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Abstract. RFID-based gesture recognition, while overcoming vision-based lim-

itations in privacy and environmental robustness, faces three key challenges: in-

adequate temporal dynamics modeling, disjointed local-global feature integra-

tion, and suboptimal fusion of complementary Received Signal Strength Indica-

tor (RSSI) and phase signals. To address these limitations, we present CTGR, a 

dual-branch CNN-Transformer architecture for RFID gesture recognition. Our 

CTGR framework first establishes dual parallel input pathways for RSSI and 

phase signals, then processes each branch through synergistic components: the 

STC layer employing depthwise separable convolutions to extract noise-robust 

local features from both modalities, and the MATE module applies multi-head 

self-attention to capture global temporal dependencies in each signal domain. 

Finally, CTGR combines the processed RSSI and phase features through a stra-

tegic fusion mechanism that effectively integrates their complementary proper-

ties, enabling comprehensive modeling of gesture dynamics. Extensive experi-

ments across diverse scenarios validate the method's exceptional effectiveness, 

achieving a 97.38% average accuracy on a 7-class gesture dataset. Compared 

with mainstream recognition algorithms, CTGR demonstrates superior robust-

ness in adapting to diverse users, varying gesture speeds, and challenging envi-

ronmental conditions, ensuring consistent performance across real-world sce-

narios. This work enhances RFID-based interaction systems through spatio-

temporal feature fusion, offering practical solutions for robust human-machine 

interfaces in dynamic environments. 

Keywords: RFID, Gesture Recognition, CNNs, Transformer, Spatio-Temporal 

Features 

1 Introduction 

Gesture recognition has become crucial for human-machine interaction (HMI) and 

augmented reality (AR) applications, spanning smart homes to healthcare [1]. While 

computer vision achieves high accuracy [2], it is limited by lighting sensitivity and 



 

 

privacy concerns. Alternatives like WiFi [3], radar [4], and acoustic systems [5] face 

hardware or environmental limitations. RFID-based solutions [6, 7] demonstrate supe-

rior practicality due to their contactless operation, portability, and cost-effectiveness.  

However, traditional RFID gesture recognition methods, which often require users 

to wear tags (such as the RF-glove [8] with five tags per finger), have limitations in 

practical applications like elderly care. Fortunately, recent work, like RF-Finger [9], 

has addressed this issue by employing tag arrays for contactless interaction, thus en-

hancing usability. Meanwhile, the integration of artificial intelligence with RFID has 

gained traction, with methods like ReActor [10] using Random Forest for feature 

extraction and Wang et al.[9] applied convolutional neural networks (CNNs) for ges-

ture recognition.  

Although these methods demonstrate strong performance in static feature extrac-

tion, they still face three critical challenges: First, they exhibit significant limitations 

in processing temporal-domain information, as they typically focus exclusively on 

either local or global feature extraction while failing to account for the complex inter-

play between them. Second, due to these deficiencies in temporal modeling and fea-

ture interaction, existing approaches underperform when handling complex and fine-

grained gestures (e.g., continuous gestures or multi-finger coordinated motions). 

Third, existing methods fail to effectively combine RSSI and phase signals, which 

capture complementary angles but have different noise profiles and spatio-temporal 

behaviors, resulting in suboptimal fusion for precise gesture recognition. 

The complementary strengths of CNNs and Transformers motivate our hybrid de-

sign: CNNs efficiently extract local spatio-temporal features through hierarchical 

convolutions [11], while Transformers capture global dependencies via self-attention 

[12]. This synergy has proven effective in sequential data processing (e.g., [13, 14]), 

suggesting its potential for modeling RFID-based gesture sequences, where both fine-

grained motions and long-range temporal patterns are critical.  

