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Abstract. Prediction of protein-peptide binding sites plays a critical role in the 

regulation of cellular functions and the targeted drug discovery. Recently, se-

quence-based prediction methods have been widely used due to their simplicity, 

effectiveness, and low cost of data collection. However, these methods rely on 

the binary classification of individual amino acids within the protein sequence, 

which often overlooks the dependencies between binding amino acids in the 

training labels. To address this issue, we propose a novel Dual-stream Protein-

Peptide Binding sites Prediction method (DPPBP) based on region detection and 

protein language model. For the first-stream, we group successive binding sites 

into a single region to capture the relationships between binding amino acids and 

highlight the binding region of the entire sequence. Then, we use a fixed small 

set of learned target queries to reason about the relationships between the target 

regions and the global sequence information of the protein, generating the final 

predictions in parallel. For the second-stream, we continue to use a binary clas-

sification to discriminate each individual amino acid at a fine-grained level, and 

the final prediction is obtained by combining the results of both streams. Exten-

sive experiments show that our DPPBP method outperforms the existing state-

of-the-art sequence-based methods on the two benchmark datasets. Datasets and 

codes can be found at https://github.com/22Donkey/DPPBP. 

Keywords: Protein-peptide Interaction, Binding Sites Prediction, Dual-stream 

Joint Inference. 

1 Introduction 

Protein interacts with ligands [11] such as peptides, DNA, RNA, and metal ions, play-

ing a critical role in controlling key cellular processes such as cell metabolism, signal 

transduction, etc. In particular, protein-peptide interaction [25] is crucial in physiolog-

ical activities such as immune responses, transcriptional regulation, cell migration and 

repair. Specifically, proteins protect the body from infection by binding to peptide to 

recognize and eliminate foreign pathogens. Besides, peptides, as part of transcription 

factors, modulate the transcription of specific genes, influencing cellular growth, dif-

ferentiation, and stress responses. Therefore, the study of protein-peptide interaction 
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and their mechanisms is essential for exploring protein function [19, 33] and developing 

new therapeutic targets and drugs [13, 14, 15, 16, 17]. Regarding this field, traditional 

methods usually rely on a series of complex experimental approaches, including X-ray 

crystallography [20], nuclear magnetic resonance (NMR) [30], cryo-electron micros-

copy (cryo-EM) [3], and molecular docking [8]. These methods mimic and localize 

potential binding sites by resolving the 3D structure of proteins. However, these meth-

ods are limited by high costs and time-consuming experimental procedures, as well as 

structural resolution challenges posed by small peptide size [7] and peptide flexibility 

[35]. In addition, these methods typically rely on known 3D protein structures and are 

difficult to apply to proteins that have not yet been resolved. Therefore, sequence-based 

identification of protein-peptide binding sites has a broad application perspective, but 

still remains a challenge in the domain of biology. 

Recently, with the rapid development of deep learning, various methods have been 

proposed to predict protein-peptide binding sites, but among them there are serious 

limitations for methods that require 3D structures of proteins. Obtaining high-quality 

3D structures of proteins typically requires expensive experimental techniques, and the 

availability of structural information may be limited in cases of incomplete or unknown 

structures. Although AlphaFold [2] has achieved remarkable success in the domain of 

protein structure prediction, the predicted structural data can introduce misinformation 

into the prediction of binding sites [10] and then cause errors. Therefore, sequence-

based methods continue to be commonly applied thanks to their simplicity and effi-

ciency. 

Sequence-based protein-peptide binding sites prediction approaches are based on a 

binary classification of individual amino acids within the protein sequence and offer 

high computational efficiency, allowing for the rapid processing of large-scale protein 

data without the need for detailed sequence information. However, these methods suffer 

from several fundamental limitations: First, binding sites are typically composed of 

spatially adjacent amino acid residues that manifest as either dispersed or contiguous 

regions in the primary structure and complex interactive relationships in the tertiary 

structure. Current methods inadequately capture the local dependencies and global se-

quence features among these amino acids. They overlook the semantic relationships 

between amino acids and the interdependencies between them within binding regions. 

