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Abstract. Imitation Learning (IL) struggles with long-horizon tasks due to insuf-

ficient policy generalization and adaptability in dynamic environments. To ad-

dress this, we propose a hierarchical framework that integrates Hierarchical Re-

inforcement Learning (HRL) with a Bidirectional Decoding mechanism. The 

framework decomposes complex tasks into subtasks, leveraging human demon-

strations to rapidly capture behavioral patterns through IL, while employing HRL 

to refine policies via reward-driven optimization. A novel Bidirectional Decod-

ing mechanism leverages temporal consistency (backward coherence) and en-

hances robustness (forward contrast) by dynamically reassessing action se-

quences against strong and weak policy predictions. Evaluations in the Franka 

Kitchen environment demonstrate superior performance in task success rates and 

cumulative rewards, outperforming existing approaches. Ablation studies con-

firm the critical role of Bidirectional Decoding in resolving the rigidity of tradi-

tional action chunking, while the discovery of novel strategies—diverging from 

human demonstrations—highlights autonomous policy improvement. Our 

framework efficiently handles dynamic and diverse long-horizon tasks, even with 

limited demonstration data, offering a robust solution for robotic manipulation. 

Keywords: Imitation Learning, Hierarchical Reinforcement Learning, Bidirec-

tional Decoding. 

1 Introduce 

With the rapid development of robotics, the ability of robots to acquire complex skills 

from human demonstrations has become increasingly critical. Taking a kitchen envi-

ronment as an example, robots need to perform various intricate tasks such as grasping, 

placing, and cooking. These tasks often exhibit high temporal dependencies and diver-

sity, posing significant challenges for traditional robot control methods.  

In recent years, human demonstrations have spurred interest in IL [1], [2], with grow-

ing research demonstrating its capability to learn complex behaviors from human 

demonstrations. However, when human demonstrations in a dataset vary signifi-

cantly—for instance, due to differences in behavioral preferences [3] or varying quality 



of demonstrations [4]—the performance of IL deteriorates. Additionally, IL struggles 

with tasks involving long-term dependencies [5], [6], particularly in dynamic or diverse 

environments [7]. The lack of labeled data in human demonstrations exacerbates these 

challenges. 

In this paper, we address these issues through HRL [8]. Studies have shown that 

HRL, with its multi-timescale decision-making capabilities, outperforms standard Re-

inforcement Learning (RL) in tasks requiring long-term planning [9], [10]. Moreover, 

many real-world tasks inherently possess hierarchical structures [11], making hierar-

chical frameworks effective in IL settings [12]. IL enables rapid acquisition of basic 

behavioral patterns from demonstrations, while HRL further optimizes policies through 

trial-and-error and reward mechanisms to handle environmental uncertainties. 

We propose a novel hierarchical planning framework for IL, aiming to enhance pol-

icy generalization and responsiveness in dynamic environments. Specifically, our 

framework learns hierarchical policies from human demonstrations via IL and opti-

mizes hierarchical action sequences through HRL. We introduce a Bidirectional De-

coding that balances coherence and adaptability: forward decoding prioritizes se-

quences consistent with prior actions, while backward decoding selects sequences 

closer to strong policy outputs and farther from weak ones, ensuring consistency in 

long-horizon tasks and reactivity in dynamic settings. 

To summarize, the main contributions of our work are as follows: 

1. We propose a hierarchical imitation learning framework that integrates HRL for task 

decomposition and IL for policy acquisition from human demonstrations, signifi-

cantly improving learning efficiency in long-horizon tasks. 

2. We introduce a Bidirectional Decoding mechanism that synergizes with action 

chunking to enhance planning efficiency and resolve the rigidity of fixed action se-

quences in dynamic environments. 

3. Extensive validation in the Franka Kitchen and Block Push simulation environment 

demonstrates the superiority of our framework over other approaches, achieving ro-

bust performance even with limited human demonstration data. 