To this end, we propose CTGR, a novel dual-branch CNN-Transformer hybrid 

network that addresses key challenges in RFID-based gesture recognition through 

synergistic local-global feature learning. The architecture consists of two core com-

ponents: (1) a Spatio-Temporal Convolutional Layer (STC) that employs depthwise 

separable convolutions to extract local motion patterns from RFID signals while sup-

pressing noise, and (2) a Multi-head Attention Encoding Layer (MATE) that captures 

global temporal dependencies through hierarchical self-attention. The system process-

es phase and RSSI signals through parallel STC-MATE branches, followed by adap-

tive feature fusion for final classification. The key achievements of our research are as 

follows: 

1) We propose a dual-branch architecture for RFID signal processing 

that decouples RSSI and phase feature modeling while enabling adaptive cross-signal 

fusion, overcoming the limitations of suboptimal signal integration in prior works.  

2) A novel STC-MATE hybrid network architecture is designed, in which the STC 

module focuses on local feature extraction, while the MATE module effectively mod-

els global temporal dependencies, achieving a comprehensive characterization of 

gesture dynamics. This architecture unifies local-global gesture dynamics for the first 
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time in RFID sensing, resolving the long-standing trade-off between motion granu-

larity and temporal context awareness.  

3) Our method achieves 97.38% recognition accuracy across diverse real-world 

scenarios including user variability, speed fluctuations, and environmental noise, 

demonstrating significant improvement over existing approaches. These results vali-

date the effectiveness of our hybrid local-global spatio-temporal feature integration 

framework in addressing key limitations of current gesture recognition systems. 

2 Related work 

2.1 Gesture Recognition Technologies 

Gesture recognition systems have evolved through two key paradigms: contact-based 

and contactless approaches. Early RFID systems required physical tag attachment 

through wearable devices (e.g., Magic Ring [15]) or tagged objects (ShopMiner [16], 

CBid [17]), often combined with external sensors (Kinect [18]) or antenna arrays (RF-

Dial [19]). While effective, these contact-based methods impose wearing constraints 

that hinder deployment in sensitive applications like elderly care. Recent contactless 

alternatives include vision-based (In-air [20]), acoustic [21]), and millimeter-wave 

[22]) systems, yet suffer from lighting dependence, range limitations, and privacy 

concerns. While newer RFID solutions like RF-Finger [9] and GRfid [6] have ad-

dressed these limitations, they primarily rely on template matching or shallow ma-

chine learning models. These approaches fail to effectively model temporal dynamics 

or fuse complementary signal modalities (RSSI and phase), leading to reduced accu-

racy and insufficient robustness in practical scenarios.  

2.2 Local-Global Feature Interaction in RFID Sensing 

Existing approaches to RFID-based gesture recognition exhibit a dichotomy: CNN-

based methods [11] capture local temporal features but neglect global dependencies, 

while Transformer variants [12] model long-range patterns at the expense of local 

signal details. Recent CNN-Transformer hybrids have demonstrated remarkable suc-

cess in domains like computer vision [13] and natural language processing [14]. 

However, these architectures have not been effectively adapted for RFID-based sens-

ing due to unique challenges including signal noise, spatio-temporal variability, and 

the need for multi-signal fusion - all of which demand specialized solutions. 

3 Preliminaries 

In this section, we elaborate on the fundamental theories of RFID technology, analyze 

the impact of gesture movements on RFID signal propagation, and discuss the ar-

rangement of tag arrays. 



 

 

3.1 Definition of RFID Signal 

RFID-based contactless sensing utilizes tag-reflected signal variations to infer object 

states in backscatter communication environments. As demonstrated in [8], proximity 

of conductive objects (e.g., fingers) induces measurable fluctuations in RSSI and 

phase signals, as shown in Fig. 1(a). The tag's response signal can be modeled as: 

 𝑆 = √10
𝑅

10

1000
𝑐𝑜𝑠𝜃 + 𝐽√10

𝑅
10

1000
𝑠𝑖𝑛𝜃, (1) 

where 𝑅 is the RSSI value and 𝜃 is the phase value. 

When the finger is placed in front of the tag, the signal returned 𝑆 consists of two 

components: the signal 𝑆𝑑𝑖𝑟𝑒𝑐𝑡  transmitted directly to the tag, and the reflected signal 

𝑆𝑟𝑒𝑓𝑙𝑒𝑐𝑡 passing through the finger. For 𝑆𝑑𝑖𝑟𝑒𝑐𝑡 , it is directly measurable and equal to 

the signal the tag sends when the hand is down. Therefore, we can determine the sig-

nal reflected off  the finger by subtracting 𝑆𝑑𝑖𝑟𝑒𝑐𝑡 from the 𝑆 computed while the hand 

is facing the tag array. The impact of finger motions on the RFID signal is likewise 

represented by this reflected signal. 