This results in an inability to accurately identify the overall integrity of binding sites 

and the synergistic effects between regions, which is particularly inadequate for long 

and complex binding sites. Second, protein sequences often exhibit a considerable  im-

balance between binding sites and non-binding sites, with binding sites making up only 

a small fraction of the entire sequence. This imbalance can cause models to bias their 

predictions toward non-binding sites during training, thereby hindering the accurate 

identification of binding sites. 

To address the above limitations, we propose a novel dual-stream joint inference 

method, called DPPBP, based on SPN [26]. As shown in Fig. 1, the proposed method 

is inspired by detection methods in computer vision and natural language processing 

[34]. First, we group successive binding sites into a single region, allowing the network 

to learn the relationships between the binding regions and the global sequence infor-

mation of the protein, and automatically extract potential binding regions in the first- 
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stream. A bipartite matching loss function, which directly optimizes for the best match, 

is used to mitigate the effects of data imbalance, especially for binding regions with 

lower representation. Second, we continue to use binary classification in the second-

stream, focusing on discriminating each individual amino acid, and the final prediction 

is derived by taking the union of the outputs from both streams. The combination of 

contrastive loss and cross-entropy loss is used to balance the contributions of different 

classes in the binary classification task, ensuring that the model is appropriately opti-

mized across all classes. Extensive experiments and ablation studies prove that our pro-

posed method greatly improves the performance of binding sites prediction method, 

and each innovation is valuable to the whole framework. 

 

Fig. 1. (a) shows the method based on protein sequence features. (b) shows our proposed dual-

stream joint inference model. 

2 Related Work 

Sequence-based binding sites prediction methods have been widely applied due to their 

simplicity and efficiency. First, Taherzadeh et al. proposed the SPRINT-Seq [28] 

model, which encodes protein sequences as one-hot vector features and combines them 

with support vector machines (SVMs) for prediction. Next, Zhao et al. developed the 

PepBind [37] model, which further expanded the feature space of protein sequences by 

introducing intrinsic disorder features, revealing the relationship between protein-pep-

tide binding and inherent disorder. Subsequently, Wardah et al. proposed a two-step 

Visual [32] method. The first step extracts relevant features from protein sequences. 

The second step encodes each residue and its neighbors into an image-like 

          

  

       

          

                 

     

                              

                          

                                

                                  

           

                  

     

                                      

                                  

                                

                          

                        

    

   

                           

                     

                               



 

representation using a sliding window and predicts binding residues using a convolu-

tional neural network (CNN). Additionally, Abdin et al. developed the PepNN-Seq [1] 

method based on the reciprocal attention mechanism that concurrently updates peptide 

and protein representations, better reflecting the conformational changes occurring dur-

ing binding. Similarly, the PepCA [18] method proposed by Huang et al. achieved high-

precision binding sites prediction by encoding protein sequences using the ESM-2 [23] 

pre-training model and updating the encoding using a multi-input coattention module. 

Finally, the PepBCL [31] model proposed by Wang et al. combined the protBert [4] 

model with contrastive learning methods, providing an end-to-end solution that further 

optimizes the pre-trained embeddings of protein sequences, thereby improving the ac-

curacy of protein-peptide binding sites prediction. 

3 Materials and Methods 

3.1 The Benchmarking Datasets 

To objectively evaluate and contrast the performance of our proposed method with cur-

rent methods, we selected two benchmarking datasets, denoted as Dataset 1 and Dataset 

2, from the BioLip [36] database. These datasets, with a protein residue-level positive-

to-                   6 749 29  943  ≈   7.4       w    y                               

uating protein-peptide binding sites prediction models. A brief summary of these is 

given in Table 1, and their detailed descriptions follow. 