2 Related Work 

HRL decomposes complex tasks into multi-level sub-tasks or skills, significantly im-

proving learning efficiency and generalization in long-horizon tasks. Recent advance-

ments in Deep Reinforcement Learning (DRL) have spurred innovations in three key 

directions: automatic skill discovery, hierarchy optimization, and cross-task transfer 

[13]. Classic methods for hierarchy optimization, such as the Option-Critic architecture, 

integrate option learning with policy gradients for end-to-end training. Subsequent 

works enhance option interpretability and reusability through symbolic abstraction 

[14]; however, these methods rely on manually designed termination conditions, limit-

ing scalability. To avoid manual sub-task design, researchers automatically discover 

skills by maximizing state-space coverage or mutual information. For example, the 

DIAYN framework [15] achieves unsupervised skill learning by maximizing mutual 

information between skills and states. Meta-learning further equips HRL with dynamic 
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adaptation capabilities. The MGHRL method [16], for instance, adjusts sub-task prior-

ities via meta-policies to accommodate multi-task scenarios. 

 

Fig. 1. The framework of the proposed model.  

IL enables agents to acquire complex skills by learning from expert demonstrations, 

offering data-efficient alternatives to trial-and-error RL. Behavioral Cloning (BC), a 

core IL approach, directly learns state-to-action mapping from human demonstrations 

and is widely applied in robotics. Advances in teleoperation interfaces [17], [18], [19] 

have enabled efficient collection of large-scale demonstration data, facilitating the 

training of policies for complex skills [20], [21]. However, traditional BC suffers from 

compounding errors [22], [23], where distribution shifts between training and testing 

environments lead to error accumulation during policy execution. To mitigate this, ex-

isting works propose several solutions: The DAgger algorithm iteratively collects ex-

pert-annotated trajectories under agent-visited states, effectively addressing covariate 

shift. Further refinements include online correction [24] and lazy labeling [25] to reduce 

human operational costs. Data augmentation methods inject noise into training data [26] 

or leverage visual backtracking [27] to enhance policy robustness. Beyond these, Im-

plicit Behavioral Cloning (IBC) [28] explores offline policy optimization, implicitly 

leveraging demonstration data to improve generalization in out-of-distribution scenar-

ios, reducing reliance on direct expert feedback during execution. Action chunking 

methods predict and execute multi-step action sequences, reducing control frequency 

and capturing temporal dependencies in demonstrations, such as idle pauses and multi-

style actions. Yet, these methods often lack explicit modeling of decision termination. 

Behavioral and Termination (BeT) [29] explicitly integrates action-generation mecha-

nisms with termination conditions, enabling more precise sequential decision-making 

in long-horizon task execution. However, most existing action chunking approaches 



adopt open-loop execution, where entire action chunks are generated once without re-

planning. This paradigm lacks real-time responsiveness to unexpected state changes in 

dynamic environments, leading to degraded policy performance. To handle complex 

task dependencies during demonstration following, Graph-constrained Behavioral 

Cloning (GCBC) [30] introduces structured relational constraints into policy learning. 

While it excels at modeling intricate task relationships, it still faces challenges in dy-

namic replanning.  

3 Methodology 

As shown in Fig. 1, our proposed framework comprises three core modules: Hierar-

chical Reinforcement Learning, Imitation Learning, and Bidirectional Decoding. Be-

low, we elaborate on the details of each component. 

3.1 Hierarchical Imitation Learning 

In this work, we adopt a HRL framework where the high-level policy 𝜋𝛺(𝜔|𝑠) selects 

an option 𝜔 ∈ 𝛺, which activates a low-level policy 𝜋𝜔(𝑎|𝑠) and a termination func-

tion 𝛽𝜔(𝑠) ∈ [0,1]. The hierarchical decision-making process is formalized through the 

following value functions: 

𝑄𝛺(𝑠, 𝜔) = ∑ 𝜋𝜔,𝜃(𝑎|𝑠)𝑄𝑈(𝑠, 𝜔, 𝑎)𝑎 (1) 

This represents the expected cumulative reward of selecting option 𝜔 in state 𝑠. Fur-

thermore, in state 𝑠 where option 𝜔 has been selected, the choice of action 𝑎 also criti-

cally impacts the total reward. Under this condition, the total reward generated by tak-

ing action 𝑎 is defined as: 

𝑄𝑈(𝑠, 𝜔, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑈(𝜔, 𝑠′)𝑠′ (2) 

During the execution of option 𝜔, when a state transition occurs from ss to 𝑠′, the total 

reward generated is defined as: 

𝑈(𝜔, 𝑠′) = (1 − 𝛽𝜔,𝜗(𝑠′)) 𝑄𝛺(𝑠′, 𝜔) + 𝛽𝜔,𝜗(𝑠′)𝑉𝛺(𝑠′) (3) 

These formulas provide a quantitative foundation for understanding the complex rela-

tionships between states, actions, and rewards under the HRL architecture. They enable 

the exploration of more efficient adjustments to the parameters of high-level and low-

level policies, thereby accelerating the agent’s learning process while reducing policy 

oscillations and ineffective exploration. 

