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Abstract. With the advancement of deep learning, sports motion analysis has 

become increasingly data-driven. However, techniques such as pose estimation, 

action recognition, and scoring often operate independently. To address this lim-

itation, a unified framework is proposed for structured and objective long jump 

analysis. One major challenge in real-world scenarios is motion blur, which 

greatly reduces the accuracy of pose estimation. To mitigate this issue, a long 

jump dataset was collected from 30 athletes, annotated across four movement 

phases, multiple lighting conditions, and four levels of motion blur. Based on this 

dataset, a simple MetaFormer-based model named BaseFormerPose is devel-

oped, using uniformly stacked window self-attention. It achieves 91.0 AP on the 

long jump motion-blur dataset. An automatic scoring module is also introduced, 

and its outputs show strong agreement with pose-based scores from three expert 

coaches, suggesting improved consistency and reduced subjectivity in long jump 

evaluation. 

Keywords: Human Pose Estimation, Deep Learning, Performance Evaluation, 

Motion Blur, Automatic Scoring. 

1 INTRODUCTION 

In recent years, motion analysis systems for track and field sports have progressed sig-

nificantly, evolving from expensive, marker-based laboratory setups to more flexible, 

portable solutions enabled by computer vision [1, 2]. Traditional systems like Vicon 

[3] offered high accuracy but required extensive calibration and controlled environ-

ments, limiting practical deployment. Later systems such as Dartfish [4] increased ac-

cessibility by removing markers, but still relied heavily on manual annotation. With the 

widespread use of smartphones and consumer-grade cameras, there is a growing de-

mand for automatic analysis without complex equipment or human involvement. This 
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shift highlights two essential requirements for modern motion analysis: full automation 

(no manual intervention) and non-invasiveness (no markers or sensors). 

Parallel to this hardware evolution, advancements in deep learning have introduced 

powerful methods for automated and non-invasive sports analysis. Among these, hu-

man pose estimation [5-7] has become the cornerstone for extracting motion infor-

mation from video. It supports higher-level tasks such as action recognition [8], trajec-

tory analysis [9], and scoring by providing robust skeletal keypoints [10]. Numerous 

models have demonstrated strong performance in controlled environments. However, 

in real-world high-speed sports scenarios like long jump, motion blur [11, 12]—caused 

by rapid movement—and inconsistent lighting [13] continue to degrade pose estimation 

accuracy. Motion blur blurs object edges, making limbs indistinct and keypoints diffi-

cult to localize. While several image classification models have introduced adaptive 

attention mechanisms [14] to combat blur, their application to human pose estimation 

remains limited. Moreover, most existing datasets [15] are captured under ideal condi-

tions, lacking the diversity in environmental variables needed to train models that gen-

eralize well to real-world sports footage. 

To address these limitations, we propose a unified intelligent framework for long 

jump performance analysis, built on two key contributions: (1) a custom long jump 

dataset designed to simulate real-world blur scenarios, using hang-style long jump as a 

representative case, and (2) a simple pose estimation model tailored for robustness and 

scalability. Our dataset includes video sequences from 30 athletes, annotated across 

four distinct movement phases (approach, takeoff, flight, landing), multiple lighting 

conditions, and four levels of motion blur. This rich annotation allows for fine-grained 

training and evaluation of models under various real-world challenges. On this dataset, 

we develop BaseFormerPose, a simplified multi-stage pose-estimation model based on 

the MetaFormer. It uses uniformly stacked window-based self-attention to maintain 

modularity and implementation simplicity, while effectively enhancing robustness to 

blur without the need for complex attention variants. 

To extend the framework beyond pose estimation, a pose-based automatic scoring 

module is further introduced to evaluate technical execution from keypoint sequences. 

BaseFormerPose is designed to handle the challenges of motion blur more effectively 

than commonly used backbones such as ResNet. The scoring module operates on joint 

trajectories and produces objective scores for performance evaluation. To assess its re-

liability, pose sequences were manually rated by three professional track and field 

coaches. The automatic scores exhibited high consistency with the averaged expert rat-

ings, suggesting strong potential for reducing subjectivity and improving fairness in 

long jump evaluation. 