Dataset 1 was proposed by Taherzadeh et al. during the development of the struc-

ture-based binding sites prediction model, SPRINT-Str [29]. They randomly divided 

the protein sequences with peptide binding into two subsets: a training set (labeled as 

TR1154) and an independent test set (labeled as TE125). The training set accounts for 

90% of the data, and the test set accounts for 10%. The TR1154 training set contains 

1,154 protein sequences, which include 9,010 peptide binding regions, with the remain-

ing regions being background non-binding regions. Dataset 2 was proposed by Zhao 

et al. during the development of the sequence-based binding sites prediction model, 

PepBind [37]. They randomly divided 1,279 peptide-binding protein sequences into 

two equally sized subsets, creating a training set (labeled as TR640) and a test set (la-

beled as TE639). The TR640 training set contains 640 protein sequences, which include 

4,970 peptide binding regions, with the remaining regions being background non-bind-

ing regions. 
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Table 1. Statistics of the benchmarking datasets. Consecutive binding residues in a sequence 

are a binding region. 

 Dataset 1 Dataset 2 

Train Test Train Test 

Proteins 1,154 125 640 639 

Binding regions 9,010 1,039 4,970 5,079 

Binding residues 15,030 1,719 8,259 8,490 

Non-binding residues 261,792 29,151 149,103 141,840 

3.2 The Proposed Method 

The overall framework of the DPPBP method proposed in this study is shown in Fig. 

2. Both streams use the protein pre-trained model ProtBert for representation. The first-

stream uses a transformer-based non-autoregressive decoder [12, 38] to decode the start 

and end indices of each binding region, while the second-stream uses a series of linear 

layers to perform a binary classification on each amino acid to determine whether it is 

a binding residue. Finally, the overall output is obtained by taking the union of the 

predictions from both streams. The details of both are presented in the subsequent sec-

tions. 

 

Fig. 2. The overall pipeline of DPPBP, where the top part is the detection process of binding 

regions for the first-stream, and the bottom part is the binary classification process for each amino 

acid for the second-stream. Both streams share the encoder ProtBert. 

First-stream: prediction of binding regions. For the first-stream, we predict binding 

regions by grouping successive binding amino acids into a single region. The task is 

formulated as a set prediction problem, with the set generated directly by a transformer-

based non-autoregressive decoder. The set contains the start and end indices of the 

binding region as part of the region information. Unlike sequence-to-sequence 
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autoregressive methods, the non-autoregressive decoder avoids learning the generation 

order of the set, thus eliminating the dependence on sequence order. Additionally, it 

fully uses bidirectional contextual information, rather than being constrained by unidi-

rectional generation, which allows for more efficient extraction of set-level infor-

mation. 

Non-autoregressive decoder. Before decoding begins, we initialize the input with 𝑚 

learnable embeddings called target queries, similar to those used in SPN. These target 

queries are shared across all input sequences, meaning that the same target queries are 

used for initialization in each protein sequence. Therefore, the model first needs to 

know the size of the target set, which means that the 𝑃𝐿 𝑛|𝑆) in Equation (1) needs to 

be modeled first. The size of the target set refers to the number of binding regions in 

each protein sequence in the dataset. To simplify, we allow the non-autoregressive de-

coder to generate 𝑚 fixed target predictions for each input sequence, where 𝑚 is set 

larger than the maximum number of binding regions in any protein sequence in the 

dataset. This removes the need for the decoder to explicitly model the target set size, 

instead addressing it indirectly by generating a fixed number of target predictions. 

By design, the non-autoregressive decoder can be modeled directly based on Equa-

tion (1). Specifically, the core objective of this task is to identify all potential position 

indices from a given protein sequence and organize them into a set of regions. Formally, 

given an input sequence 𝑆 , the conditional probability of the target set 𝑇 =
{ 𝑟1

𝑠𝑡𝑎𝑟𝑡  𝑟1
𝑒𝑛𝑑) …   𝑟𝑛

𝑠𝑡𝑎𝑟𝑡  𝑟𝑛
𝑒𝑛𝑑)} can be expressed as: 

𝑃 𝑇|𝑆; 𝜇) = 𝑃𝐿 𝑛|𝑆)∏𝑝(𝑇𝑖|𝑆 𝑇𝑗≠𝑖; 𝜇)