Furthermore, to fully leverage human demonstration data, we integrate IL into the 

HRL architecture by splitting the experience replay buffer into 𝐷𝑎𝑔𝑒𝑛𝑡  and 𝐷𝑑𝑒𝑚𝑜: 

• 𝐷𝑎𝑔𝑒𝑛𝑡: Stores online interaction data generated during the agent’s learning process. 

• 𝐷𝑑𝑒𝑚𝑜: Contains human demonstration data for the target tasks. 
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Transitions are prioritized using TD-error [31], where a higher TD-error indicates 

greater importance of the experience to the learning process. Specifically, transitions 

with larger errors are assigned higher sampling probabilities during experience replay. 

The priority is calculated as: 

𝑝 = |𝑟 + 𝛾 ((1 − 𝛽𝜔,𝜗(𝑠′)) 𝑄𝛺(𝑠′, 𝜔) + 𝛽𝜔,𝜗(𝑠′)𝑚𝑎𝑥𝜔̅𝑄𝛺(𝑠′, 𝜔̅)) − 𝑄𝑈(𝑠, 𝜔, 𝑎)| (4) 

The dual-buffer approach allows the agent to simultaneously consider prioritized sam-

pling from both online interaction data and human demonstration data. During training, 

the agent replays transitions from both 𝐷𝑎𝑔𝑒𝑛𝑡 and 𝐷𝑑𝑒𝑚𝑜. A hyperparameter 𝜌 controls 

the sampling ratio between online experiences and human demonstrations, ensuring 

balanced utilization of both data sources. 

By integrating IL, the agent can rationally integrate experiences from heterogeneous 

sources, enabling efficient learning and policy optimization for complex tasks. 

3.2 Bidirectional Decoding 

 

Fig. 2. The neural network structure of the proposed model. (a) Module to obtain state 𝑠𝑡 from 

environmental observation. (b) Module to generate termination function 𝛽. (c) Module to get 

current option 𝜔𝑡. (d) Module to generate action chunk 𝑎𝑡:𝑡+𝑇. 

To address the challenge of balancing consistency and reactivity in hierarchical imita-

tion learning models, we propose a Bidirectional Decoding mechanism. Specifically, at 

each timestep 𝑡, the mechanism generates multiple action predictions and selects the 

optimal action sequence based on two key criteria: backward coherence and forward 

contrast. 

The model generates an action chunk 𝑎𝑡:𝑡+𝑇 = [𝑎𝑡 , 𝑎𝑡+1, … , 𝑎𝑡+𝑇]  at timestep 𝑡 . 

While conventional methods directly execute this chunk over the interval 𝑡~𝑡 + 𝑇, our 

approach dynamically re-evaluates and reselects the action chunk at every timestep. As 



shown in Fig. 2 (d), the action chunk generation network processes input states to pro-

duce these multi-step action sequences, serving as the foundational component for sub-

sequent bidirectional decoding and optimization. 

The core idea of Bidirectional Decoding is to generate multiple action predictions at 

each timestep and select the optimal action chunk, thereby maintaining consistency in 

action chunking while enhancing the agent’s reactivity to dynamic environments. Spe-

cifically, the Bidirectional Decoding mechanism selects actions based on two criteria: 

• Backward Coherence 

This criterion ensures that the currently selected action chunk remains consistent 

with those chosen in previous timesteps, thereby preserving the continuity of task exe-

cution. The loss function is defined as: 

𝐿𝐵 = ∑ 𝜆𝜏‖𝑎𝑡+𝜏 − 𝑎̂𝑡+𝜏‖2
2𝑙−1

𝜏=0  (5) 

𝑎𝑡+𝜏: The 𝜏-th action in the current action chunk. 𝑎̂𝑡+𝜏: The 𝜏-th action in the previously 

selected action chunk. 𝜆: A decay hyperparameter that reduces reliance on past action 

chunks as timesteps increase. 

