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Abstract. Efficient recommender systems are essential for modeling user-item 

interactions, such as views, favorites, and purchases. However, two challenges 

remain: 1) Effectively modeling complex multiplex behavior patterns derived 

from user-item interactions necessitates more sophisticated representation learn-

ing techniques. 2) Existing methods often neglect the differential impact of vari-

ous auxiliary interactions on the primary target interaction (e.g., purchase). In 

this study, we propose a more informative framework, Behavior-Type Aware 

Representation Learning for Multiplex Behavior Recommendation (BA-

MBRec), to learn representations of users and items by mining behavior-aware 

patterns in feature encoding. Specifically, BA-MBRec is a powerful approach 

tailored to effectively encode nodes across various multiplex structures. It not 

only adaptively captures individual behavior-aware patterns but also discovers 

the interdependencies across these various patterns within multiplex heterogene-

ous networks by hierarchical modeling and cross-behavioral aggregators. Exper-

iments on three real-world datasets demonstrate its superior performance, with 

improvements of 5.2% in HR@10 and 10.16% in NDCG@10 over state-of-the-

art methods. Our empirical studies further demonstrate the great potential of this 

framework for capturing the multiplexity of users' preferences in recommenda-

tion scenarios. Our implementation code is available in https://github.com/sun-

shixx/BA-MBRec/tree/master. 

Keywords: Recommender systems, Multiplex Heterogenous Graph, Learning 

latent representations, Contrastive Learning. 

1 Introduction 

Recommender systems are crucial for mitigating information overload by providing 

personalized suggestions in domains like retail, advertising, and social media [1]. Graph 

Neural Networks (GNNs) have emerged as a powerful tool for this task, adept at pro-

cessing graph-structured data and learning high-quality user/item representations 

through aggregating higher-order information from neighboring nodes. Based on this, 

https://github.com/sunshixx/BA-MBRec/tree/master
https://github.com/sunshixx/BA-MBRec/tree/master


many methods make many efforts on representation learning for homogeneous net-

works with a single type of node [2][3]. 

However, traditional GNNs, designed for homogeneous graphs, struggle with the 

diverse user behaviors common in E-commerce, such as viewing, favoriting, adding to 

cart, and purchasing. Consequently, subsequent studies have proposed multi-behavior 

recommender systems, which attempt to meticulously consider multiplex relations be-

tween users and items by introducing meta-paths [5], contrastive learning [4], and other 

means [6][7]. Nevertheless, existing approaches often struggle to fully capture the in-

tricate impact that user-item interactions, involving multiplex relations, have on the 

learned user and item representations. In response, some works [8][9] explore behavior 

patterns, precisely modeling the dynamic and personalized influence of different inter-

actions within complex behavior patterns on the target relation, and effectively distin-

guishing their relative importance, remains an area requiring further investigation. 

1) Comprehensively exploiting multiplex behavior is challenging. Comprehen-

sively exploiting multiplex behavior is challenging. Current strategies broadly fall into 

two categories: learning from individual behavior subgraphs before integration, or ap-

plying GNNs directly to the overall heterogeneous graph. However, both approaches 

often struggle to adequately model the intricate patterns and dependencies within mul-

tiplex interactions. Recognizing this, methods [8][9] have explored explicit behavior 

pattern or relation chain modeling. While effective in capturing predefined structures, 

defining and managing these explicit patterns can be complex, and they may not flexi-

bly encompass all relevant high-order interaction sequences present in the data. Fur-

thermore, alternative strategies relying on explicitly defined interaction paths (e.g., 

meta-paths) face significant scalability hurdles due to the combinatorial explosion of 

possible paths. These combined limitations highlight the urgent need for more sophis-

ticated and scalable approaches to multi-behavior representation learning. 

2) Feature aggregation must account for multifaceted interactions. Each behav-

ior type contributes uniquely to predicting the target behavior in recommendation sys-

tems. Different behaviors not only provide complementary knowledge for understand-

ing user interests but also interact in intricate ways. However, existing methods often 

struggle to fully capture these varying impacts. The difficulties include (a) dynamically 

discerning the personalized importance of different concurrent behaviors during aggre-

gation at various interaction depths, and (b) explicitly modeling the personalized influ-

ence exerted by auxiliary behaviors specifically on the target behavior for individual 

users. While inspired by Transformers, various ways are developed to effectively model 

behavior heterogeneity and dependencies [10]. However, methods that can adaptively 

capture finer-grained relationships and personalized modeling of target-auxiliary rela-

tionships are still needed. 

To address these challenges, we propose a novel framework, Behavior-Type Aware 

Representation Learning for Multiplex Behavior Recommendation (BA-MBRec). We 

design a behavior-aware pattern encoder that implicitly models intricate, multi-hop be-

havior patterns via layer-wise message passing, thereby capturing rich structural and 

semantic information while avoiding the scalability issues of explicit path enumeration. 

This encoder is enhanced by a hierarchical behavioral dependency modeling compo-

nent, designed to capture nuanced semantic similarities and dependencies among 
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different behavior types at the same interaction depth. To ensure feature aggregation 

accounts for multifaceted interactions, we design a cross-behavioral aggregation that 

adaptively weighs and fuses representations derived from diverse behavior types and 

patterns, providing a more fine-grained and personalized aggregation than static or uni-

form approaches. Additionally, BA-MBRec leverages contrastive learning to adap-

tively model the relationship between the target behavior and auxiliary behaviors. By 

utilizing information from auxiliary behaviors, the model enriches the representation of 

the target behavior, improving its ability to discern the varying influence of different 

behaviors on the target behavior and account for the heterogeneity of user preferences. 