3.2 Tag Deployment 

A dense tag array is essential for capturing gesture-induced signal variations but may 

cause mutual coupling between adjacent tags. To mitigate this, we adopt an orthogo-

nal arrangement, which minimizes interference and ensures stable signal measure-

ment [23]. The tag array layout, as illustrated in Fig. 1(b), employs an orthogonal 

placement to minimize mutual coupling between adjacent tags. 

 

                             
(a) Illustrations of original RFID signal.                                     (b) Tag array layout. 

 
   Fig. 1. RFID Signal Characteristics and Tag Array Layout: (a) Signal reflection model un-

der finger gestures; (b) Orthogonal 5×5 tag deployment minimizing mutual coupling. 
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4 System Design 

4.1 Problem Definition 

During the RFID signal acquisition process, the collected data is a sequence of data 

points with timestamps. In this paper, we denote the time-series data received from 

tag 𝑖 as 𝑥𝑖(𝑡), which represents the data of tag 𝑖 at time 𝑡. Therefore, the time-series 

data of a gesture can be expressed as: 

 

 𝑋 = [

𝑥1(1) 𝑥1(2) ⋯ 𝑥1(𝑇)

𝑥2(1) 𝑥2(2) ⋯ 𝑥2(𝑇)
⋮

𝑥𝑚(1)
⋮

𝑥𝑚(2)
⋱      ⋮    
… 𝑥𝑚(𝑇)

], (2) 

Among them, m represents the number of tags. Since we used a 5×5 tag array, m= 

25 in this case. T represents the duration of the action. Therefore, our data set can be 

expressed as D = (Xk, Yk)k = 1
N , where N represents the number of data sets, and  Yk∈ 

[0,6] denotes the gesture category ("𝑎", "𝑏", "𝑐", "𝑑", "𝑒", "𝑑_𝑢", "𝑙_𝑟") associated with the 

data. Here, labels "𝑑_𝑢"  and "𝑙_𝑟"  correspond to down-to-up and left-to-right hand 

gestures respectively. 

 

4.2 System framework 

The overall architecture of CTGR, depicted in Figure 2, comprises several key com-

ponents: (1) Preprocessing aligns and filters raw data, (2) HMM-based Segmenta-

tion isolates individual gestures, (3) Dual-path Feature Extraction (STC for local pat-

terns, MATE for global dependencies) processes RSSI and phase signals separately, 

and (4) Attention-based Fusion combines features for final classification. This stream-

lined architecture achieves robust recognition while maintaining computational effi-

ciency. 

 

Preprocessing. The raw RFID signals undergo three key steps: (1) timestamp align-

ment via linear interpolation to ensure uniform sampling intervals, (2) phase unwrap-

ping [24] to resolve 0-2π discontinuities caused by cyclic measurements, and (3) noise 

reduction using a Savitzky-Golay filter [25] that preserves signal morphology while 

suppressing high-frequency artifacts. 

 

Gesture Segmentation. Precise segmentation of RFID gesture signals is nontrivial 

due to the inherent tension between noise suppression and motion preservation - in-

correct boundaries directly propagate to recognition errors [6]. To address this chal-

lenge, we adopt a Hidden Markov Model (HMM)-based segmentation approach that 

models the joint RSSI-phase feature space using Gaussian hidden Markov models to 

capture temporal dependencies in gesture signals. This method learns latent state tran-

sitions to robustly identify gesture boundaries even under noisy conditions. The 

HMM framework effectively handles uncertainties in signal patterns while maintain-

ing temporal consistency of segmented gestures. 



 

 

 

 
Fig. 2. Architecture of the proposed CTGR model. The proposed system processes RFID 

signals through sequential preprocessing, segmentation, dual-branch STC/MATE feature ex-

traction, and fused classification. 