𝑛

𝑖=1

 1) 

where 𝑇𝑖 =  𝑟𝑖
𝑠𝑡𝑎𝑟𝑡  𝑟𝑖

𝑒𝑛𝑑), 𝑟𝑖
𝑠𝑡𝑎𝑟𝑡 and 𝑟𝑖

𝑒𝑛𝑑  are the start and end indices of the binding 

region, respectively, and 𝑝(𝑇𝑖|𝑆 𝑇𝑗≠𝑖; 𝜇) is the conditional probability of generating 

each region 𝑇𝑖 , which is not only dependent on the protein sequence 𝑆, but also on the 

relationships with other regions 𝑇𝑗≠𝑖 in the set. 𝜇 is a learnable parameter. 

 The non-autoregressive decoder consists of 𝑁 identical transformer decoder blocks. 

Each transformer module includes a multi-head self-attention layer to capture the rela-

tionships between the binding regions, and a multi-head cross-attention layer to capture 

the relationships between the binding regions and the protein sequence embedding in-

formation produced by the ProtBert encoder. During the decoding process, the 𝑚 target 

queries are transformed into 𝑚 output embedding matrices, denoted as 𝑃𝑑 ∈ ℝ𝑚×𝑑 . 

Subsequently, these output embeddings are decoded one by one through the fully con-

nected layer (FC) into the start and end indices of the binding regions, generating the 

final predictions 𝑚. In particular, the number of target regions in the sequence is not 

necessarily equal to 𝑚, as some query vectors may predict the background or exhibit 

duplicate predictions. Specifically, given an embedding vector 𝑝𝑑 ∈ ℝ𝑑 from the out-

put embedding matrix 𝑃𝑑, we predict the start and end indices of the binding regions 

through two independent classifiers. This process is described by the following equa-

tions: 
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𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑎1
𝑇 tanh 𝐴1𝑝𝑑 + 𝐴2𝑃𝑒))  2) 

𝑝𝑒𝑛𝑑 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑎2
𝑇 tanh 𝐴3𝑝𝑑 + 𝐴4𝑃𝑒))  3) 

where 𝑃𝑒 ∈ ℝ𝑙×𝑑 is the protein sequence embedding produced by the ProtBert encoder, 

𝐴1 𝐴2 𝐴3 𝐴4 ∈ ℝ𝑑×𝑑 and 𝑎1 𝑎2 ∈ ℝ𝑑 are learnable parameters. 

Bipartite matching loss function. For the first-stream, we use a bipartite matching loss 

[5] to avoid excessive reliance on candidate regions, while considering the specific 

characteristics of the predicted region sets. Through optimal matching, this loss func-

tion helps the model better align predictions with the ground truth during training. The 

process consists of two main steps: finding an optimal match and calculating the loss. 

To find the optimal match, we first compute the matching cost based on the similarity 

between predicted and ground truth pairs. We calculate the cost using a weighted aver-

age, and then use the Hungarian algorithm to determine the best matching pairs. 

We denote the set of 𝑚 predicted pairs as 𝑇̃ = {𝑇̃1 𝑇̃2 …  𝑇̃𝑚} and the set of ground 

truth pairs as 𝑇 = {𝑇1 𝑇2 …  𝑇𝑛}, where each 𝑇𝑖  is the 𝑖 -th pair 𝑇𝑖 =  𝑟𝑖
𝑠𝑡𝑎𝑟𝑡  𝑟𝑖

𝑒𝑛𝑑) , 

Note that, 𝑚 ≥ 𝑛, typically means the number of predicted pairs is greater than or equal 

to the number of ground truth pairs. To ensure that each ground truth pair has a match-

ing predicted pair, we pad the set of ground truth pairs with an empty set Ø, resulting in 

a new set 𝑇 = {𝑇1 𝑇2 …  𝑇𝑚}, thereby making the size of the set consistent with the 

predicted set. 