BA-MBRec provides a more robust and nuanced approach to multi-behavior recom-

mendation. The subsequent sections detail the architecture and empirical validation of 

our framework. 

Briefly, the contributions of this work could be concluded as follows: 

• We propose a novel multi-behavior recommendation model for multiplex heteroge-

neous scenarios, which tackles the challenges of behavior complexity and explores 

the node embedding based on users' preferences. 

• We develop an implicit behavior pattern encoder via multiplex convolution, en-

hanced by hierarchical dependency modeling and cross-behavior aggregation to 

adaptively extract high-order semantic patterns and dependencies, further comple-

mented by meta-weighted contrastive learning to personalize behavior influence 

modeling. 

• We conduct experiments on three real-world recommender datasets to demonstrate 

the effectiveness of our proposed model. By comparing with 10 STOA baselines, 

our model could be improved up to 5.2% and 10.16% in HR@10 and N@10. 

2 Related Work 

2.1 Graph-based Recommender Models 

The ability of Graph Neural Networks (GNNs) to model complex relationships within 

graph structures has led to promising results in recent recommender models. These 

models effectively leverage various propagation functions to aggregate embeddings 

from neighboring nodes. For example, NGCF [3] propagates embeddings through user-

item graphs to explicitly model high-order collaborative signals. LightGCN [2] im-

proves recommendation by simplifying NGCF's message passing via sum-based aggre-

gation without weight matrices. GTNs [11] learn new graph structures and node repre-

sentations by identifying useful connections, guided by task objectives. Inspired by 

these works, our model employs a GNN architecture to capture high-order information 

within heterogeneous paths, leveraging the user-item graph structure for improved rec-

ommendation accuracy. 



2.2 Multi-behavior Recommendation 

Considering the various types of user-item interactions, recent studies have explored 

effective methods for addressing behavior multiplicity. MATN [12] incorporates atten-

tive weights for pattern aggregation, and MB-GMN [13] combines meta-learning with 

multi-behavior messages to explore low-rank behavioral embeddings. MBGCN [14] 

employs graph convolutional networks for discriminative behavior representation. Ap-

proaches such as [15], and MHGCN [7] leverage stacked convolutions for heterogene-

ous network learning. However, these methods often oversimplify multiplex structures, 

neglecting high-level semantics. To address this, our work proposes a sophisticated ar-

chitecture that adaptively models interactions and dependencies among diverse user 

behaviors, enhancing representation learning in multiplex networks. 

3 Preliminary 

A multiplex heterogenous graph is defined 𝒢 = {𝒰, ℐ, ℰ}. Here, 𝒰 = {𝑢1, ⋯ , 𝑢𝑁} and 

ℐ = {𝑣1, ⋯ , 𝑣𝐽} represent the set of users and items, respectively. ℰ = ⋃𝑟∈ℛℰ𝑟 repre-

sents the collection of various interactive edges between users and items, each edge 

belonging to a particular interaction type. ℛ denotes the set of all interaction types. In 

our multi-behavior scenario, we let 𝐴𝑟 denote the user-item interaction matrix under 

the 𝑟-th behavior type (e.g., view, cart, favorite, and buy in the commercial recommen-

dation scenario). Then the observed user-item interaction with various types of behav-

iors could be present as follows: {𝐴1, ⋯ , 𝐴𝑟𝑡 ,⋯ , 𝐴|ℛ|}, where 𝑟𝑡 represents the target 

type of behavior. From the Gross Merchandise Value (GMV) perspective, purchase is 

always considered the target behavior in E-commercial services. 

3.1 User-Item interaction matrix 

Since there are various types of behavior in user-item interactions, a certain type of 

interaction matrix is defined as  𝐴𝑟. Specifically, the individual element 𝑥𝑖,𝑗
𝑟 ∈ 𝐴𝑟 is set 

as 1 if the user 𝑢𝑖 interacts with the item 𝑣𝑗 under the 𝑟-th behavior type, 𝑥𝑖,𝑗
𝑟 = 0 oth-

erwise. 

3.2 Multiplex interaction matrix 

Inspired by the representation paradigm of Heterogenous Graph Convolutional Net-

work [7], we explore a matrix stacking method to compose all user-item interactions 

{𝐴1, ⋯ , 𝐴𝑟𝑡 ,⋯ , 𝐴|ℛ|} into one multiplex interaction matrix 𝔸. This matrix provides a 

structured way to represent the multiple layers or types of interactions between users 

and items. Specifically, 𝑥𝑖,𝑗 ∈ 𝔸 is set as 1 if there exists any interaction between the 

user 𝑢𝑖 and the item 𝑣𝑗, 𝑥𝑖,𝑗 = 0 otherwise. 
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3.3 Behavior Aware Pattern, or BAP 

A two hop behavior pattern such as 𝑈𝑠𝑒𝑟 →
𝑐𝑙𝑖𝑐𝑘

𝐼𝑡𝑒𝑚 →
𝑏𝑢𝑦

𝑈𝑠𝑒𝑟  and 

𝑈𝑠𝑒𝑟 →
𝑐𝑙𝑖𝑐𝑘

𝐼𝑡𝑒𝑚 →
𝑓𝑎𝑣𝑜𝑟𝑖𝑡𝑒

𝑈𝑠𝑒𝑟  both represent a broader behavioral dependency be-

tween users and items. This User-Item-User relationship, starting with click behavior, 

can be seen as a behavior-aware pattern [click] ∘ [⋅], where ∘ denotes the composition 

operator on relations, and [⋅] denotes optional. 