• Forward Contrast 

This criterion compares the current action chunk against predictions from a strong 

policy 𝜋+ and a weak policy 𝜋−, favoring chunks closer to 𝜋+ and farther from 𝜋−. 

The loss function is: 

𝐿𝐹 =
1

𝑁
(∑ ∑ ‖𝑎𝑡+𝜏 − 𝑎𝑡+𝜏

+ ‖2
𝑙
𝜏=0𝑎+∈𝐴+ − ∑ ∑ ‖𝑎𝑡+𝜏 − 𝑎𝑡+𝜏

− ‖2
𝑙
𝜏=0𝑎−∈𝐴− ) (6) 

𝐴+: Set of positive samples generated by the strong policy 𝜋+. 𝐴−: Set of negative sam-

ples generated by the weak policy 𝜋−. 𝑎𝑡+𝜏
+ : The 𝜏-th action in a positive sample. 𝑎𝑡+𝜏

− : 

The 𝜏-th action in a negative sample. During training, strong policy 𝜋+ can be periodi-

cally replaced with the latest high-performance checkpoints to achieve dynamic up-

dates. And the weak strategy is fixed, always using the initial checkpoint as the 𝜋−. 

Finally, the optimal action chunk 𝑎∗ is selected by minimizing the total loss𝐿𝐵 + 𝐿𝐹: 

𝑎∗ = arg  𝑚𝑖𝑛𝑎∈𝐴(𝐿𝐵(𝑎) + 𝐿𝐹(𝑎)) (7) 

Action Chunking improves planning efficiency for long-horizon tasks by segmenting 

action sequences into executable chunks. Bidirectional Decoding resolves the rigidity 

of chunked actions in dynamic environments through joint forward-backward optimi-

zation. 

Building on the hierarchical imitation learning framework and Bidirectional Decod-

ing mechanism elaborated in the preceding sections, the following pseudocode system-

atically integrates these components into a unified algorithm. 



 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

4 Experiment 

4.1 Experimental Setup 

Algorithm 1: The process of the proposed model. 

Require: 𝐷𝑑𝑒𝑚𝑜: initialized with demonstration data set; 𝜃:weights for initial behav-
ior network; 𝜗: weights for initial termination network; 𝑙(𝑠, 𝑎, 𝑎𝐸): a margin func-
tion that is 0 when 𝑎 = 𝑎𝐸  and positive otherwise. 
1: 𝑠 ← 𝑠0 

2: Choose 𝜔 according to an 𝜖 − 𝑠𝑜𝑓𝑡 policy over options 𝜋𝛺(𝑠) 
3: repeat 
4:  Choose actions 𝑎𝑡:𝑡+𝑇 according to 𝜋𝜔,𝜃(𝑎|𝑠) 
5:  Choose action 𝑎∗ according to Bidirectional Decoding 
6:  Take action 𝑎 ← 𝑎∗ in 𝑠, observe 𝑠′, 𝑟 

7:  
Store (𝑠, 𝑎, 𝜔, 𝑟, 𝑠′) into 𝐷𝑎𝑔𝑒𝑛𝑡 , overwriting oldest self-generated tran-

sition if over capacity 

8:  
Use priority and sampling ratio 𝜌 to sample a mini-batch of 𝑛 transi-
tions from 𝐷𝑎𝑔𝑒𝑛𝑡  and 𝐷𝑑𝑒𝑚𝑜 

9:  𝛿 ← 𝑟 − 𝑄𝑈(𝑠, 𝜔, 𝑎) 
10:  If 𝑠′ in non-terminal then 

11:   𝛿 ← 𝛿 + 𝛾 (1 − 𝛽𝜔,𝜗(𝑠′)) 𝑄𝛺(𝑠′, 𝜔) + 𝛾𝛽𝜔,𝜗(𝑠′)𝑚𝑎𝑥𝜔̅𝑄𝛺(𝑠′, 𝜔̅) 

12:  Update transition priority 𝑝 ← |𝛿| 
13:  𝑄𝑈(𝑠, 𝜔, 𝑎) ← 𝑄𝑈(𝑠, 𝜔, 𝑎) + 𝛼𝛿 

14:  𝜃 ← 𝜃 + 𝛼𝜃

𝜕 log 𝜋𝜔,𝜃(𝑎|𝑠)