In summary, the main contributions of this work are: 

• Motion Blur-Oriented Dataset Design: We construct a dedicated hang-style long 

jump dataset involving 30 athletes, annotated across four movement phases, multiple 

lighting conditions, and four levels of motion blur. This dataset enables models to 

learn robust representations under real-world degradation, filling the gap of motion 

blur scenarios in existing datasets. 
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• Simple and Scalable Pose Estimation Model: We propose BaseFormerPose, a 

simplified and extensible MetaFormer–based model that utilizes uniformly stacked 

window-based self-attention. It achieves competitive accuracy with lower complex-

ity, demonstrating effectiveness under blur while maintaining implementation sim-

plicity. 

• Expert-Validated Automatic Scoring Framework: We develop an automatic 

scoring module based on predicted pose sequences. Its outputs show high con-

sistency with scores given by three professional coaches, demonstrating the frame-

work’s potential to reduce subjectivity and improve fairness in long jump evaluation. 

Fig. 1.    The flowchart of the proposed 2D human pose estimation and scoring framework. 

2 Method 

The entire experiment process can be divided into two parts: 1) Data Preparation; 2) 

Model Construction. Initially, long jump videos are captured from athletes and sub-

jected to preprocessing. Individual frames are extracted from the videos, followed by 

keypoint annotation across selected frames to establish ground truth for pose estima-

tion. Subsequently, the BaseFormerPose model is constructed and trained using the an-

notated dataset. A detailed overview of the entire process is presented in Fig. 1. 

2.1 Data preparation 

The dataset was collected as part of a university-level sports science course focused on 

hang-style long jump, where students were trained in the technical execution of stand-

ard jumps with emphasis on the swinging posture characteristic of the hang style. Given 

the natural variability in athlete experience, biomechanics, and execution quality, the 

dataset includes a wide range of motion sequences—from technically proficient to 

suboptimal performances. Unlike traditional datasets that focus solely on ideal 



movements, our collection strategy captures all valid jumps, enabling the model to learn 

from diverse and realistic postural variations. 

To simulate motion blur systematically, we introduced two key variables during 

video capture: lighting conditions and camera frame rate. These factors were adjusted 

to replicate varying levels of motion blur commonly observed in real-world sports sce-

narios. The dataset is annotated across four standard long jump phases—approach, 

takeoff, flight, and landing—with particular emphasis on the latter three stages, which 

involve intense body deformation and rapid limb motion, making them more suscepti-

ble to blur. By training on these challenging sequences, we aim to improve the robust-

ness of pose estimation in dynamic sports contexts and ensure broader applicability in 

performance analysis. 

Setup and Parameters. To capture the full complexity of long jump movements, we 

employed a multi-camera setup consisting of four cameras arranged in two functional 

groups. The first group included a 60 Hz camera (manual focus, 2.9mm focal length, 

120° distortion-free lens, 1920×1080 resolution) placed on the left side of the runway, 

primarily focused on the approach phase where limb motion is relatively moderate. The 

second group, positioned on the right side, covered the takeoff, flight, and landing 

phases—stages characterized by rapid movement and high susceptibility to motion 

blur. This group comprised two cameras operating at 60 Hz and 120 Hz (with the same 

specifications as above), along with an iPhone 15 capturing at 120 Hz in slow motion. 

The horizontal distance from each camera to the runway was maintained between 5–7 

meters, providing a wide, distortion-free field of view. 

Recording Conditions and Data Collection. Data collection spanned four months and 

reflected three key stages in athlete training: beginning, middle, and end of the course. 

While all participants had prior experience in standard long jump, the focus was on 

improving the hang-style swinging posture. Each session included one to three jumps 

per athlete, with no attire restrictions and scheduled breaks to minimize fatigue. Light-

ing conditions were controlled across sessions, with the first two conducted in well-lit 

environments and the third simulating poorly-lit conditions to study lighting-induced 

motion blur variability. This design enabled the creation of a diverse dataset reflecting 

real-world motion dynamics. 

