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Abstract.  Automated grading has become a crucial component of smart educa-

tion, involving various complex Natural Language Processing (NLP) tasks, in-

cluding text representation, similarity evaluation, and classification. Although 

large language models (LLMs) show great promise in improving grading accu-

racy and consistency, their high computational costs and data privacy concerns 

limit widespread adoption. This study introduces CAMS, an automated grading 

system based on smaller LLMs that enhances the grading process through model 

collaboration and chain-of- thought (CoT)-guided prompt templates. CAMS of-

fers an efficient, locally deployable, and sustainable solution. By integrating Yi-

1.5-9B into the proposed collaborative CAMS system and deploying it locally, 

the system achieved a grading score of 0.8511 and an overall score of 0.8148, 

demonstrating improvements of 0.1865 and 0.1732, respectively, compared to 

the standalone use of Yi-1.5-9B. Furthermore, the performance of CAMS ap-

proaches that of larger-scale model APIs such as GPT-3.5- Turbo (score = 

0.8457). 

Keywords: large language models · automatic grading · prompt engineer-

ing · natural language processing. 

1 Introduction 

Automated grading plays a crucial role in smart education, with its significance increas-

ing alongside the digitalization of learning environments [1]. This process involves sev-

eral complex Natural Language Processing (NLP) tasks, such as text representation, 

similarity assessment, and classification, while also ad- dressing educationally specific 

challenges, including domain-specific knowledge, answer diversity, and various types 

of errors. Grading methodologies have gradually evolved from rule-based and statisti-

cal models to more sophisticated techniques, such as neural networks, meta-learning, 

and pre-trained models. Current research primarily focuses on how to improve the ac-

curacy and generalizability of automated grading systems. 

Large language models (LLMs), with advanced capabilities in semantic understand-

ing and text generation, demonstrate strong performance in a variety of NLP tasks. In 

the context of automated grading, LLMs contribute to improved accuracy and 



 

consistency while offering interpretability for complex linguistic analysis. However, 

despite high precision (e.g., GPT-4), their adoption remains limited by high computa-

tional costs and concerns over data privacy [2]. Local deployment reduces API costs 

but requires high-performance hardware, creating barriers. Thus, the local deployment 

of smaller LLMs presents a critical challenge in achieving cost-effective and sustaina-

ble grading solutions [3]. 

This research aims to develop an automated grading system for knowledge-based 

responses through the collaborative capabilities of large language models. The pro-

posed system decomposes complex grading tasks into smaller sub-tasks and utilizes 

prompt templates to facilitate collaboration, thereby improving the model’s compre-

hension and consistency in evaluating user responses. The effectiveness of this ap-

proach is demonstrated through specific examples in Fig. 1. Experiments will be con-

ducted with 6–9 billion parameters to investigate the feasibility of collaboration among 

smaller models, with the goal of achieving grading performance comparable to that of 

large-scale online LLM APIs. 

This work makes the following contributions: 

1. We conduct a comparative evaluation of automated grading performance across 11 

large language model APIs and 6 locally deployed models, aiming to assess their 

effectiveness under low-parameter conditions. 

2. We propose a locally deployable collaboration system, CAMS, based on 6-9B large 

language models. CAMS achieves automated automatic grading performance close 

to that of large parameter models such as GPT-3.5-Turbo and GLM-3-Turbo. The 

system provides efficient grading functionality, making it suitable for environments 

with limited computational resources. 
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Fig. 1. Example of automated grading using CAMS: The teacher poses questions along with 

reference answers; students submit their responses, which are then evaluated and scored by the 

system. 

2 Related Works 

2.1 Automated Grading Systems and Challenges 

Automated grading is a crucial tool for assessing learning outcomes, addressing the 

time and cost challenges of manual grading [4].  With the rise of online education and 

large-scale assessments, ensuring the accuracy and fairness of automated grading has 

become a key research focus. Several methods have been developed to support this 

objective, including: 

• Concept Mapping: Identifies underlying concepts in student answers and uses rule-

based algorithms to assess alignment with reference answers [5]. Partial credit is given 

based on concept similarity. 