To achieve optimal matching, we use a permutation optimization method. Specifi-

cally, we calculate the matching cost for each pair of ground truth and predicted pairs 

and then minimize the total matching cost to obtain the optimal match. The optimization 

objective can be expressed as follows: 

𝜃∗ = argmin
𝜃∈∏ 𝑚)

∑𝐶𝑜𝑠𝑡(𝑇𝑖  𝑇̃𝜃 𝑖))

𝑚

𝑖=1

 4) 

where 𝜃 ∈ ∏ 𝑚)  is all possible matching permutations, ∏ 𝑚)  is the permutation 

space of length 𝑚. 𝐶𝑜𝑠𝑡(𝑇𝑖  𝑇̃𝜃 𝑖)) is the matching cost between the ground truth pair 𝑇𝑖  

and the predicted pair 𝑇̃𝜃 𝑖). 

 The matching cost 𝐶𝑜𝑠𝑡(𝑇𝑖  𝑇̃𝜃 𝑖)) is defined as: 

𝐶𝑜𝑠𝑡(𝑇𝑖  𝑇̃𝜃 𝑖)) = −𝑃𝜃 𝑖)
𝑟  𝑟𝑖)  5) 

where 𝑃𝜃 𝑖)
𝑟  𝑟𝑖) is the matching of the region span. 

The region span matching cost considers the matching of both the start and end in-

dices of the region: 

𝑃𝜃 𝑖)
𝑟  𝑟𝑖) = 𝑃𝜃 𝑖)

𝑠𝑡𝑎𝑟𝑡 𝑟𝑖
𝑠𝑡𝑎𝑟𝑡) + 𝑃𝜃 𝑖)

𝑒𝑛𝑑(𝑟𝑖
𝑒𝑛𝑑)  6) 



 

The second step is to calculate the loss function, which is the total of the matching 

costs between all ground truth and predicted pairs, resulting in the final loss value. This 

is defined as: 

ℒ(𝑇 𝑇̃) = −∑[log 𝑝𝜃∗ 𝑖)
𝑠𝑡𝑎𝑟𝑡 𝑟𝑖

𝑠𝑡𝑎𝑟𝑡) + log 𝑝𝜃∗ 𝑖)
𝑒𝑛𝑑 (𝑟𝑖

𝑒𝑛𝑑)]

𝑚

𝑖=1

 7) 

Second-stream: binding residues classifier. The second-stream performs the com-

mon task of binary classification of each residue in the protein sequence. 

Linear binary classifier. The input protein sequence 𝑆 is first encoded by ProtBert [4] 

to produce a feature matrix 𝑃𝑒 ∈ ℝ𝑙×𝑑, where each row vector 𝑒𝑠𝑖
∈ ℝ𝑑 is the high-di-

mensional embedding of each amino acid residue. Subsequently, these high-dimen-

sional embeddings are processed through a series of linear layers, transforming them 

into two-dimensional embedding vectors: 

𝑧𝑠𝑖
= 𝑊𝑙𝑒𝑠𝑖

+ 𝑏  8) 

where 𝑊𝑙 ∈ ℝ2×𝑑 is the weight matrix of the linear blocks, 𝑏 ∈ ℝ𝑑 is the bias term, 

𝑧𝑠𝑖 ∈ ℝ2 is the two-dimensional vector representing each amino acid, 𝑧𝑠𝑖 = [
𝑧𝑠𝑖 0
𝑧𝑠𝑖 1

]. 

Finally, the Softmax function is used to each amino acid's output 𝑧𝑠𝑖  to calculate the 

probabilities 𝑝0 and 𝑝1 for each amino acid: 

𝑝𝑠𝑖 0
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑠𝑖

) =
exp(𝑧𝑠𝑖 0

)

exp(𝑧𝑠𝑖 0
) + exp(𝑧𝑠𝑖 1)

 9) 

𝑝𝑠𝑖 1
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑠𝑖

) =
exp(𝑧𝑠𝑖 1

)

exp(𝑧𝑠𝑖 0
) + exp(𝑧𝑠𝑖 1)

 10) 

where 𝑧𝑠𝑖 0
 is the score for class 0 (non-binding sites) for the 𝑖-th amino acid, 𝑧𝑠𝑖 1 is the 

score for class 1 (binding sites) for the 𝑖-th amino acid, 𝑝𝑠𝑖 0
 and 𝑝𝑠𝑖 1

 are the probabil-

ities of the 𝑖-th amino acid belonging to class 0 and class 1, respectively. 