3.4 Problem Statement 

Given these definitions, we can now define the task as: 

• Input: The observed multiplex heterogenous graph 𝒢 = {𝒰, ℐ, ℰ} is given. 

• Output: A predictive function that can capture rich structural and semantic infor-

mation involved in the heterogenous graph for estimating the likelihood that the user 

𝑢 ∈ 𝒰 will interact with the item 𝑣 ∈ ℐ under the target type 𝑟𝑡 of behaviors. 

4 Methodology 

In this section, we will elaborate on the workflow of Behavior-Type Aware Represen-

tation Learning for Multiplex-Behavior Recommendation BA-MBRec, as illustrated in 

Fig. 1. 

 

Fig. 1. The framework of BA-MBRec, best viewed in color.  

4.1 Overall of Behavior-Aware Encoder 

This section details the BA-MBRec framework, designed to effectively model multi-

behavior interactions for recommendation. As highlighted in the Introduction, effec-

tively capturing the rich information embedded in multiplex behaviors is non-trivial. 

Traditional strategies relying on explicit path definition (e.g., meta-paths) suffer from 
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exponential complexity. To overcome this, our Behavior-Aware Encoder adopts an im-

plicit modeling strategy based on layer-wise graph message passing. This allows the 

model to capture multi-hop dependencies and synergistic interactions between diverse 

behavior types without explicit path enumeration. The encoder operates through three 

core stages detailed below: 1) Automatic construction of representations for behavior-

aware patterns of varying lengths. 2) Hierarchical Behavioral Dependency Modeling at 

each hop to capture semantic relationships among patterns of the same length. 3) Infor-

mation propagation and aggregation to learn final node embeddings. 

Behavior Pattern Construction. As mentioned in the preliminary, the corresponding 

user-item interaction matrix {𝐴1, ⋯ , 𝐴𝑟𝑡 ,⋯ , 𝐴|ℛ|} could be used to describe subgraphs 

that correspond to individual types of basic behaviors, where 𝐴𝑟 ∈ ℝ(|𝒱|×|ℐ|) . Then, 

each user-item interaction matrix could be operated to generate the multiplex interac-

tion matrix 𝔸 as follows: 

𝔸 =   
|ℛ|
𝑟 1 𝐴𝑟 (1) 

Here, the variable in the matrix 𝔸 represents the aggregated interaction matrix sum-

ming interactions across all behaviors. The behavior-aware pattern ℳ𝑟
(𝑙)

 reflecting in-

teractions starting with behavior 𝑟 and extending for 𝑙 hops, can be obtained via matrix 

multiplication: 

 
ℳ𝑟

(𝑙)
= 𝐴𝑟

(1)
𝔸(2) ⋯𝔸(𝑙)

= 𝐴𝑟
(1)

( 𝐴𝑟
|ℛ|
𝑟 1 )

(2)
⋯( 𝐴𝑟

|ℛ|
𝑟 1 )

(𝑙) (2) 

This formulation allows the encoder to capture the influence of multi-hop paths initi-

ated by a specific behavior type 𝑟. By varying the initial matrix 𝐴𝑟
(1)

 and the number of 

subsequent multiplications with 𝔸 (representing one hop considering all behaviors), we 

can generate representations for patterns of arbitrary length 𝑙 starting from any specific 

behavior 𝑟. These matrices ℳ𝑟
(𝑙)

 effectively encode the reachability and structure of 

specific behavior-aware patterns. 

Hierarchical Behavioral Dependency Modeling. In recommendation scenarios, dif-

ferent types of user behaviors (e.g., view, cart, buy), even when occurring within pat-

terns of the same length (i.e., represented at the same hop distance 𝑙 in the GNN), may 

exhibit fine-grained interdependencies and semantic similarities. For instance, for a 

level-headed user, ’cart’ behavior might be semantically closer to ’view’ than ’buy’, 

when considering patterns of length 𝑙. Capturing these relationships within each layer 

is crucial for a nuanced understanding of user preferences. 

To model these intra-layer dependencies, we propose the hierarchical behavioral de-

pendency modeling. Crucially, it operates at each graph propagation layer 𝑙. It takes the 

set of behavior-specific user embeddings learned at that layer, {𝑒𝑢
𝑟,𝑙|𝑟 ∈ ℛ}, as input. 
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Specifically, during every propagation step, it evaluates the correlations 𝜆
𝑟,𝑟 
𝑢, 

 between 

different pattern types at the same pattern length 𝑙: 

 

𝑒̃𝑢
𝑟,𝑙 = MH-Att(𝐞𝑢

𝑟,𝑙) = Concat
  1

𝐻

 (  
|𝑅|
𝑟  1

𝜆
𝑟,𝑟 
𝑢, ⋅ 𝐕 ⋅ 𝐞𝑢

𝑟,𝑙)