• Information Extraction: Matches patterns from resources like textbooks or reference 

answers to student responses. Teodora’s system uses Latent Semantic Analysis (LSA) 

to assess the semantic similarity between student answers and reference materials [6]. 

• Corpus-Based Methods:  Analyzes large corpora to identify key terms and compute 

semantic distances between student responses and reference answers [7]. Techniques 

like LSA and Singular Value Decomposition (SVD) generate a semantic space for dis-

tance-based evaluation. 

• Machine Learning (ML) Methods: Uses ML models with handcrafted features from 

NLP techniques to grade student responses. Mohler demonstrated significant improve-

ments in grading performance using machine learning [8]. 

2.2 Large Language Models in Education 

LLMs, such as OpenAI’s GPT-3 and Google’s BERT, are advanced AI systems that 

have transformed NLP tasks with their exceptional capabilities in language understand-

ing and generation. These models excel in producing fluent text, machine translation, 

summarization, and question answering by analyzing complex syntactic and semantic 

patterns. LLMs are revolutionizing NLP applications by enhancing human-machine in-

teractions, automating content creation, and improving intelligent customer service [9]. 

In the educational domain, LLMs demonstrate remarkable abilities in semantic gener-

ation, particularly in tasks such as automated grading. They generate contextually rele-

vant content and improve grading accuracy by overcoming the limitations of traditional 

methods, such as the handling of synonyms with synonyms, thus boosting efficiency 

and accuracy [10]. 

Transformers in LLMs use attention mechanisms to capture relationships between 

words, thereby enhancing the efficiency and accuracy of NLP tasks [11]. This architec-

ture consists of an encoder that extracts linguistic patterns and a decoder that generates 

coherent text using multi-head attention. SoftMax layer is used to select the most 



 

probable next word in the sequence. This design enables LLMs to produce contextually 

relevant text, enhancing NLP capabilities.  

3 Method 

As shown in Fig. 2, traditional grading methods rely on small-scale models that process 

inputs in a single-pass manner. These methods struggle to handle complex semantic 

structures and scoring logic, resulting in reduced accuracy and consistency. Common 

issues include score-reasoning mismatch; misunderstanding the requirements; and in-

complete grading. 

 

Fig. 2. Common Errors: score-reasoning mismatch; misunderstanding the requirements; incom-

plete grading. 

Experimental results have demonstrated that the use of multiple LLM modules for col-

laborative tasks can effectively address functional gaps and significantly enhance the 

grading performance of user responses. Based on these findings, this study proposes a 

system called the Collaborative Attention-based Multilayer System (CAMS). Within 

the system, each LLM module is assigned a specific functional prompt. To minimize 

local deployment costs, identical LLM models can be utilized across modules; how-

ever, to improve overall functionality, different specialized LLM models may be em-

ployed. 

3.1 Prompt Design for Individual Modules: 

The prompt design for individual modules integrates several advanced techniques, in-

cluding Chain of Thought (CoT), System2Attention, and Few-shot learning. The com-

bined application of these methods aims to address challenges related to accuracy, 
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consistency, and information transmission, which LLM often encounter when handling 

complex tasks. 

CoT [12] architectures decompose reasoning into structured intermediate steps with 

transitional continuity verification, contrasting with monolithic answer- generation par-

adigms. Dual mechanisms ensure: (I) cognitive coherence through step transition con-

straints [13], and (II) transparent deduction rule instantiation   for each computational 

phase [14]. This dual-output framework simultaneously generates final predictions and 

step validity attestations, intrinsically resolving   syntactic-semantic discordance com-

monly found in traditional single-pass systems. 

Few-shot prompting improves output consistency in resource-constrained LLMs 

[15] through exemplar-driven pattern induction, where strategically retrained QA pairs 

in conversational history create implicit template scaffolding. By conditioning model 

responses on precedent interaction patterns through in-context learning, this approach 

achieves style-consistent generation via cognitive analogy transfer. This effectively by-

passes architectural constraints through dynamic demonstration grounding rather than 

parametric expansion. 