Contrastive loss and cross-entropy loss function. For the second-stream, to address the 

issue of class imbalance, we use a loss function that combines contrastive loss and the 

standard binary cross-entropy loss. Particularly, the contrastive loss is defined as: 

ℒ1 𝑒1 𝑒2 𝑏) =
1

2
 1 − 𝑏) ∙ 𝐷 𝑒1 𝑒2)

2 +
1

2
𝑏 ∙ (𝐷𝑚𝑎𝑥 − 𝐷 𝑒1 𝑒2))

3
 11) 

𝐷 𝑒1 𝑒2) = 1 − 𝑐𝑜𝑠 < 𝑒1 𝑒2 >  12) 

where 𝑒1 and 𝑒2 are two different residues. 𝐷 𝑒1 𝑒2) is the distance metric between 𝑒1 

and 𝑒2 based on cosine similarity. 
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The value of 𝐷 𝑒1 𝑒2) ranges from 0 to 2, 𝐷𝑚𝑎𝑥  is the maximum value of 𝐷 𝑒1 𝑒2). 

𝑏 = 0 indicates that the pair of amino acids belong to the same class. 𝑏 = 1 indicates 

that the pair of amino acids belong to different classes, meaning one is a binding residue 

and the other is not. To alleviate the class imbalance issue, we set two different weights.  

When 𝑏 = 1, the loss function ℒ1 =
1

2
𝑏 ∙ (𝐷𝑚𝑎𝑥 − 𝐷 𝑒1 𝑒2))

3
 attempts to maximize 

the distance between residues of the different class. When 𝑏 = 0, the loss function ℒ1 =
1

2
∙ 𝐷 𝑒1 𝑒2)

2 attempts to reduce the distance between the same class. 

The binary cross-entropy loss function is described as: 

ℒ𝐶𝐸 𝑝1 𝑦) = −𝑦𝑙𝑜𝑔𝑝1 −  1 − 𝑦) log 1 − 𝑝1)  13) 

where 𝑝1 is the probability predicted by the model that the residue is a positive sample 

(i.e., binding sites), and 1 − 𝑝1 is the probability that the residue is a negative sample 

(i.e., non-binding sites). 𝑦 is the true label. 

Finally, the total loss for a batch with 𝑁 residues is: 

ℒ = ∑ℒ1(𝑒𝑖  𝑒𝑁 2⁄ +𝑖  𝑏)

𝑁 2⁄

𝑖=1

+ ∑ℒ𝐶𝐸(𝑝1 𝑖  𝑦𝑖)

𝑁

𝑖=1

 14) 

where 𝑒𝑖 and 𝑒𝑁 2⁄ +𝑖 are paired residues, and 𝑝1 𝑖 and 𝑦𝑖  are the predicted probability of 

the 𝑖-th residue being in the positive class and the true label, respectively. 

3.3 Implementation Details 

In our proposed method, to ensure consistency and collaboration between the two 

streams, the parameters of the ProtBert encoder are shared with a very small learning 

rate of 1e-5. During training, both streams use the same optimizer, AdamW. The two 

streams are then trained using different decoding models and loss functions to achieve 

optimal performance. The first-stream uses a non-autoregressive decoder and a bipartite 

matching loss function, trained for 50 epochs with an initial learning rate of 2e-5. The 

second-stream uses linear classification layers, contrastive loss and cross-entropy loss 

function, trained for 10 epochs. Finally, the best model weights from both streams are 

used for the test set, and the union of their predictions is taken as the final evaluation 

result. All experiments were conducted on an NVIDIA GeForce A30 GPU. 