𝜆
𝑟,𝑟 
𝑢, =

exp 𝜆
𝑟,𝑟 
𝑢,ℎ

  
|𝑅|

𝑟 =1
exp 𝜆

𝑟,𝑟 
𝑢,ℎ ; 𝜆̅

𝑟,𝑟 
𝑢, =

(𝐐ℎ⋅𝐞𝑢
𝑟,𝑙)⊤(𝐊ℎ⋅𝐞𝑢

𝑟 ,𝑙)

√𝑑/𝐻

 (3) 

Here 𝜆
𝑟,𝑟 
𝑢, 

 represents the learned attention weight signifying the relevance of behavior 

𝑟′ to behavior 𝑟 for user 𝑢 within the ℎ-th attention head, specifically at layer/hop 𝑙. 
Where 𝐐 , 𝐊  and 𝐕  are learnable projection matrices of ℎ-th head learning sub-

space. 𝑒̃𝑢
𝑟,𝑙

 is a refined embedding for behavior type r at length l, enriched with context 

from other concurrent behaviors at that same length. This process allows the model to 

learn nuanced similarities and dependencies (e.g., [click] ∘ [⋅] vs. [view] ∘ [⋅] at hop 𝑙) 
without conflating information across different pattern lengths. Similar operations are 

applied for item embeddings. 

Information Propagation. The core propagation mechanism utilizes a chain of 

LightGCNs [2]. After refining the behavior-specific embeddings at layer 𝑙  using 

HBDM to obtain {𝑒̃𝑢
𝑟,𝑙 , 𝑒̃𝑖

𝑟,𝑙}, these enhanced representations contribute to the integra-

tion process, which could be demonstrated as follows: 

 

𝑒̃𝑢
𝑟,𝑙 1 =   𝑖 𝒩𝑢

𝑟
1

√|𝒩𝑢
𝑟|√|𝒩𝑖

𝑟|
𝑒̃𝑖
𝑟,𝑙

𝑒̃𝑖
𝑟,𝑙 1 =   𝑢 𝒩𝑖

𝑟
1

√|𝒩𝑢
𝑟|√|𝒩𝑖

𝑟|
𝑒̃𝑢
𝑟,𝑙

 (4) 

where 𝒩𝑢
𝑟 and 𝒩𝑖

𝑟  are neighbors defined by the behavior pattern matrix ℳ𝑟
(𝑙)

. 

4.2 Cross behavioral Aggregation 

To address the challenge of effectively aggregating features while accounting for mul-

tifaceted interactions, we propose the cross-behavioral aggregation. Firstly, we concat-

enate all the embeddings for node 𝑢 as 𝒬𝑢 ∈ ℝ𝑑×|ℛ|, where 𝑑 is the dimension of re-

fined behavior-aware embeddings at layer 𝑙 (similar aggregation is applied for item 

nodes) : 

 𝒬𝑢
(𝑙)

= (𝑒̃𝑢
1,𝑙, 𝑒̃𝑢

2,𝑙 , ⋯ , 𝑒̃𝑢
|𝑅|,𝑙

) (5) 

Then we use the self-attention mechanism to compute personalized, dynamic 

weights 𝛽𝑢,𝑟 ∈ ℝ|ℛ| of embeddings in 𝒬𝑢
(𝑙)

 on behavior-aware pattern 𝑟 as: 



  

𝛽𝑢,𝑟
(𝑙)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑟
𝑇tanh (𝑊𝑟 𝑢

(𝑙)
))𝑇

= (
exp(𝑤𝑟

𝑇tanh (𝑊𝑟𝑒̃𝑢
𝑟,𝑙))

  𝑟∈|ℛ| exp (𝑤𝑟
𝑇tanh (𝑊𝑟𝑒̃𝑢

𝑟,𝑙
))
)𝑇

 (6) 

where 𝑤𝑟 and 𝑊𝑟 are trainable parameters for behavior type 𝑟 with size 𝑑𝑎 × 𝑑 respec-

tively. The superscript T denotes the transposition of the vector or the matrix. These 

weights are used to perform a weighted aggregation, yielding a fused embedding 𝑡𝑢
(𝑙)

 

under the multiplex behavior view: 

  

𝑡𝑢
(𝑙)

= 𝒬𝑢
(𝑙)

𝛽𝑢,𝑟
(𝑙)

 (7) 

After performing weighted aggregation under different behavior patterns, we suggest 

supplying base information for feature learning as follows: 

 

𝑧𝑢
𝑙 = 𝑅𝑒𝐿𝑢 (𝑊𝑧 ⋅

  𝑟∈|ℛ| 𝑒̃𝑢
𝑟,𝑙

|ℛ|
 𝑡𝑢

(𝑙)
) (8) 

However, in some applications, both long and short behavior patterns are essen-

tial\cite{yun2019graph}. To learn both short and long behavior-aware patterns, includ-

ing original behavior information, we structure the embedding 𝑍𝑢 in different lengths 

as: 

  
𝑍𝑢 = 𝑓𝜃(𝑧𝑢

1 , 𝑧𝑢
2, … , 𝑧𝑢

𝑙 ) (9) 

where 𝑓𝜃 involves concatenation followed by a linear transformation. 𝑊𝑧 is a learnable 

matrix parameter. 