 

Multi-branch Inputs. To capture the diverse effects of gestures on RF channels, we 

incorporate both RSSI and phase signals as multi-branch inputs. This approach allows 

the model to extract unique information from each signal type, enhancing its ability to 

recognize complex gestures. 

 

Spatio-Temporal Convolutional Layer (STC). The STC module serves as the pri-

mary feature extractor in our system, employing optimized convolutional operations 

to simultaneously capture local spatiotemporal patterns and attenuate noise in multi-

branch RFID time-series data. 

The STC module employs an optimized depthwise separable convolution architec-

ture comprising three key components: (1) depthwise convolutions that process each 

RFID tag's signal as an independent feature channel to extract localized temporal 

patterns, (2) pointwise convolutions that integrate cross-channel features, and (3) 

residual connections that enhance gradient flow and model generalization. To pre-

serve temporal causality in gesture sequences, we implement causal 1D convolutions 

with zero-padding, ensuring the output at each timestep depends solely on preceding 

inputs. This design effectively isolates gesture-specific spatiotemporal patterns while 

preventing information leakage and maintaining temporal dependencies across the 

sequence. 

After the deep convolution, the pointwise convolution (1×1) is used to combine the 

channel features in the spatial dimension. It integrates cross-channel features through 

learned linear combinations, enabling effective information exchange between differ-

ent RFID tag channels while preserving spatial relationships. Additionally, appropri-

ate dimension adjustments are made to match the input of the MATE, and finally, a 
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new feature map 𝑋𝑛𝑒𝑤 is generated. The entire process described above can be ex-

pressed as:     
           

 𝑋𝑛𝑒𝑤 = 𝐶𝑜𝑛𝑣𝑃𝑜𝑖𝑛𝑡(𝐶𝑜𝑛𝑣𝐷𝑒𝑝𝑡ℎ(𝑋𝑡)), (3) 

Multi-head Attentional Encoder Layer (MATE). The Multi-head Attentional En-

coder Layer (MATE) employs a standard multi-head self-attention mechanism cou-

pled with multi-layer perceptrons (MLPs) to model global temporal dependencies in 

gesture sequences. By processing parallel attention heads, MATE effectively captures 

both local gesture details and global temporal patterns, while the MLPs provide non-

linear feature transformations. The architecture incorporates residual connections with 

batch normalization to ensure stable gradient flow during training, enabling robust 

learning of complex gesture dynamics. This integrated design allows simultaneous 

analysis of fine-grained motion features and overarching gesture semantics through its 

attention-based processing framework. 

As a critical component, the Multi-Head Attention (MHA) enables the model to 

simultaneously attend to the information of the input data within different representa-

tional subspaces. This not only strengthens the ability to capture local features but 

also improves the understanding of the overall trend of gestures. Specifically, the self-

attention of the i-th head generates the input matrices 𝑄𝑖 , 𝐾𝑖, 𝑉𝑖, and for self-attention 

by multiplying the input𝑋0with several learnable weight matrices 𝑊𝑄 , 𝑊𝐾  and 𝑊𝑉 . 

Subsequently, the attention scores are calculated using the softmax function, and then 

multiplied by the 𝑉𝑗 to obtain the result. The formula is presented as follows: 

 ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖)  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝑖 ∙ 𝐾𝑖

𝑇

√𝑑𝑘
) ∙ 𝑉𝑖  ,    (4) 

The multi-head attention outputs are concatenated and linearly transformed 

through a trainable projection matrix 𝑊0 to synthesize features from different repre-

sentation subspaces. This design enables comprehensive feature learning by jointly 

attending to information across multiple attention heads. The formula is as follows: 

 𝑀𝐻𝐴 =  𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝑛)𝑊0 , (5) 

The MLP module implements a nonlinear feature transformation through two fully 

connected layers: first expanding the input features into a high-dimensional space 

𝑅ᵈ → 𝑅ᵏ (where 𝑘 > 𝑑) via learnable weights 𝑊₁ to enhance feature separability, then 

compressing back to the original dimension 𝑅ᵏ → 𝑅ᵈ through 𝑊₂ to select the most 

discriminative features. This bidirectional dimensional transformation is formally 

expressed as: 

 𝑀𝐿𝑃 =  𝑊2(𝑅𝑒𝑙𝑢 (𝑊1𝑋1 + 𝑏1)) + 𝑏2 , (6) 

Here, 𝑊1  and 𝑊2  represent the weights of the two fully connected (FC) layers, 

𝑅𝑒𝑙𝑢 is the non-linear activation function, and 𝑏1 and 𝑏2 denote the biases. 