4 Results 

In this section, we will compare our method with current methods on the two bench-

mark datasets. Next, we report the results of an ablation study to compare the perfor-

mance of the single-stream and dual-stream approaches. Finally, to validate the inter-

pretability of our approach, we visualize and analysis the experimental results, includ-

ing the results predicted by the PepBCL and the proposed method. 



 

4.1 Comparison with State-of-the-Art Methods 

To comprehensively evaluate the performance of the method proposed in this study and 

compare it with existing state-of-the-art methods, we adopt the same evaluation metrics 

used in previous studies, including Recall, Specificity, Precision, AUC (Area Under the 

ROC Curve), and MCC (Matthews Correlation Coefficient). 

Our method is compared to ten existing approaches on the TR1154 training set and 

the TE125 test set. These methods include Pepsite [24], Peptimap [21], SPRINT-Seq 

[28], SPRINT-Str [29], PepBind [37], PepNN-Seq [1], PepNN-Struct[1], PepBCL [31], 

PepCNN [6] and PepPFN [22]. Five of these methods are add structural features (i.e., 

Pepsite, Peptimap, SPRINT-Str, PepNN-Struct, PepCNN), while the remaining meth-

ods are sequence-based prediction methods. We also perform a comparison on dataset 

2, consisting of TR640 training set and TE639 test set. In this case, we compare our 

method with five methods: PepNN-Seq, PepNN-Struct, PepBCL, PepCNN and 

PepPFN, where PepNN-Struct and PepCNN also add structural features. The experi-

mental comparison results on the two datasets are provided in Table 2 and Table 3, 

respectively, where the results of the existing methods are directly quoted from the re-

lated literature. 

As shown in Table 2, our method demonstrates superior performance on the TE125 

test set across both Recall and MCC metrics, even outperforming methods that incor-

porate structural features. In terms of AUC, it also achieves the highest performance 

level among all sequence-based methods. Specifically, when compared with the struc-

ture-enhanced PepCNN method, our approach shows improvements of 10.9% and 5.4% 

in Recall and MCC metrics, respectively. Similarly, compared to the sequence-based 

PepPFN method, our method exhibits superior performance with increases of 16.8% in 

Recall, 0.8% in AUC, and 8.2% in MCC. Further evaluation on the TE639 test set 

(Table 3) reveals that our method achieves the best results in Recall, Precision, and 

MCC metrics among all evaluated methods, including both sequence-based and struc-

ture-based approaches. 

Table 2. A comparison with state-of-the-art methods on the TE125 test set, marked * are meth-

ods with added structural features. 

Methods Recall Specificity Precision AUC MCC 

Pepsite* 0.180 0.970 - 0.610 0.200 

Peptimap* 0.320 0.950 - 0.630 0.270 

SPRINT-Seq 0.210 0.960 - 0.680 0.200 

SPRINT-Str* 0.240 0.980 - 0.780 0.290 

PepBind 0.344 - 0.469 0.793 0.372 

PepNN-Seq - - - 0.805 0.278 

PepNN-Struct* - - - 0.841 0.321 

PepBCL 0.315 0.984 0.540 0.815 0.385 

PepCNN* 0.254 0.988 0.550 0.843 0.350 

PepPFN 0.195 0.992 0.600 0.813 0.322 

DPPBP(ours) 0.363 0.980 0.513 0.821 0.404 
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Table 3. A comparison with state-of-the-art methods on the TE639 test set, marked * are meth-

ods with added structural features. 

Methods Recall Specificity Precision AUC MCC 

PepNN-Seq - - - 0.792 0.251 

PepNN-Struct* - - - 0.838 0.301 

PepBCL 0.252 0.983 0.470 0.804 0.312 

PepCNN* 0.217 0.986 0.479 0.826 0.297 

PepPFN 0.127 0.996 0.680 0.813 0.307 

DPPBP(ours) 0.275 0.983 0.493 0.793 0.341 

4.2 Ablation Studies 

In the ablation study of this research, we performed an in-depth analysis of the perfor-

mance differences between the single-stream and dual-stream models. Specifically, we 

trained each stream on the TR1154 training set and evaluated their performance on the 

TE125 test set. Similarly, each stream was trained on the TR640 dataset and evaluated 

on the TE639 test dataset. 