System2Attention [16] mitigates stochastic instability in resource-constrained LLMs 

by referencing Few-shot historical chat records to extract target information and output 

JSON output. This mechanism addresses parameterization-induced randomness 

through attention-based saliency mapping [17], effectively pruning irrelevant outputs 

while preserving semantic integrity [18]. The JSON output schema ensures the removal 

of unnecessary data, maintaining focus on relevant outputs. It enforces structured data 

integrity in inter-module communication, addressing format inconsistencies inherent in 

traditional methods. Through its recursive syntax validation and standardized serializa-

tion, it guarantees type-safe encapsulation of hierarchical dataflows, eliminating pars-

ing ambiguities. This isomorphic representation framework fosters cross-component 

interpretability, thereby enhancing collaborative stability, ensuring all modules can 

consistently interpret and process data. 

3.2 Collaborative Module Function Design: 

Building upon individual modules, the collaboration between different LLM compo-

nents can more effectively accomplish tasks. Given the limited capabilities of the small 

LLM model used in this study, which cannot autonomously design collaborative work-

flows, three core prompts were specifically developed to address the issue of insuffi-

cient output accuracy in smaller models when handling complex tasks.  These prompts 

focus on keyword extraction, answer-keyword matching, and scoring based on the 

matching results. The design prompts for the three modules are as follows. 

The keyword extraction module adopts a two-stage processing mechanism. Initially, 

it employs refined extraction techniques to identify 2-4 core keywords corresponding 

to each scoring point from the reference answer, ensuring comprehensive coverage of 

the typical characteristics of the knowledge elements. Subsequently, it applies intelli-

gent filtering through semantic matching to automatically eliminate redundant terms 

that overlap with the question, effectively extracting the keywords relevant to answer-

ing the question. The system ultimately outputs structured data in compliance with 



 

JSON standards, accurately presenting the key information of the reference points in-

dependent of the question content. 

Keyword Module Prompt 

 

Example 

Role: Professional semantic min-

ing AI that extracts core scoring 

elements from reference answers 

with exam-level precision. 

Input JSON: 

{"id": "3a3ca9c4-8773-41bb-baec-da5bb8f7a24e", 

 "question": "Under what circumstances can the power 

supply to relevant equipment be disconnected without 

permission?", 

 "answer": "If the weather is too hot or if one is leaving 

the work site for lunch, then it may be considered to dis-

connect the power.", 

 "refs": [{"ref": "(1) In the event of a personal electric 

shock accident, the power to relevant equipment can be 

disconnected without permission to rescue the person af-

fected by the shock.", "point": 2}]} 

Workflow: 

1) Refine: Extract 2--4 critical 

keywords per point. 

2)  Filter: Auto-remove redun-

dant terms matching the ques-

tion. 

Reference content: 

The reference content is: "In the event of a personal 

electric shock accident, the power to relevant equipment 

can be disconnected without permission to rescue the 

person affected by the shock." 

1) Refine: 'personal electric shock accident’, ‘rescue the 

person affected by the shock’, ‘relevant equipment' 

2) Filter: Repeated words include 'relevant equipment'  

Output Format: 

 {"key raw": "<Unique keywords 

from 'ref', excluding terms in 

'question'>"} 

Final output JSON: 

"Key raw": "personal electric shock accident; rescue the 

person affected by the shock;" 

The Answer-Keyword matching module is specifically designed for in-depth match-

ing analysis between student answers and scoring keywords, based on a layered verifi-

cation mechanism of "explicit-implicit-conflict." Initially, it checks whether the student 

answer explicitly contains the original words or synonyms of the scoring keywords. 

Subsequently, it utilizes semantic inference to identify associated expressions of attrib-

ute features, achieving implicit feature mapping (e.g., equating "quiet operation" with 

"no abnormal sounds"). Finally, it applies a conflict detection algorithm to identify and 

analyze contradictory expressions (e.g., the mutual exclusivity between "clean" and 

"stained,”) and generates a structured conflict report based on the identified discrepan-

cies. 