𝜕𝜃
(𝑄𝑈(𝑠, 𝜔, 𝑎) + 𝑙(𝑠, 𝑎, 𝑎𝐸)) 

15:  𝜗 ← 𝜗 − 𝛼𝜗

𝜕𝛽𝜔,𝜗(𝑠′)

𝜕𝜗
(𝑄𝛺(𝑠′, 𝜔) − 𝑉𝛺(𝑠′)) 

16:  If 𝛽𝜔,𝜗 terminates in 𝑠′ then 
17:   Choose new 𝜔 according to 𝜖 − 𝑠𝑜𝑓𝑡(𝜋𝛺(𝑠′)) 
18:  𝑠 ← 𝑠′ 
19: Until 𝑠′ is terminal 

Environment and Dataset. In this paper, we choose Franka Kitchen and Block Push 

as the experimental environment, which is a popular platform for evaluating the ability 

of IL and Offline-RL methods to learn multiple long-horizon tasks. Proposed in Relay 

Policy Learning (RPL) [32], the Franka Kitchen environment contains 7 objects for 

interaction and comes with a human demonstration dataset of 566 demonstrations, each 

completing 4 tasks (microwave, top burner, slide cabinet, hinge cabinet) in arbitrary 

order. The goal is to execute as many demonstrated tasks as possible, regardless of 

order, showcasing both short-horizon and long-horizon multimodality. The experi-

mental setup and data set of Block Push refer to C-BeT [33]. 

Training Details. The 𝜖 is updated using an exponential decay strategy. The learn-

ing rates 𝛼, 𝛼𝜃, and 𝛼𝜗 are set to 1e-4. The positive value of 𝑙(𝑠, 𝑎, 𝑎𝐸) is set to 0.1. 

The discount factor 𝛾 is set to 0.99. The number of high-level policies matches the 



number of classes 𝑁 in the human demonstration dataset. When initializing 𝐷𝑑𝑒𝑚𝑜 us-

ing the human demonstration dataset, each data entry is augmented with 𝜔 ∈
{0,1, … , 𝑁} as the option column based on the corresponding scenario category. The 

mini-batch size for experience replay sampling is set to 𝑛 =  64, and the sampling ra-

tio 𝜌 takes values in {0.025, 0.05, 0.075}. To determine the optimal 𝜆 in Bidirectional 

Decoding, we searched over a range of potential values, from 0.3 to 0.7. Through ex-

tensive evaluations, we conclude that 𝜆 = 0.5 yields the best performance, and the re-

sults are presented in the hyperparametric sensitivity analysis. For the strong policy and 

the weak policy, the network parameters at the 100th step after the start of training are 

selected and assigned to the strong and weak policies. Subsequently, the parameters of 

the strong policy are updated every 200 steps using the current network parameters. 

4.2 Comparison Models 

• RPL integrates the advantages of IL and RL to improve agent performance in long-

horizon tasks.  

• Nearest neighbor (NN) [34] based algorithms are easy to implement, and has re-

cently shown to have strong performance on complicated behavioral cloning tasks. 

• LSTM-GMM [35] generates continuous action distributions by combining the se-

quence modeling capability of Long Short-Term Memory (LSTM) networks with 

the probability density estimation of Gaussian Mixture Models (GMM). 

• IBC maximizes the advantage of human demonstration actions over random actions 

by constructing a new objective function, thereby learning effective strategies. 

• BeT transforms the standard Transformer architecture through discretization of ac-

tions and multi task action correction, utilizing Transformer's multimodal modeling 

capabilities to directly predict multimodal continuous actions. 

• GCBC learns a unimodal policy encoded as a simple multi-layer perceptron (MLP) 

trained with an MSE loss. 

• Conditional-Behavior Transformer (C-BeT) is a GPT-like transformer-based pol-

icy, that predicts discrete action labels together with a continuous offset vector to 

learn multimodal behavior. 

• Diffusion-X (CX-Diff) [36] is a DDPM based policy with improved inference. 