4.3 Joint Optimization 

Behavioral Contrastive Loss. Based on the target behavior (typically "buy") and other 

auxiliary behaviors we mentioned above, BA-MBRec adopts contrastive learning on 

different behavior representations, which treats the different behaviors for the same user 

as positive sample pairs and different users as negatives. Following the works [16][17], 

we utilize the InfoNCE loss in our cross-behavior contrastive view to measure the dis-

tance between embeddings by maximizing the contrastive loss, which enforces the 

agreement between two behaviors of the same user and divergence among different 

users: 

 ℒ𝑐𝑙
𝑟𝑡,𝑟 =   𝑢∈𝒰 − log 

exp(𝜑(𝑒𝑢
𝑟𝑡,𝑒𝑢

𝑟)/𝜏)

  𝑢 ∈𝒰 exp (𝜑(𝑒𝑢
𝑟𝑡,𝑒

𝑢 
𝑟 )/𝜏)

 (10) 

Where 𝜑(⋅) denotes the similarity function (e.g., inner-product or cosine similarity) be-

tween two embeddings. 𝜏 represents the temperature hyperparameter for the softmax 

function. After that, we can obtain the contrastive ℒ𝑐𝑙
𝑟𝑡,𝑟

 for each pair of target behavior 

𝑟𝑡 and auxiliary behavior 𝑟. 
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BPR Loss. BA-MBRec employs the Bayesian Personalized Ranking (BPR) recom-

mender loss as one of the task losses for the next parameter optimization: 

 ℒ𝐵𝑃𝑅
𝑟 =   (𝑢,𝑖+,𝑖−)∈𝒪𝑟

− ln (𝜎(𝑥̂𝑢,𝑖+
𝑟 − 𝑥̂𝑢,𝑖−

𝑟 ))  𝜆‖Θ‖2 (11) 

Where 𝑥̂𝑢,𝑖+
𝑟 = 𝑒𝑢

𝑟T ⋅ 𝑒𝑖+
𝑟 , 𝑂𝑟 denotes training pairwise samples of 𝑟-th behavior-aware 

pattern (i.e., 𝒪𝑟 = {(𝑢, 𝑖 , 𝑖 )|(𝑢, 𝑖 ) ∈ 𝑔 , (𝑢, 𝑖 ) ∈ 𝑔 }), 𝑔  and 𝑔  represents the 

observed and unobserved interaction of specific user under the corresponding behavior-

aware pattern. Θ denotes the learnable parameters and L2 regularization is used to alle-

viate the overfitting issue. 𝜆 a coefficient to control the L2 regularization. 

Meta-Weight Encoder. Following the meta-knowledge integration in CML [4] and 

DCMGNN [9], we adopted a meta-knowledge encoder based on learned user represen-

tation 𝑍𝑢 and 𝑒𝑢
𝑟: 

 
𝑀𝑢,1

𝑟𝑡,𝑟 = (𝑑𝑢𝑝(ℒ𝑐𝑙
𝑟𝑡,𝑟) ⋅ 𝛾) ∥ 𝑒𝑢

𝑟 ∥ 𝒵𝑢

𝑀𝑢,2
𝑟𝑡,𝑟 = ℒ𝑐𝑙

𝑟𝑡,𝑟 ⋅ (𝑒𝑢
𝑟 ∥ 𝒵𝑢)

 (12) 

Where 𝑟𝑡  denotes the target behavior and 𝑀𝑢,1
𝑟𝑡,𝑟

, 𝑀𝑢,2
𝑟𝑡,𝑟

 encodes meta-knowledge be-

tween behavior patterns and the target behavior. 𝑑𝑢𝑝(⋅) duplicates to match the em-

bedding dimension. ∥ denotes the concatenation operation. 𝛾 is a scale factor. This en-

coded meta-knowledge then informs weights for different contrastive losses, enabling 

customized capture of personalized user preferences based on multi-behavior interac-

tions. Finally, the personalized contrastive loss weight could be represented as follows: 

   

𝜔𝑐𝑙
𝑟𝑡,𝑟 = 𝜔𝑢,1

𝑟𝑡,𝑟  𝜔𝑢,2
𝑟𝑡,𝑟 = 𝜉(𝑀𝑢,1

𝑟𝑡,𝑟)  𝜉(𝑀𝑢,2
𝑟𝑡,𝑟)                            (13) 

where 𝜉(⋅)  represents network with LeakyReLU. Subsequently, we can apply our 

weighting scheme to various task losses, including the behavioral contrastive loss and 

the BPR-based recommendation objective loss: 

  

ℒ𝑐𝑙 =   𝑟∈ℛ 𝜔𝑐𝑙
𝑟𝑡,𝑟ℒ𝑐𝑙

𝑟𝑡,𝑟

ℒ = 𝜇ℒ𝑐𝑙    𝑟∈ℛ 𝜔𝑏𝑝𝑟
𝑟𝑡,𝑟ℒ𝐵𝑃𝑅

𝑟  (14) 

4.4 Model Complexity Analysis.  

We estimate the computational complexity of our model by considering the following 

parts: (i) The computational cost of the LightGCN architecture adopted by our model 

is 𝑂(𝐿 ×  × 𝑑 × |𝑅𝑘|) with 𝐿 layers of network and   types of behaviors. |𝑅𝑘| repre-

sents the number of edges in the behavior-aware pattern matrix under   behavior. For 

hierarchical behavioral dependency modeling, the most prominent computation comes 

from the 𝑂( × 𝑑2 × (𝑁  𝑀)). The operation of linear transformation and cross-

typed behavioral aggregation asymptotically takes 𝑂(𝐿 × (𝑁  𝑀) × 𝑑 × (  𝑑)). 