The Scoring module is an intelligent scoring decision system based on multidimen-

sional feature analysis, which facilitates a graded quantification assessment of students’ 

mastery of knowledge. It innovatively constructs a dynamic weight distribution model, 

assigning a baseline weight of (0.5-1) based on the importance of each knowledge 

point. Through a three-level evaluation mechanism, it precisely scores by first 
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establishing a baseline scoring framework with categories of (complete match (1) - par-

tial match (0.5) - conflict/missing (0)); secondly it introduces a semantic feature dy-

namic adjustment mechanism, applying a weight decay of 0.2 to redundant expressions 

and a score enhancement of 0.2 for the accurate use of professional terminology; and 

finally, it calculates the final score by multiplying multiple dimensional coefficients. 

Matching Module Prompt Example 

Role: As a Professional Core Validator, perform 

3-tier semantic verification (beyond keyword 

matching) using contextual logic validation. 

Input JSON: 

{“key raw": "personal electric shock ac-

cident; rescue the person affected by the 

shock;"} 

Validation Process: 

1) Explicit verification: Verify exact/synonym 

matches (using power industry term database). 

2)  Implicit verification: Detect attribute-related 

expressions (e.g., “runs quietly”” no abnormal 

noise”). 

3)  Contradiction verification: Flag conflicting 

statements (e.g., ``clean'' vs. ``stains present''). 

Feedback Rules: 

Mentioned: Mark evidence location. 

Implicitly Mentioned: Annotate contextual 

linkage grounds. 

Conflicting: Explain exact contradiction. 

Answer: "If the weather is too hot or if 

one is leaving the work site for lunch, 

then it may be considered to disconnect 

the power." 

1) Explicit verification: Keywords not 

directly or synonymously mentioned. 

2) Implicit verification: Expressions 

such as "too hot", "lunch" are not related 

to safety/emergency. 

3) Contradiction verification: Discon-

necting power due to lunch/weather con-

tradicts the premise of the emergency 

context. 

 

Output Format: 

 {"reason": "<mentioned content; Implicitly 

mentioned content; conflicting content>"} 

Final output JSON: 

"reason": "personal electric shock acci-

dent not mentioned; rescue the person af-

fected by the shock not mentioned" 

The score is mapped as follows: 0 for "Not Mentioned" (0-0.7), 1 for "Partial Men-

tioned" (0.7-1.3), and 2 for "Full Mentioned" (1.3-2). 

4 Experiments 

4.1 Dataset 

Due to the lack of relevant datasets in this field, this study will utilize the GPT-4o online 

API to simulate diverse student responses to questions from a specific question bank. 

Each question contains 1 to 6 key points, covering a range of content from simple to 

complex and highly specialized. Specifically, the simulation will generate five types of 

answers to comprehensively evaluate the effectiveness of the automatic scoring system: 

• Perfect Answer:  A comprehensive and accurate response, fully aligned with the refer-

ence answer. This represents the ideal case, where the model should recognize the high-

est-quality response for scoring. 



 

Scoring Module Prompt 

 

Example 

Role: As the Scoring Decision Hub, dynami-

cally construct a scoring model that reflects 

students' depth of understanding through gra-

dient scoring. 

Input JSON: 

reason: "personal electric shock accident 

not mentioned; rescue the person affected 

by the shock not mentioned". point: 2 

Scoring Process: 

Scoring Process: 

1) Weights: Rank keywords by importance 

(0.5--1.0). 

2)  Baseline Scores:  

Mentioned: Weight 1 

Implicitly mentioned: Weight 0.5 

Contradiction/not mentioned: 0 

3) Adjustments: 

Repeated mentions: 0.8 (anti-redundancy) 

Technical terms: 1.2 (only mentioned) 

4) Final Calculation: 

Total Score=Weight * Adjustment Factor 

Actual Score = Weight * Base Score * Ad-

justment Factor/Total Score *Standard score 

1) Weights: 

Personal electric shock accident: 1.0  

Rescue shocked person: 0.8 

2) Baseline Scores:  

personal electric shock accident not men-

tioned: 0 

rescue the person affected by the shock not 

mentioned: 0 

3) Adjustments:  