Scoring and Evaluation. Posture scoring was based on a standardized rubric that as-

sessed three specific postural features. During the final evaluation session, three expert 

coaches independently rated the athletes' movements. In parallel, our automatic scoring 

module generated scores using the same evaluation criteria. By comparing the predicted 

scores with the experts’ ratings, we assessed the model’s consistency and reliability. 

All raw data were thoroughly annotated prior to training to ensure compatibility with 

deep learning frameworks and enable structured analysis. An overview of the camera 

setup and keypoint annotation process is shown in Fig. 2. 
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Fig. 2.  Visualization of athletes' keypoint postures and camera equipment arrangements 

throughout the hang-style long jump. 

Data Processing. To systematically control and annotate motion blur, we categorized 

data based on lighting conditions—well-lit (approximately 500–700 Lux) and poorly-

lit (100–200 Lux)—as illumination significantly influences blur intensity. Environmen-

tal light levels were estimated using a smartphone-based Lux Light Meter. Under each 

lighting category, motion blur levels were classified independently to reflect actual re-

cording conditions and reduce misclassification caused by heterogeneous image char-

acteristics. 

Table 1. Blur Level Classification Definitions and Scoring Ranges (n/a indicates not applica-

ble). 

Blur Level 
Scoring Range (BRISQUE) 

Manual Annotation Standard 
Well-lit / Poor-lit 

Clear 0 - 25 / n/a Sharp details, well-defined edges 

Slightly Blurred 26 - 40 / 26 - 50 Slightly blurred details, discernible edges 

Blurred 41 - 70 / 50 – 70 Noticeably blurred edges, loss of details 

Highly Blurred n/a / 70 - 100 Edges indistinguishable, merged with background 

To ensure accurate blur grading, we applied a hybrid approach combining no-refer-

ence image quality assessment (IQA) and manual validation. Specifically, the 

BRISQUE algorithm was used to quantify spatial quality by analyzing natural scene 



statistics, and score thresholds were defined to classify blur levels. Manual inspection 

by experts followed to correct borderline cases. Under well-lit conditions, three blur 

levels were defined: clear, slightly blurred, and blurred; under poorly-lit conditions, the 

categories were slightly blurred, blurred, and highly blurred. Table 1 summarizes the 

corresponding scoring ranges and definitions.  

Following exclusion of unusable videos (e.g., incomplete jumps, occlusions, camera 

errors), a total of 614 sequences were retained. Frames were extracted at fixed intervals, 

and a cleaning process removed redundant or excessively degraded images. The final 

dataset comprises 17,113 images, each manually verified for quality. All images were 

labeled with their respective long jump phase: approach, takeoff, flight, or landing. As 

shown in Table 2 and Figure 3, the landing phase accounts for 45% of the dataset due 

to its duration and movement complexity, while the takeoff phase, though shorter, still 

provides 936 useful images. The dataset also reflects a balanced distribution across 

lighting and blur categories, ensuring robustness and diversity for downstream learning. 

Table 2. The number of images in the dataset under different conditions. 

Stage / Condition Approach Take-Off Flight Landing All 

Well-lit 

clear 0 31 12 3496 3539 

slightly blurred 607 286 1431 1103 3427 

blurred 1570 221 1064 662 3517 

Poorly-lit 

slightly blurred 76 31 15 1715 1837 

blurred 1311 284 528 706 2829 

highly blurred 785 83 1074 22 1964 

All 4349 936 4124 7704 17113 

Training Details. After processing, the dataset was randomly divided into five groups 

based on lighting, blur level, and stage. One group was used for validation, and the 

remaining four for training. The model was trained on the training set and evaluated on 

the validation set. The exclusion of the validation set from training ensured a fair eval-

uation. The process followed standard human pose estimation training protocols. Stand-

ard training, evaluation settings, and data augmentation strategies from the MMPose 

[16] framework were followed. Data augmentation techniques, including affine trans-

formations, random cropping, and random masking, were applied during training. 

These strategies ensured dataset diversity and enhanced model robustness. 
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Fig. 3.    Proportion of stages and lighting conditions in the dataset. 