 

 

The MATE module's output undergoes adaptive average pooling [26] to generate a 

fixed-length feature vector, enabling robust handling of variable-length gesture se-

quences while preserving discriminative spatiotemporal patterns for classification. 

Gesture Classifier. The outputs from both branches' STC and MATE are fused 

through concatenation, combining their local features and global contexts into a uni-

fied high-dimensional representation. This integrated approach provides a compre-

hensive feature space for gesture recognition. 

The fused features are processed through fully connected layers to generate log-

softmax classification probabilities, optimized via cross-entropy loss. The definition 

formula of the cross-entropy function is as follows: 

 𝐺(𝑝, 𝑞)  =  − ∑ 𝑝𝑖 𝑙𝑜𝑔(𝑞𝑖)𝑘
𝑖=1  , (7) 

where p and q are the real and estimated distributions of the i-th class of gesture, 

respectively. 

5 Performance evaluation 

5.1 Implementation 

Our experimental setup includes a 5×5 Alien-9629 tag array and an ImpinJ Speedway 

R420 RFID reader equipped with an S9028PCL directional antenna. The tag arrays 

were mounted on one surface of a white plastic box. A vertically oriented RFID an-

tenna was positioned on the opposite surface, maintaining a consistent separation of 

50 cm from the array. Experimental participants performed finger gestures while 

maintaining a controlled operating distance of 10-15 cm from the array plane. We 

tested the system in two environments: an empty office (Env_A) and a laboratory 

with higher interference (Env_B). Ten participants performed five letters and two 

shapes at varying speeds, generating a dataset of 1400 samples. 

5.2 Experimental Evaluation 

In order to demonstrate the prediction performance of the proposed CTGR, a large 

number of necessary qualitative and quantitative experiments are carried out and ana-

lyzed in detail. 

 

Experimental Settings. The proposed CTGR model was implemented in Pytorch 

framework, Python 3.9, and NVIDIA GeForce RTX 3080 GPU environment. We 

trained the model by optimizing the cross-entropy loss function by setting the batch 

size to 32, where the Adam optimization algorithm is applied with a learning rate of 

0.002 and weight decay of 1×10⁻⁸. And gradient clipping is used to prevent gradient 

explosion. According to the principle of 70% for training and 30% for testing, the 

dataset was divided into two parts, and 50 epochs were trained. 
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Experimental Results. We evaluate CTGR against five representative methods: 

Random Forest [10], RF-Finger [9], TCN, CNN-LSTM, and BiLSTM. As shown in 

Table 1, CTGR consistently outperforms all comparison methods in recognition accu-

racy. The overall accuracy rate reaches 97.38%, with the gesture "d_u"  achieving 

99.10% accuracy. These results demonstrate that CTGR excels not only in capturing 

local spatio-temporal features from RFID time-series data but also in modeling global 

temporal dependencies within gesture sequences, thereby achieving superior recogni-

tion performance compared to conventional approaches. 

 

Table 1. Comparison of classification accuracy (%) of different methods. Overall accuracy is 

computed as macro-average to equally evaluate performance across all gesture categories. 