No repetition: 1  

Professional terms: 1 

4) Final Calculation: 

Total Score: (1.0 + 0.8) * 1 * 1= 1.8 

 Actual Score: [(1.0 * 0 * 1 * 1) + (0.8 * 0 

* 1 * 1)] / 1.8 * 2 = 0 

Output Format: 

 {"get point": " Actual Score"} 

4) Final output JSON: 

"get point": "0" 

• Paraphrased Answer:  The student restates the key points with slight variations in word-

ing. This tests the model’s ability to recognize semantic equivalence despite different 

expressions or phrasing. 

• Partial Answer: A response that covers only some of the key points, sometimes using 

near-synonyms. This tests the model’s ability to handle incomplete answers and assess 

missing key information. 

• Incorrect Answer: A deliberately incorrect response, sometimes containing factual er-

rors or contradictions. This helps evaluate the model’s ability to identify inaccuracies 

or fallacies in the answer. 

• Irrelevant Answer: A response that does not address the question at all. This tests the 

model’s ability to identify whether the content is on-topic and ensures that irrelevant 

responses are appropriately scored. 

Manual review is performed by three evaluators with expertise in the dataset’s domain 

(including corrective verification of samples with factual/logical errors) to ensure ac-

curacy and reliability, thereby facilitating subsequent research. Since the model has not 

previously encountered a dataset from this domain, this task is categorized as zero-shot 

transfer. Given the diversity of student responses in the dataset and the need for subse-

quent manual evaluation of the model’s grading performance, a total of 1390 samples 

were selected. This dataset is sufficient for assessing the model’s ability to handle 
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different types of answers and their associated complexities, while also enabling the 

manual evaluation of the model’s grading effectiveness. 

Our experiments employed an NVIDIA A100 GPU with the VLLM inference frame-

work. The model was loaded from a local path and configured with temperature = 0.3 

and max_tokens = 3000 sampling parameters. During deployment, the system con-

sumed approximately 24 GB of GPU memory. 

4.2 Evaluation Method 

The input for automated grading consists of an ID, question, answer, and a reference 

set with scoring points and their corresponding scores. The output includes the reason-

ing and final score. To address potential inaccuracies in manual evaluations, this study 

proposes a combined manual and automated evaluation method (Fig. 3) using a 

weighted summation strategy. The method comprises three components: Automated 

Reasoning Quality, Manual Reasoning Quality, and Automated Scoring Quality Eval-

uation. The evaluation metrics are defined as follows: 

Automated Reasoning Quality Evaluation: BERT Score uses cosine similarity be-

tween words in the generated and reference texts. The evaluation metrics include Pre-

cision, Recall, and F1-score, defined as follows: 

Precision =
∑𝑤∈generated sim(𝑤, 𝑤̂)

∑𝑤∈generated 1
        (1) 

Recall =
∑𝑤∈reference sim(𝑤, 𝑤̂)

∑𝑤∈reference 1
 (2) 

F1 = 2 ×
Precision × Recall

Precision + Recall
 (3) 

The automatic evaluation task often encounters cases where sentences like "Tomorrow 

is Friday" and "Tomorrow is not Friday" appear highly similar on the surface but are 

semantically contradictory in reasoning. Traditional metrics, such as the F1-score, may 

fail to accurately assess reasoning validity in such cases. In response, a new evaluation 

metric, F1 NLI, is introduced. The F1 NLI metric extends the traditional F1 score by 

evaluating the relationship between the reference and candidate using a natural lan-

guage inference (NLI) model. Specifically, the F1 NLI score is computed using the 

MoritzLaurer/mDeBERTa-v3-base-mnli-xnli model. If the reference and candidate are 

found to contradict, the F1 NLI score is set to 0. Otherwise, it is equal to the traditional 

F1 score. This metric adds an additional layer of logical consistency to the evaluation 

process, improving the accuracy of reasoning evaluation.  