As shown in Table 4. The ablation study results show that on the TE125 and TE639 

test sets, the MCC of the first-stream model is relatively lower, with values of 34.3% 

and 20.1%, respectively. In contrast, the second-stream model shows a certain improve-

ment, achieving 36.7% and 29.7%, respectively. Overall, the dual-stream joint infer-

ence method effectively leverages the strengths of each stream to achieve a balanced 

performance across various evaluation metrics. The first-stream focuses on locating 

binding regions with a high level of abstraction, while the second-stream focuses more 

on fine-grained amino acid classification. By taking the union of their predictions, the 

method improves the predictive performance of the results. 

Table 4. Ablation study results on the TE125 and TE639 test set. 

Datasets Stream Recall Specificity Precision MCC 

TE125 

Stream 1 0.199 0.993 0.654 0.343 

Stream 2 0.303 0.983 0.510 0.367 

DPPBP 0.363 0.980 0.513 0.404 

TE639 

Stream 1 0.181 0.976 0.307 0.201 

Stream 2 0.270 0.976 0.401 0.297 

DPPBP 0.275 0.983 0.493 0.341 

4.3 Analysis of Visualization Results 

To further evaluate the prediction performance and effectiveness of our model, three 

protein sequences were randomly chosen from the TE125 test set (Protein IDs: 1dpu, 

1uj0, and 2bbu) to predict their binding sites. To visually demonstrate the accuracy of 



 

the predictions and the model's ability to recognize binding sites, we first retrieved the 

corresponding 3D structures of these sequences from the PDB database [27] and then 

visualized these structures using PyMOL [9] software, as shown in Fig. 3. Each protein 

is represented by three rows of sequence-structure images: the first row (Fig. 3 A, B, 

C) shows the experimentally obtained true binding sites, the second row (Fig. 3 D, E, 

F) shows the results predicted by the existing method PepBCL, and the third row (Fig. 

3 G, H, I) shows the results predicted by our method DPPBP. Each image includes the 

protein sequence and its corresponding 3D structure, with the binding sites highlighted 

using the same color in both the sequence and structure. 

 

Fig. 3. Comparison of protein binding regions visualization results. (Gray: Non-binding regions, 

Blue: Experimentally validated binding regions, Purple: PepBCL predicted regions, Green: Our 

method's predicted regions.) 

Taking the 1dpu protein as an example (Fig. 3 A, D, G), we observe that while the 

PepBCL method accurately captures most of the true binding sites, it fails to account 

for the dependencies between binding regions, leading to the separation of contiguous 

binding regions. In contrast, our method not only predicts binding sites that closely 

match the true binding sites, but also ensures that the binding regions are more contin-

uous, with higher precision at the boundaries. Despite variations in sequence length and 

features among different proteins, our model can adaptively capture local dependencies 

and global features, enabling accurate prediction of binding sites. 
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5 Conclusion and Future Works 

We propose a dual-stream joint inference method (DPPBP), based on protein sequence 

for binding sites prediction. The approach introduces the concept of region detection 

and incorporates a dual-stream joint inference strategy to enhance prediction accuracy.  

Experimental results demonstrate that this dual-stream joint inference design enables 

the model not only to better capture the relationships between binding amino acids and 

binding regions, but also to effectively incorporate the global sequence information, 

thereby improving overall predictive performance. Despite the strong performance of 

DPPBP, several limitations remain. The dual-stream joint inference requires computa-

tion in both streams, which increases the complexity and optimization challenges of the 

model, necessitating a more refined training process. Future studies may concentrate 

on optimizing the model's computational efficiency, addressing error accumulation, and 

exploring ways to extend DPPBP to predict a broader range of binding site types. These 

advances would contribute to the progress and application of drug discovery and bio-

informatics. 
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