 

Methods Overall a b c d e d_u l_r 

Random Forest 76.84 75.32 74.68 79.49 78.35 73.99 77.16 76.75 

RF-Finger 88.65 89.26 90.51 93.18 84.68 90.74 89.91 87.01 

TCN 92.36 93.48 91.88 94.04 90.21 93.55 95.32 92.23 

CNN-LSTM 93.87 93.11 95.99 93.84 89.56 88.98 93.36 92.22 

BiLSTM 92.01 91.23 94.12 92.89 91.19 90.89 89.21 93.66 

Proposed 

CTGR 
97.38 96.34 98.51 94.92 98.33 96.83 99.10 97.37 

 

Evaluation of Different Users. Model robustness was assessed through ten-subject 

testing, with the resulting accuracy distribution visualized in Fig. 3(a). The volunteers 

vary in physical conditions such as gender (six men and four women), age (22 to 28 

years old), height (152 to 183 centimeters), and weight (49 to 90 kilograms). The 

gesture recognition accuracy of all ten volunteers exceeds 95%. Among them, the 

recognition accuracy of Volunteer 2 (a male) is the highest (98.97%), and that of Vol-

unteer 6 (a female) is the lowest (95.22%). Therefore, the CTGR has relatively good 

performance in recognizing finger movements of different individuals. 

 

Evaluation of Different Finger Speeds. When performing gesture actions, the vol-

unteers were required to move their hands naturally. However, generally speaking, 

people cannot always maintain a stable hand movement speed. Therefore, our dataset 

contains data of different speeds, with half being fast samples and the other half being 

slow samples. In this part, in order to further evaluate the influence of speed, we con-

ducted a series of new experiments to test the recognition accuracy of CTGR under 

fingers moving at different speeds, and the results are shown in Fig. 3(b). 

 

Evaluation of Different Environments. We evaluate CTGR's environmental robust-

ness through cross-dataset testing, training on environments A/B (TRA/TRB) and 

testing on opposite environments B/A (TEB/TEA). The system achieves 95.71% ac-

curacy when trained on TRA and tested on TEB, and 94.97% in the reverse configu-

ration (Fig. 3c). These results validate CTGR's practical applicability in real-world 

scenarios where environmental stability cannot be guaranteed.  

 



 

 

(a) Accuracy with different 

users. 

 
(b) Accuracy with different 

gesture speeds. 

(c) Accuracy with different 

environment. 

Fig. 3. Evaluation results. 

5.3 Ablation study 

To rigorously validate each component's contribution, we conduct ablation studies by 

selectively disabling key modules while keeping other parameters unchanged. The 

training data, optimization strategy, and evaluation protocol remain identical to the 

full model setup. As shown in Table 2, the full model achieves 97.38% accuracy, 

while removing any major module leads to noticeable performance degradation: 

STC Module: Removing the Spatio-Temporal Convolutional layer causes a 1.62% 

accuracy drop (95.76%), confirming its importance for local feature extraction. 

MATE Module: The largest performance decrease (-4.17% to 93.21%) occurs 

when disabling the Multi-head Attention Encoder, highlighting its critical role in 

modeling global temporal dependencies. 

Dual-Branch Input: The 2.8% accuracy reduction (94.58%) demonstrates the ne-

cessity of processing RSSI and phase signals separately. 

HMM Segmentation: Replacing HMM segmentation with basic thresholding 

methods degrades accuracy by 3.2%, proving the superiority of our probabilistic 

boundary detection approach. 

Table 2. Performance Ablation Study of CTGR Components. 

Modules Accuracy(%) 

CTGR 97.38 

w/o STC 95.76 

w/o MATE 93.21 

w/o Dual-Branch Input 94.58 

w/o HMM Segmentation 94.18 

6 Conclusion 

This paper presents CTGR, a novel CNN-Transformer hybrid architecture for RFID-

based contactless gesture recognition that addresses three fundamental limitations in 
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existing approaches: (1) inadequate temporal modeling of gesture dynamics, (2) insuf-

ficient integration of local and global features, and (3) suboptimal utilization of com-

plementary RSSI and phase characteristics. Through its innovative dual-branch design 

featuring dedicated Spatio-Temporal Convolutional (STC) and Multi-head Attention 

Encoding (MATE) layers, CTGR achieves state-of-the-art performance with 97.38% 

recognition accuracy while demonstrating robust operation across diverse users, exe-

cution speeds, and environmental conditions. The proposed framework not only ad-

vances RFID-based gesture interaction systems but also establishes a new paradigm 

for time-series data processing. Future work will focus on real-time optimization and 

extension to multimodal sensing scenarios. 
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