(ii) InfoNCE loss computation costs 𝑂(𝐵 × 𝑑) and 𝑂(𝐵 × 𝑆 × 𝑑) for the numerator 



and denominator as shown in Eq.10. Here 𝑆 indicates the sampled set for considering 

time complexity and robustness at the same time [16]. Therefore, the contrastive para-

digm takes 𝑂( × |𝑅𝑘| × 𝑆 × 𝑑) per epoch over training. BA-MBRec maintains com-

parable time complexity while improving performance [4][18]. 

5 EVALUATION 

To evaluate BA-MBRec's performance, we conduct experiments on three different real-

world datasets and compare them with state-of-the-art multi-behavior recommendation 

techniques. Particularly, we propose the following research questions: 

• RQ1: How effectively does BA-MBRec architecture work in tackling multi-behav-

ior recommendations? 

• RQ2: How do the different components impact the effectiveness of the BA-MBRec 

framework for multi-behavior recommendations? 

• RQ3: How does BA-MBRec make recommendations based on different user behav-

iors? 

• RQ4: How does BA-MBRec perform with varying interaction sparsity degrees? 

• RQ5: What is the impact of varying key hyperparameters on the performance of 

BA-MBRec? 

• RQ6: How is the explainability of BA-MBRec? How effectively is the BA-MBRec 

capturing behavior-aware patterns for the final recommendation tasks? 

5.1 Experimental Setting 

Dataset. We perform our model BA-MBRec on three real-world public datasets 

demonstrated in Table 1. Taobao-Data: This dataset from Taobao, one of the largest e-

commerce platforms in China, includes four types of user-item interactions: page view, 

add-to-cart, tag-as-favorite, and purchase. IJCAI-Contest: This dataset originates from 

the IJCAI-15 Challenge and is derived from a business-to-customer retail system. It 

includes the same types of user behaviors as the Taobao dataset, representing different 

user intentions towards items. Retailrocket: This dataset is collected from the Retail-

rocket recommendation system. It includes user interactions such as Page View, Add-

to-Cart, and Transaction. We consider purchasing a target behavior, with other types 

serving as auxiliary behaviors following the existing work. 

Table 1. Statistical information of evaluation datasets. 

Dataset Users Items Interactions Behavior Types 

Taobao 147,894 99,037 7,658,926 {PageView, Fav, Cart, Buy} 

IJCAI 17,435 35,920 799,368 {Click, Fav, Cart, Buy} 

Retail 2,174 30,113 97,381 {PageView, Cart, Transaction} 

 

Baseline. We divided state-of-the-art techniques into three groups: 
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Conventional Matrix Factorization Approach: 

• BPR [19]: A popular matrix factorization model that uses Bayesian personalized 

ranking as its optimization criterion. 

Graph Neural Networks for Recommendation: 

• NGCF [3]: Convolutional message-passing on user-item graph to capture high-or-

der collaborative effects in user embeddings. 

• LightGCN [2]: A simplified and efficient graph convolutional network designed for 

collaborative filtering. 

Multi-behavior Models for Recommendation: 

• MBGCN [14]: The GCN-based model uses a consolidated graph of user interactions 

to capture multi-behavioral patterns via behavior-aware embedding propagation. 

• MATN [12]: MATN uses memory-enhanced self-attention for multi-behavior rec-

ommendation, measuring inter-behavior influence. 

• KHGT [10]: Transformer-based temporal multi-behavior modeling with graph at-

tention differentiation. 

• MHGCN [7]: MHGCN proposes a Multiplex Heterogeneous Graph Convolutional 

Network that captures heterogeneous metapath interactions and integrates structural 

signals with attribute semantics. 

• BPHGNN [8]: BPHGNN proposes a Behavior Pattern-based Heterogeneous Graph 

Neural Network that captures multiplex structural signals and global information 

through depth and breadth behavior pattern aggregation. 

• CML [4]: Multi-behavior contrastive learning framework distilling knowledge 

across behaviors via contrastive loss. 

• KMCLR [18]: Multi-behavior learning for user embeddings, enhanced by 

knowledge graphs for robust item representations. 

Evaluation Protocols. Hit Ratio (HR@N) and Normalized Discounted Cumulative 

Gain (NDCG@N) are applied to evaluate the performance of our model in the recom-

mendation task. We set all baseline models for fair comparison according to CML’s 

experimental setup. Specifically, in the test data, we used the last interaction item of 

the predicted behavior as a positive example and 99 randomly selected items that the 

user did not interact with as negative examples. 

Parameter Setting. We implement our model BA-MBRec in Pytorch. All embeddings 

were initialized with Xavier [22], and the model was optimized using the AdamW op-

timizer [23] and the Cyclical Learning Rate (CyclicLR) strategy [24], which systemat-

ically vary the learning rate within predefined bounds during training, helping the 

model escape local minima and improve generalization. Following the existing work 

[4], we set the base and max learning rate in {0.6𝑒 4, 1𝑒 4, 1𝑒 3}  and 

{0.6𝑒 3, 1𝑒 3, 2𝑒 3, 5𝑒 3}, respectively. We also use dropout to alleviate the problem 

of overfitting in Meta-Weight Net. 



