the images and Fused RADARs spatial detection results for comparison 

with StreamPETR, each set of images shows the detection results of StreamPETR on the top and 

those of our proposed model on the bottom. 

 

Fig. 5. Visualization of images and Fused RADARs spatial detections for comparison with 

StreamPETR, two sets of images showing the detections of StreamPETR on the left side and the 

detections of our proposed model on the right side. 

4.5 Visualization 

For better showing the result comparison between FarDetect3D and the existing meth-

ods, we visualize the detection results in different forms. Fig. 3 visualizes the detection 

results of StreamPETR and FarDetect3D. The prediction results of our model show 

better localization and higher-quality bounding boxes, especially for long-range ob-

jects. Fig. 4 illustrates the detection results from different viewpoints within the same 

scene. While StreamPETR fails to detect some long-distance targets, our proposed 

model demonstrates improved detection performance for these targets. Fig. 5 illustrates 

how StreamPETR incorrectly detects a target while our proposed model correctly iden-

tifies the target. 



5 Conclusion 

In this paper, we present a novel multi-view 3D object detection approach named 

FarDetect3D to boost the performance of long-range object detection. In FarDetect3D, 

we introduce two modules: Remote Detection Denoising (ReDN) enhances the accu-

racy of long-range object detection by utilizing fake depth information to generate 3D 

queries; Long-range Feature Attention (LrFA), which focuses on strengthening central 

features and capturing contextual relationships between distant pixels. Our experi-

mental results demonstrate that FarDetect3D outperforms existing methods, particu-

larly in camera-based systems. This approach offers a robust solution for detecting 

long-range objects, ensuring safer autonomous driving in complex real-world environ-

ments. The promising performance of our method underscores its potential for practical 

deployment in autonomous vehicles. 
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