Manual Evaluation of Reasoning Quality: In manual evaluation, three independent 

reviewers assess the quality of reasoning by comparing the generated rationale to the 

reference point. The reviewers rate the rationale on a scale from 0 to 4, where a score 

of 4 indicates high consistency with the reference meaning and content, 3 indicates 

insufficient detail, 1 represents partial matching, and 0 means the rationale contradicts 

the reference. The final quality score is obtained by aggregating these individual scores 



 

according to a predefined weighted scheme, which is then normalized to ensure con-

sistency. 

Automated Scoring Quality Evaluation: For reasoning quality evaluation scores (F1 

NLI and Human NLI), which range from 0 to 1, it is necessary to normalize the auto-

mated scoring quality evaluation scores. In the normalization process, the difference 

between the predicted and true values is calculated, and then adjusted using a squared 

difference method. This procedure ensures that scores from different evaluation metrics 

are standardized and comparable, promoting consistency across assessment methods. 

score =
1

1 + (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑score − 𝑇𝑟𝑢𝑒score)2
(4) 

 

Fig. 3. Evaluation process: Three types of evaluations are conducted on reasoning and scoring 

points, ultimately yielding both the automatic and human evaluation results. 

The experimental results established the significant superiority of F1 NLI metrics over 

conventional F1 metrics across evaluation dimensions. Statistical analysis revealed that 

F1 NLI achieved a 3.2% higher Pearson correlation with human evaluations (0.9874 

vs. 0.9598) and a 1.3% improvement in score similarity alignment (0.9979 vs. 0.9847). 

Both differences were statistically significant (p<0.001), affirming F1 NLI’s superior 

ability to replicate human judgment patterns. 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)

𝑛

𝑖=1
(𝑌𝑖 − 𝑌̅)

√∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1
∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖=1

(5) 

The coefficient r ranges from -1 to 1, indicating the strength and direction of the linear 

relationship. 

4.3 Effectiveness of Collaborative Attention-based Multilayer System 

To evaluate the effectiveness of CAMS system, six local models were evaluated on 

grading tasks. Their performance, with and without CAMS implementation, was bench-

marked against four major LLM APIs (GPT-3.5-Turbo, GLM-3-Turbo, GLM-4, GPT-

4o) using identical datasets. 

Table 1 demonstrates two findings.  First, CAMS integration consistently enhances 

all four metrics (Score, Auto, Human, and Average) across six locally deployed small 

models. The smallest model (chatglm3-6B-chat) exhibits a 320% improvement in  
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Fig. 4. Visualization of Automated vs. Manual Assessment: Yellow bars represent automatic 

evaluation with direct prompting, blue bars denote human evaluation, and the red line shows few-

shot-CoT prompting. Solid lines indicate human evaluation, dashed lines indicate automatic eval-

uation. 

Average score (0.1211 to 0.5084), while the largest model (LLaMA3.1-8B-Chat) 

achieves an 8.9% gain. Notably, the magnitude of improvement inversely correlates 

with model size: 6B-parameter Yi-1.5-6B-chat elevates its Human score by 26.5%, the 

28.2% gain of the 9B-parameter variant, high- lighting CAMS’s effectiveness in miti-

gating representation limitations in smaller models. 

Second, CAMS-enhanced small models rival cloud-based large APIs. llama3.1- 8B-

chat+CAMS (Avg: 0.8249) outperforms GPT-3.5-Turbo by 14.4% and approaches 

GLM-4 (0.8333). Strikingly, Yi-1.5-9B-chat+CAMS achieves a Human evaluation 

score of 0.8524, merely 0.96% below GPT-4o, while its Score metric (0.8511) exceeds 

GLM-3-Turbo by 9.2%. These findings challenge the conventional parameter-perfor-

mance paradigm, showing collaborative attention enables models with ≤9 billion pa-

rameters to attain 80–95% of the accuracy of models with hundreds of billions of pa-

rameters. 

These results substantiate CAMS’s dual advantages: (I) multilayer attention synergy 

mitigates the capacity constraints of small models, yielding substantial improvements 

in Average scores; and (II) enhanced local models, such as LLaMA3.1-8B-Chat with 

CAMS, achieve near state-of-the-art performance, providing privacy-preserving alter-

natives for educational applications without compromising grading quality. 