Table 2. Performance comparison on different datasets in terms of HR@10 and NDCG@10. 

Dataset Metric BPR LightGCN NGCF MBGCN MATN KHGT MHGCN BPHGNN CML KMCLR Ours Im-

prov.% 

 

Taobao 

HR 0.2436 0.3419 0.3354 0.4060 0.4276 0.4319 0.4530 0.4901 0.5782 0.5906 0.6153 4.18% 

NDCG 0.1465 0.2049 0.1902 0.2195 0.2543 0.2677 0.2891 0.3199 0.3594 0.3678 0.3945 7.26% 

 

IJCAI 

HR 0.1765 0.2695 0.2713 0.3760 0.3710 0.3964 0.4230 0.4785 0.4905 0.5234 0.5506 5.20% 

NDCG 0.0891 0.1261 0.1281 0.1910 0.2432 0.2399 0.2577 0.2820 0.2871 0.3169 0.3491 10.16% 

 

Retail 

HR 0.2479 0.2828 0.2814 0.3108 0.3010 0.3719 0.3482 0.4003 0.3908 0.4557 0.4723 3.65% 

NDCG 0.1557 0.1683 0.1622 0.1857 0.1997 0.2242 0.2379 0.2402 0.2361 0.2735 0.2922 6.84% 

5.2 Performance Comparison (RQ1) 

Table 2 displays the Top-N item recommendation results for the target behavior type, 

obtained from comparable experiments on three real-world datasets. The "improv." de-

notes the relative improvement between the baselines and our model BA-MBRec. BA-

MBRec outperforms other techniques on each dataset, demonstrating our model's ef-

fectiveness in modeling personalized multi-behavior patterns. We reckon the following 

factors are the primary drivers behind the significant improvement: (i) Benefiting from 

the techniques of the behavior-aware pattern encoder, the model could fully dig into 

high-order semantic information from varying behavior patterns. (ii) Introducing the 

proposed attention mechanism allows the model to weightedly aggregate embeddings 

of multiplex behaviors. (iii) Contrastive learning provides informative gradients to 

graph-based collaborative filtering, improving preference exploration and leading to 

more accurate recommendations. 

The multi-behavior recommendation always outperforms the single-behavior recom-

mendation, which indicates the effectiveness of introducing auxiliary information about 

other behavior types. These graph-based methods effectively model complex user-item 

relationships and capture higher-order interactions, leading to impressive results. 

5.3 Ablation Study (RQ2) 

We further conduct the ablation study for our BA-MBRec to evaluate each components' 

effectiveness in Table 3. The details of our experiments are as follows: 

Table 3. Results of ablation experiments. 

Dataset Taobao IJCAI-Contest Retailrocket 

Metrics HR NDCG HR NDCG HR NDCG 

BA-MBRec(Decoupled) 0.5945 0.3817 0.5307 0.3280 0.4608 0.2701 

BA-MBRec(GlobalMeanPooling) 0.5989 0.3826 0.5158 0.3138 0.4610 0.2778 

BA-MBRec(LinearProj) 0.5911 0.3791 0.5217 0.3255 0.450 0.2635 

BA-MBRec(UniformCL) 0.5862 0.3805 0.5092 0.3086 0.4324 0.2535 

BA-MBRec(NoCL) 0.5959 0.3824 0.5240 0.3231 0.4591 0.2574 

BA-MBRec 0.6126 0.3945 0.5506 0.3491 0.4723 0.2922 
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• Effect of Behavior-aware Pattern Construction: We create a model variant 

known as BA-MBRec(Decoupled) by turning off the construction of topological be-

havioral patterns. Alternatively, we utilize graph neural networks to capture basic 

behavior information and train the model on a decoupled view of behaviors. Notably, 

our model obtains better performance than BA-MBRec(Decoupled), which demon-

strates a heightened capacity to characterize behavior embeddings accurately and 

effectively, as it autonomously captures high-order behavioral pattern information. 

• Effect of Cross-Behavioral Aggregation: To isolate the contribution of the atten-

tion-based fusion mechanism within Cross-Behavioral Aggregation (CBA), we de-

signed the BA-MBRec(GlobalMeanPooling) variant. In this variant, the attention 

mechanism used for dynamically weighting behavior embeddings is removed. As an 

alternative, we adopt a fine-grained non-adaptive aggregation strategy, which stacks 

user and item embeddings generated under different behavioral patterns into a multi-

channel representation and aggregates the multi-channel information through global 

mean pooling. As a result, BA-MBRec exhibits a superior ability to capture the de-

pendencies among diverse behaviors than BA-MBRec(GlobalMeanPooling). Fur-

thermore, it facilitates a more personalized and weighted fusion of behavior embed-

dings derived from various behavior patterns. 

• Effect of Hierarchical Behavior Dependency Modeling: To isolate the contribu-

tion of modeling intra-layer behavioral dependencies enabled by HBDM, we de-

signed the simpler variant, called BA-MBRec(LinearProj). This variant replaces the 

hierarchical attention mechanism with simple linear layers, which only perform 

basic semantic space projection without capturing the nuanced similarities between 

concurrent behaviors at the same hop 𝑙. As a result, the significant performance drop 

of BA-MBRec(LinearProj) compared to the full model validates the necessity of 

HBDM's specific mechanism for capturing these crucial same-length behavioral de-

pendencies. 