2.2 Model Construction 

BaseFormerPose Architecture. BaseFormerPose is a simple yet effective human pose 

estimation model designed to enhance robustness under motion-blurred conditions. It 

is built upon the generalized MetaFormer framework, which abstracts a neural network 

into two functional components: a token mixer for spatial interaction and a channel 

MLP for inter-channel information processing. This design paradigm provides archi-

tectural flexibility and allows for efficient adaptation to task-specific needs while main-

taining low coupling between modules. 

Specifically, BaseFormerPose employs window-based self-attention as the token 

mixer, following the MetaFormer layout (Fig. 4). This approach restricts attention to 

non-overlapping local windows, reducing computation while retaining spatial modeling 

capability. Each block consists of normalization, window attention with residual con-

nection, followed by another normalization and a lightweight channel MLP. Compared 

to convolutional layers with fixed receptive fields, window attention enables adaptive, 

content-aware feature aggregation. This allows the model to more effectively capture 

local pose-related structures under motion blur without increasing architectural com-

plexity. 



Fig. 4. Overview of the BaseFormerPose (left) and structure of the BAFormer module (right). 

Formally, for an input feature 𝑋 ∈ 𝑅𝑁×𝐷, where 𝑁 = 𝐻 ×𝑊 and D is the embed-

ding dimension, the computations are as follows: 

 ( ( ))X WindowAttention Norm X X = +  (1) 

 ( ( ))Y ChannelMLP Norm X X = +  (2) 

WindowAttention computes attention within each window Nw, aggregating local fea-

tures as: 

 
1

( ) ( , , )
wN

j j jj
WindowAttention X Attention Q K V

=
=  (3) 

Here, Qj, Kj, Vj are the query, key, and value projections of the input tokens in each 

window. This localized attention mechanism helps retain structural consistency while 

reducing the effect of irrelevant background noise—especially crucial under motion 

blur conditions. 

To predict final keypoint locations, we adopt a heatmap regression approach. The 

output feature is passed through a deconvolutional head to produce 𝐻 ∈ 𝑅𝐾×𝐻′×𝑊′ , 
where K is the number of keypoints. Each channel in H represents the probability map 

of a specific keypoint, and the prediction is optimized using mean squared error be-

tween predicted and ground-truth heatmaps: 

 
, , , , 2

1 1 1

1
( )

h hH WK
k h w k h w

heatmap pred gt

k h wh h

L Y Y
KH W = = =

= −  (4) 

Through this architecture, BaseFormerPose offers an elegant balance between com-

putational efficiency and representation power. Its modular design ensures scalability 

across different deployment environments and its performance under motion blur is 

empirically validated in our experiments. 
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Action Recognition. Once BaseFormerPose is constructed and trained, keypoints are 

extracted from the input images and used for downstream action recognition. Accord-

ing to the findings of Jayaneththi and Chandana [17], the performance of long jump 

athletes is strongly influenced by air-phase posture, which encompasses a sequence of 

standardized movement patterns. In this study, we identify three representative postures 

characteristic of the hang-style long jump: takeoff, mid-air hip extension, and hip flex-

ion with knee tuck near landing. These postures serve as critical indicators for evaluat-

ing technical execution. The definitions and associated joint angle ranges for each pos-

ture are detailed in Table 3.  

Table 3. Define score-standard posture and evaluation indicators. 

Evaluation Pos-

ture 
Graphical Posture description Evaluation 

Take-off 

 

Explosively push off with the 
take-off leg to convert hori-

zontal velocity into vertical 

motion. Maintain a con-
trolled leg swing to stabilize 

posture and prepare for land-

ing. 

1170 180     

360 90    

Hip Extension 

 

Lift hips and extend body in 

the air during the jump. Raise 

arms while swinging legs 

downward. 

1130 160     

20 30     

30 30     

Hip Flexion and 
Tuck 

 

Lift legs up and lean torso 
forward as far as calves go 

135 45     

2160 180    

3160 180    

1, 2, 3 represents the characteristic angles of a posture, which determine a posture. 