Fig. 6 reveals two critical patterns. The performance gains of CAMS across different 

question types exhibit significant disparities. The "Irrelevant" category demonstrates 

an average improvement of 27.5 percentage points (pp), with the maximum single-

model gain reaching 45.98 pp. The "Perfect" category shows a 22.6 pp average en-

hancement (peaking at 42.98 pp for individual models), while the "Partial" category 

achieves only a 13.2 pp gain. A reverse correlation emerges between model capacity 

and enhancement efficacy: low-capacity models (GLM3- 6B/Qwen1.5-7B) attain max-

imum gains of 42.98 pp/47.55 pp in "Perfect" and "Paraphrased" categories; medium-

capacity models (Yi-1.5 series) achieve ap- proximately 25 pp/19 pp improvements in 

"Irrelevant" and "Paraphrased" categories; high-capacity models  (GLM4-

9B/Llama3.1-8B) maintain double-digit gains in  "Incorrect" and  "Irrelevant" catego-

ries but exhibit negative gains in "Paraphrased". 

CAMS’ core advantage manifests through polar answer reinforcement: systematic 

performance elevation stems from enhanced robustness in "Perfect" category 

      

      

      

      

      

      

      

      

      

      

      

                                                      



 

Table 1. Performance evaluation of Collaborative Attention-based Multilayer System 

Model score auto human avg 

chatglm3-6B-chat 0.1414 0.1171 0.1251 0.1211 

qwen1.5-7B-chat      0.2445 0.2357 0.2611 0.2484 

glm-4-9B-chat        0.6131 0.5329 0.5923 0.5626 

Yi-1.5-6B-chat         0.6125 0.5250 0.5893 0.5572 

Yi-1.5-9B-chat       0.6646 0.6183 0.6649 0.6416 

llama3.1-8B-chat       0.8020 0.7247 0.7905 0.7576 

chatglm3-6B-chat+CAMS   0.5600 0.5126 0.5041 0.5084 

qwen1.5-7B-chat+CAMS    0.6024 0.5385 0.5614 0.5500 

glm-4-9B-chat+CAMS      0.7366 0.7141 0.7438 0.7290 

Yi-1.5-6B-chat+CAMS     0.7581 0.6813 0.7456 0.7135 

Yi-1.5-9B-chat+CAMS     0.8511 0.7771 0.8524 0.8148 

llama3.1-8B-chat+CAMS   0.8559 0.7886 0.8611 0.8249 

GPT-3.5-Turbo         0.8457 0.7052 0.7370 0.7211 

GLM-3-Turbo             0.7795 0.7191 0.7539 0.7365 

GLM-4                   0.9030 0.8122 0.8544 0.8333 

GPT-4o     0.9120 0.8245 0.8620 0.8433 

 

 

Fig. 5. Two-tier Comparison: (a) CAMS Efficacy in 6 Local LLMs; (b) Enhanced Local Mod-

els vs. Cloud APIs (GPT/GLM Series) 

recognition (over 20 pp overall gain) and strengthened filtering capability against “Ir-

relevant" distractors (average 28 pp gain). Its marginal effects diminish with increasing 
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model capacity, showing most pronounced support for low-capacity models (e.g., 

Qwen1.5-7B achieves the maximum single-category gain of 47.55 pp in “Para-

phrased"), while high-capacity models retain advantages only in specific categories 

(e.g., GLM4-9B’s 45.98 pp gain in "Irrelevant"). Three breakthrough cases (Qwen1.5-

7B/GLM4-9B/GLM3-6B) collectively validate CAMS’ technical capability in pre-

cisely addressing Direct method’s weaknesses through targeted enhancement. 