• Effect of Meta Contrastive Network: We propose another variant, BA-

MBRec(UniformCL), which relies solely on contrastive learning to capture mutual 

information between specific types of behavioral embeddings. Specifically, the MV 

weight network is removed, and the behavior comparison loss function and the BPR 

loss function are treated equally during training. The result suggests that by leverag-

ing the meta contrastive network, we can automatically discern the influence be-

tween different target-auxiliary behavior pairs, enabling cross-view behavior de-

pendencies to complement each other. 

• Effect of Multi-behavior Contrastive Learning Framework: We create the model 

variant BA-MBRec(NoCL) by disabling contrastive learning between target and 

auxiliary user behaviors. Instead, we solely rely on behavior-aware graph neural net-

works to capture behavioral relationships. The result suggests that the effectiveness 

of our model in capturing complex dependencies across different behavior types, 

while also mitigating the impact of skewed data distribution, and effectively trans-

ferring knowledge across behavior views. 



5.4 Effect of Context Behaviors (RQ3) 

 

Fig. 2. Impact study of different types of context behavior. 

We undertake an additional context experiment to evaluate the effectiveness of inte-

grating various context behaviors into our BA-MBRec framework. We categorize these 

behaviors according to their respective datasets, and the outcomes are depicted in Fig. 

2. In this figure, the notations "-pv", "-cart", and "-fav" indicate that the model was 

trained without incorporating the respective viewing, carting, and favoriting behaviors. 

Conversely, "+buy" signifies the variant that solely relies on the target purchase behav-

iors for predictions. Our findings reveal that our model outperforms all other variants 

by comprehensively capturing user preferences through context behaviors. Further val-

idation confirms that our model can extract dependency relationships from intricate 

behavior patterns. 

5.5 Performance on Data Sparsity (RQ4) 

This section evaluates how our framework performs on user behavior data of varying 

sparsity, particularly regarding its effectiveness in multiplex behavior recommendation. 

Adhering to a similar setting as in [20], we generated datasets with varying degrees of 

sparsity from the Taobao dataset. The results are presented in Fig. 3. Performance of 

BA-MBRec and baseline methods w.r.t different data sparsity degrees on Taobao data.. 

Specifically, users were divided into six groups based on their interaction counts: 
𝐺1: (0,4],  𝐺2: (4,5],  𝐺3: (5,6],  𝐺4: (6,7],  𝐺5: (7,8], and 𝐺6:  > 8. To be more specific, 

the right y-axis indicates the indicators evaluated by HR@10 and NDCG@10. The total 

number of users belonging to each group is shown on the left y-axis of Fig. 3. 
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Fig. 3. Performance of BA-MBRec and baseline methods w.r.t different data sparsity degrees 

on Taobao data. 

From the result, we could obtain the following findings: (i) Recommendation accuracy 

across all models improves with increased user interactions, as more data allows for 

finer-grained behavior modeling. (ii) Contrastive learning models (e.g., KMCLR, 

CML) outperform those using only auxiliary information (e.g., MBGCN), proving con-

trastive learning’s ability to preserve behavior heterogeneity and semantic diversity via 

self-supervision. (iii) Our model outperforms other multi-behavior models, even those 

that proved effective for data sparsity, across all user groups due to its superior ability 

to extract inter-behavior interaction information. 

5.6 Hyperparameter Setting on BA-MBRec (RQ5) 

Fig. 4 illustrates the impact of different hyperparameter settings on our framework's 

performance. Each analysis isolates a single hyperparameter while keeping other pa-

rameters at their default values. 

 

Fig. 4. Hyperparameter analysis of BA-MBRec. 

Graph Propagation Layers  . Increasing graph convolution layers improved perfor-

mance up to three layers, suggesting benefits from capturing higher-order information 



through message passing.  However, further stacking introduced noise and over-

smoothing, ultimately harming performance [21]. 

Latent Dimensionality of Embeddings 𝑑. Experimenting with embedding dimensions 

from 8 to 128, we found optimal performance with dimensionality reaching 64. Larger 

dimensions led to overfitting, yielding marginal gains or performance drops. 

5.7 Case Study (RQ6) 

This section presents a qualitative study demonstrating our model's interpretability. We 

visualize the meta-weights to illustrate the contribution of individual context behaviors 

in predicting the target behavior. 

Behavior-specific Contrastive Weight Visualization. We visualize the learned 

weights 𝜔𝑢
𝑟𝑡,𝑟

 for each behavior pair of sampled users. The result is shown in Fig. 5, 

which reflects the customized preferences of individuals. The color bar represents loss 

weights between behaviors and the target behavior, with darker colors indicating 

stronger correlation and higher weights. For instance, users "14222" and "19130" are 

more likely to purchase after clicking than after other actions. 

 

Fig. 5. Behavior-specific contrastive weights learned from data. 

6 Conclusion 

In this work, we propose a method called BA-MBRec for multi-behavior recommen-

dation tasks. BA-MBRec implicitly integrates behavior pattern construction with hier-

archical dependency modeling at each hop and personalized cross-behavior aggrega-

tion. Results from experiments on three real-world datasets showcase BA-MBRec's 
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improved performance compared to state-of-the-art baselines. Moreover, ablation stud-

ies affirm the effectiveness of its learned feature embeddings. 
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