For each athlete's motion data sequence, we calculate the similarity between the three 

feature angle vectors of the tested posture and the defined posture using a weighted 

Euclidean distance, denoted as d. A smaller d indicates a higher similarity between the 

tested and defined postures.  represents the weight of this feature angle vector in the 

entire d. The posture with the smallest d is considered the successfully matched posture, 

as shown in the formula: 

 
2

1

( )
n

i i i

i

d   
=

= −  (5) 



Automatic Scoring. After calculating the Euclidean distances between the three tested 

poses and the defined pose, we apply a linear function to convert these distances into 

scores: 

 S k d c=  +  (6) 

S represents the final score, while k and c are the quantitative values derived from 

the data. Given n training samples, we use the least squares method to find the optimal 

values for k and c by minimizing the sum of the squared differences between the fitted 

score S and the coach’s actual score S': 

 
2

, 1
min ( )

n

k c i ii
S S

=
−  (7) 

By substituting the formula and taking the partial derivatives, the optimal values of 

k and c can be obtained. It is worth noting that as the sample size increases, the values 

of k and c converge toward the most accurate estimates: 

 1 1 1

2 2

1 1
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n n n

i i i i
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n n
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 1 1

n n

i i

i i

n S k d

c
n

= =

 −

=
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 (9) 

2.3 Evalution Metrics 

Human Pose Estimation Evalution. We evaluate pose estimation performance using 

the standard mean Average Precision (mAP) and mean Average Recall (mAR) metrics 

on the COCO dataset [18]. These metrics are computed based on Object Keypoint Sim-

ilarity (OKS):  

 

2 2 2ˆ( / 2 ) ( 0)

( 0)

i i ii

ii

exp d s k v
OKS

v





− 
=






 (10) 

where 𝑑𝑖̂ is the Euclidean distance between the i-th predicted keypoint and its true 

position, Vi is the visibility flag of the keypoint, S is the object scale, and Ki is a key-

point-specific constant. Two widely used thresholds are mAP@0.5 and mAP@0.75. 

mAP@0.5 allows moderate distance between predicted and ground truth keypoints, 

while mAP@0.75 requires closer predictions for accuracy. mAP (M) and mAP (L) as-

sess model precision on medium and large objects based on object area. 

Similarly, mAR (mean Average Recall) is used to assess the model's recall capabil-

ities. mAR@0.5 and mAR@0.75 measure recall at OKS thresholds of 0.5 and 0.75, 
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respectively. mAR (M) and mAR (L) focus on recall for medium and large objects. 

Recall is calculated as: 

 
 

   

True Positives
Recall

True Positives False Negatives
=

+
 (11) 

Where True Positives are correctly detected keypoints, and False Negatives are key-

points present in the ground truth but missed by the model. 

Posture Scoring Evalution. Three key long jump postures were extracted from the 

athletes, and three sports experts were invited to manually score each posture for every 

individual. The scoring criteria for both expert evaluation and automatic scoring fol-

lowed a predefined quantitative rubric, which standardizes the assessment based on 

three key postures. However, while the automatic scoring system strictly calculates 

scores based on joint angles, human experts, though still using angle-based assessment, 

intentionally retain a degree of subjective judgment to account for real-world variations 

in execution quality. 

A total of 614 video sequences, each representing a unique long jump trial, were 

collected. From each trial, we extracted three video sub-sequences corresponding to the 

three key postures and selected the most representative frame for each posture. Among 

the 614 sequences (1842 images), 600 were used for model training and refinement, 

while the remaining 14 sequences were reserved for testing and evaluating the auto-

matic scoring system. The closer the automatic score is to the average expert score, the 

better the system’s performance. 

3 Experiments 

3.1 Results of Human Pose Estimation 

Table 4. Comparison on our MotionBlur validation dataset. All data is trained through the 

mmpose framework [16]. 