 

Fig. 6. Cross-Method Category-Specific Classification Performance Across Varied-Scale Lan-

guage Models 

4.4 Ablation Study 

As shown in Fig. 7, assesses the performance of various models under two configura-

tions: 

Few-Shot Chain-of-Thought (FSC): All six local models exhibited consistent per-

formance improvements when employing FSC prompting. The least performant model, 

ChatGLM3-6B-Chat, enhanced its Average metric from 0.1211 to 0.1372 (+13.3%), 

while the robust baseline, LLaMA3.1-8B-Chat, achieved a notable improvement 

(0.7576 to 0.8123, +7.2%). Medium-scale models demonstrated the most substantial 

gains: Qwen1.5-7B-Chat recorded a 67.4% increase in Average score (0.2484 to 

0.4158) under standalone FSC, confirming the effectiveness of example-guided reason-

ing for tasks of moderate complexity Collaborative Module configurations. 

Collaborative Module: The Collaborative Module demonstrated a "compensatory en-

hancement" effect, significantly improving the performance of the least effective 

model, ChatGLM3-6B-Chat, by 287% in Average score (0.1211 to 0.4688), while en-

hancing the high-performing GLM-4-9B-Chat by a more modest 26.4% (0.5626 to 

0.7114). An anomalous observation was noted: LLaMA3.1-8B- Chat experienced per-

formance degradation when using the Collaborative Module alone (Average: 0.7576 to 

0.5733), indicating that its complex architecture may require synergistic integration 

with Few-Shot Chain-of-Thought prompting to facilitate effective knowledge transfer. 



 

 

Fig. 7. Ablation analysis of model components (Direct, Few-Shot-CoT, Collaborative Module, 

All) across four evaluation metrics: Score, Auto, Human, and Average 

A super additive synergy was observed: the combined gain for chatglm3-6B- chat’s 

combined gain (320%) far exceeded the sum of individual improvements from FSC 

(13.3%) and CM (287%). For 9B-scale models, Yi-1.5-9B-chat’s combined perfor-

mance (0.8148) surpassed its best single-module result (FSC:0.8033), achieving a Hu-

man evaluation score of 0.8524, which was 26.5% higher than the CM-only configura-

tion. Systemic superiority was significant, as the combined approach enabled all models 

to outperform their single-module peaks. For instance, Qwen1.5-7B-Chat’s combined 

Avg (0.5500) outperformed its CM-only score (0.5311) by 3.6%. FSC establishes local 

reasoning pathways through exemplar guidance, while CM facilitates global 

knowledge distillation via cross-layer attention. Their spatiotemporal complementarity 

manifests as FSC addressing "how to reason" and CM focusing on “what to reason", 

forming a complete cognitive loop when combined. 

In conclusion, the combination of FSC and CM significantly enhances model per-

formance, particularly for smaller models. The experimental data demonstrates that the 

combined application of these two techniques significantly improves grading effective-

ness, validating the effectiveness of the proposed approach. 
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5 Conclusion 

This paper proposes CAMS, which leverages the synergy of multiple low-parameter 

LLM modules to address the limitations of traditional grading methods, such as limited 

processing capacity, shallow semantic understanding, and inconsistent scoring logic. In 

the system architecture, low-parameter LLMs collaborate across distinct modules to 

tackle complex tasks. While individual models may exhibit limited performance, their 

collaboration, supported by prompt engineering, leverages their strengths to improve 

overall system performance. Techniques such as CoT, System2Attention, and Few-

Shot Learning further enhance inter-model communication, ensuring robust collabora-

tive effectiveness. Experimental results demonstrate that the collaboration of multiple 

low-parameter LLMs effectively mitigates functional deficiencies, enhancing the accu-

racy and consistency of grading user responses. 

In future work, we aim to: (I) investigate the dynamic collaboration capabilities of 

the system, analyzing its adaptability to varying input complexities and its impact on 

overall performance; (II) explore the automation of prompt generation and its influence 

on model reasoning and efficiency; and (III) assess the scalability of the approach for 

addressing more complex tasks and its applicability to a broader spectrum of natural 

language processing challenges. Additionally, we plan to explore the automation of 

prompt generation and its influence on model reasoning and efficiency. Furthermore, 

we will examine the scalability of the approach in handling more complex tasks and its 

application to a wider range of natural language processing challenges efficient and 

scalable. 
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