4.3 Main Results 

To validate the model’s performance, we tested task success rates in the Franka Kitchen 

environment across various scenarios, as shown in Table 1 and Table 2. Specifically, 

Table 1 focuses on per-task evaluation with a 500-step limit per task. In contrast, Table 

2 emphasizes holistic performance under a cumulative step limit of 280. This separation 

ensures clarity in demonstrating the framework’s efficacy across distinct evaluation 

frameworks. 

Our model (implemented using the proposed framework) is denoted as "Ours" in the 

results. Our framework achieved the highest success rate for each task, demonstrating 

its superior performance in long-horizon tasks. 
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A key advantage of the proposed framework is its capability to autonomously learn 

and optimize high-level policies with minimal human demonstration data. To validate 

this, we conducted 10 experimental sets (each comprising 100 episodes) to evaluate the 

framework’s high-level policy outputs across four scenarios: Microwave, Top Burner, 

Slide Cabinet, and Hinge Cabinet. As illustrated in Fig. 3, the results demonstrate that 

the framework facilitates hierarchical policy learning from sparse human demonstra-

tions, thereby enabling cross-scenario transfer of corresponding behavioral policies. 

Table 1. Task completion rate in Franka Kitchen environment. For Franka Kitchen, Px is the 

frequency of interacting with x or more objects (e.g. Top Burner).  

 Franka Kitchen 
P1 P2 P3 P4 

RPL 1.000 1.000 0.647 0.040 
NN 0.900 0.720 0.440 0.170 

LSTM-GMM 1.000 0.900 0.740 0.340 
IBC 0.990 0.870 0.610 0.240 
BeT 0.990 0.930 0.710 0.440 
Ours 1.000 1.000 0.832 0.604 

Table 2. Mean and std on the Franka Kitchen and Block Push. 

 GCBC LMP C-BeT CX-Diff RPL Ours 

Franka Kitchen 
2.57 

(±0.26) 
1.41 

(±0.22) 
2.69 

(±0.28) 
3.35 

(±0.15) 
2.69 

(±0.07) 
3.44 

(±0.05) 

Block Push 
0.13 

(±0.04) 
0.04 

(±0.03) 
0.87 

(±0.07) 
0.90 

(±0.04) 
\ 

0.91 
(±0.01) 

Notably, in the Top Burner scenario, our framework discovered strategies distinct from 

human demonstrations: While the expected strategy and human demonstration involve 

grasping the knob with the robotic arm to rotate it, the learned policy opens the switch 

by pushing the base of the knob using the arm, as illustrated in Fig. 4. 

The performance of various methods is summarized in the following paragraphs. 

Optimization based on human demonstration and online learning. Our model 

optimizes imitation learning policies through online reinforcement learning, enabling 

generalization to unseen target states and yielding simpler yet effective behavioral strat-

egies: opening switches by pushing knobs in Top Burner, and opening doors by pushing 

door handles in Slide Cabinet and Hinge Cabinet. These strategies markedly distinguish 

themselves from the human demonstrations requiring a certain level of precision 

learned by imitation learning methods such as RPL, NN, IBC, BeT, and advanced dif-

fusion policy methods like CX-Diff, substantially improving task stability. Addition-

ally, we use only extremely limited human demonstration data, drastically reducing 

reliance on demonstration data. 

Behavioral articulation for continuous task switching. Our model obtains 

smoother behavioral output after task switching through hierarchical reinforcement 



learning and bidirectional decoding mechanism, which ensures the processing perfor-

mance of continuous task, and generally outperforms other methods: hierarchical rein-

forcement learning methods such as LMP and RPL can not realize the task articulation 

well, e.g., it will replace the sub-targets to the next task directly after completing the 

Hinge Cabinet task, which will often result in the mechanical The situation where the 

mechanical arm is stuck in the door handle; imitation learning methods such as GCBC 

and C-BeT have never been good at dealing with this kind of problem, and even though 

a large amount of human demonstrations of continuous tasks are used, their ability to 

cope with task switching is still insufficient; however, the CX-Diff method, which com-

bines the diffusion strategy, is better, but its data dependence should not be ignored, 

and it relies on human demonstrations of only 566 consecutive tasks, and the lack of an 

online learning process cannot cover the interactive process. The lack of an online 

learning process cannot cover all possibilities of the interaction process, and it will have 

poor performance in the face of unseen task scenarios, leading to poor learning ability 

for cross-task time-step correlation. 