Method 
MotionBlur Validation Dataset↑ 

AP AP50 AP75 APL AR AR50 AR75 ARL 

ResNet-50 [19] 85.9 97.6 91.0 90.2 89.8 98.7 93.8 92.8 

HRNet-W32 [5] 90.4 98.6 94.0 93.8 93.2 99.2 95.8 95.6 
DARK-Res50 [7] 90.2 98.7 94.0 93.8 92.8 99.1 95.6 95.3 

SimCC [6] 91.0 98.7 95.0 94.4 94.0 99.2 96.5 96.2 

SwinTransfromer 
[20] 

90.6 98.6 93.9 94.1 93.2 99.2 95.8 95.7 

PVT [21] 90.2 98.6 93.8 93.9 93.0 99.1 95.7 95.5 

BaseFormerPose 

(Ours) 
91.0 98.7 95.6 91.2 93.0 99.5 96.5 93.1 

Under the MotionBlur validation dataset, BaseFormerPose outperforms all compared 

methods in AP, AP75, and AR75, achieving 91.0, 95.6, and 96.5 respectively, indicating 

superior keypoint localization accuracy under stricter thresholds. It also achieves com-

petitive results in AP50, AR, and AR50. However, on APL and ARL, BaseFormerPose 



slightly lags behind DARK-Res50, likely due to the deeper convolutional structure of 

DARK-Res50 providing stronger hierarchical feature extraction on large-scale key-

point regions. Overall, BaseFormerPose achieves the best balance between perfor-

mance and model simplicity. 

3.2 Results of Action Recognition and Automatic Scoring 

Table 5. Comparison of evaluation outcomes based on three randomly sampled datasets ex-

tracted from the complete results for analysis. 

Key Pos Standard Pos Number Target Pos E1 E2 E3 Score Score 

Take-off 

 

1 

 

80 80 72 77.3 78 

2 

 

85 82 75 80.7  80 

3 

 

86 84 78 82.7 81 

Hip 
Extension 

 

1 

 

81 78 70 76.3 74 

2 

 

77 70 74 73.7 75 

3 

 

78 76 79 77.7 78 

Hip Flexion-
and Tuck 

 

1 

 

75 74 70 73 72 

2 

 

65 67 69 67 71 

3 

 

80 76 74 76.7 76 

To ensure the validity and consistency of expert scoring, Pearson Correlation Coef-

ficients (PCCs) were used to assess score alignment among three experts across 614 
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trials, each covering three key postures: take-off, hip extension, and hip flexion with 

tuck. PCCs were preferred over Intraclass Correlation Coefficients (ICCs) since each 

trial represents an independent movement with unique biomechanical characteristics. 

Unlike ICCs, which assume repeated measurements of the same target, PCCs are better 

suited to evaluating trend agreement across non-overlapping samples. The average 

PCCs were 0.88 (E1–E2), 0.87 (E1–E3), and 0.86 (E2–E3), indicating strong inter-rater 

consistency and supporting the reliability of the manual evaluation process. 

Despite the high overall correlation, noticeable score variations persist at the trial 

level, reflecting the subjectivity of human judgment. As shown in Table 5, scores as-

signed to the same posture in a given trial often differ across experts, even when stand-

ardized visual references are provided. For example, in the take-off posture of Trial 3, 

expert scores range from 78 to 86, suggesting different interpretations of movement 

quality. In contrast, the automatic scoring module applies a fixed evaluation rubric 

based on joint-angle deviations from reference poses, enabling consistent and objective 

assessments. While small differences may arise between predicted and expert-averaged 

scores, the model maintains stable performance across all postures. Trained on 600 an-

notated trials and capable of continuous improvement with more data, the system shows 

promise as a reliable component of a scalable, data-driven framework for standardized 

long jump evaluation.  

4 Conclusion 

This work presents a unified framework for long jump performance analysis under mo-

tion-blurred conditions, integrating pose estimation and automatic scoring within a 

structured pipeline. A domain-specific dataset was constructed to capture key phases 

of the long jump under diverse lighting and motion blur levels, supporting robust model 

training. The proposed BaseFormerPose, employing uniformly stacked window self-

attention, demonstrates strong performance in keypoint detection with 91.0% AP on 

the motion blur subset. In addition, the automatic scoring module shows high alignment 

with expert evaluations, reinforcing its reliability for posture assessment. Together, 

these components offer a scalable, objective, and data-driven solution to assist coaches 

in evaluating athletic performance in real-world track and field environments. 
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