 

Fig. 3. High-level Policy Outputs across Different Scenarios in the Franka Kitchen Environment. 

The line charts illustrate the high-level policy derived from human demonstration data and the 

selection probabilities of alternative high-level policies. The four panels correspond sequentially 

to the Microwave, Top Burner, Slide Cabinet, and Hinge Cabinet scenarios. 

 

Fig. 4. Top Burner 
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4.4 Hyperparameter Sensitivity Analysis 

To validate the impact of hyperparameter 𝜌 on the training process, we evaluated our 

framework in the Franka Kitchen environment. Fig. 5 presents the results, showing that 

the framework achieves high performance with minimal offline data. The model’s con-

vergence behavior is sensitive to 𝜌: an excessively small 𝜌 delays hierarchical policy 

learning, while an overly large 𝜌 impedes online learning’s dynamic optimization. Ad-

ditionally, a high 𝜌 value imposes stricter requirements on offline datasets. In contrast 

to offline methods relying on extensive human demonstrations, our framework priori-

tizes online learning data, making it suitable for tasks with limited demonstrations. 

 

Fig. 5. Reward convergence curve in training process. 

 

Fig. 6. Task success rate when 𝜆 takes different values. 

𝜆 plays a key role in Bidirectional Decoding by balancing the weights between past 

decisions and future plans. Specifically, 𝜆 determines the balance between the degree 

of reliance on previous decisions and the degree of consideration of future plans when 

                      
   

   

   

   

   

   

   

   

   

 
 
 
 
 
 

       

       
       
       



choosing the current action. The experimental results are shown in Fig. 6. Through 

extensive performance evaluation at different 𝜆 values, we find that when λ =0.5, the 

strategy is better able to cope with changes in the environment to achieve optimal per-

formance while maintaining coherence. 

4.5 Ablation Study 

In addition, to validate the impact of each module on the model, we designed and con-

ducted ablation experiments. The results are shown in Table 3. The incorporation of 

human demonstration data enables the model to learn effective strategies by referring 

to expert behaviors. Meanwhile, the addition of hierarchical policies allows the model 

to better handle diverse task scenarios. Moreover, the Franka Kitchen environment has 

relatively higher implementation difficulty and a longer process. The inclusion of the 

Bidirectional Decoding module enhances the model's ability to handle long-horizon 

tasks. 

Table 3. Ablation Study 

 Franka Kitchen 

P1 P2 P3 P4 Reward 

No IL 0.950 0.613 0.209 0.025 1.80(±0.10) 

No HRL 0.893 0.536 0.197 0.110 1.74(±0.07) 

No BID 1.000 1.000 0.733 0.485 3.22(±0.05) 

Ours 1.000 1.000 0.832 0.604 3.44(±0.05) 

4.6 Computational Cost 

Considering that the introduction of the Bidirectional Decoding adds a huge amount of 

computation to the implementation of the model, for this reason we tested the compu-

tation time and memory footprint of the action generation module. The results, as 

shown in Table 4, show a smaller impact on memory footprint and a larger impact on 

computation time. However, even though the difference in computation time is large, 

the 30 Hz frame rate requirements of Franka Kitchen and Block Push are still met. In 

practical deployment, the number of samples can be appropriately reduced to lower the 

computation of the model, which in turn improves the response efficiency. 

Table 4. The computational cost of the proposed model. 

 Calculation Time (ms) Memory Usage (MB) 

No BID 1.09(±0.01) 311.1(±0.91) 

Ours 18.94(±0.36) 308.3(±2.07) 
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5 Conclusion 

In this paper, we propose a novel hierarchical imitation learning framework that inte-

grates IL into HRL. On one hand, it leverages IL to rapidly acquire fundamental behav-

ioral patterns for complex tasks from human demonstrations. On the other hand, it em-

ploys the trial-and-error and reward mechanisms of HRL to further optimize behavioral 

policies for handling environmental uncertainties. Additionally, we incorporate a Bidi-

rectional Decoding mechanism into this framework to ensure the consistency of behav-

ioral policies in long-horizon tasks and responsiveness in dynamic environments. Ex-

periments in the Franka Kitchen environment validate the effectiveness of our frame-

work, demonstrating its capability to enhance model performance using only limited 

human demonstration data while effectively mitigating the limitations of IL in handling 

environmental changes. 
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