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Abstract. Video anomaly detection (VAD), a foundational pillar of modern com-

puter vision, has garnered significant attention due to its wide-ranging real-world 

applications. Despite considerable progress, VAD persistently grapples with for-

midable challenges, particularly the scarcity of anomalies in real-world datasets 

and the complexities of accurate anomaly annotation. This survey investigates 

state-of-the-art VAD methodologies, synthesizing their core challenges and elu-

cidating tailored solutions. Addressing the shortcomings of prior reviews, we 

propose a unified taxonomy that classifies methods according to input modalities: 

raw video, mid-level visual features, and high-level visual-semantic representa-

tions, providing a perspicuous framework to discern their unique attributes. To 

enrich comprehension, we present rigorous comparisons and analyses across es-

tablished benchmark datasets. Anticipating future developments, we delineate 

promising research trajectories, such as semantic context learning enabled by 

contrastive language-image pre-training (CLIP) and multi-modal large language 

models (MLLMs), to drive transformative advancements in the field. Further-

more, we meticulously examine the practical impediments existing approaches 

encounter in deployment in real-world environments. 

Keywords: Video Anomaly Detection, Anomaly Detection, Computer Vision. 

1 Introduction 

Previous endeavors in manual monitoring have predominantly relied on human obser-

vation, necessitating the continuous examination of multiple surveillance feeds. This 

approach is inherently susceptible to operator fatigue and declining attentiveness, 

thereby incrementally increasing the probability of overlooking atypical incidents. 

VAD, a foundational component of contemporary computer vision research, addresses 

this limitation by facilitating the autonomous identification and accurate spatio-tem-

poral localization of anomalies within video sequences. In this context, anomalies are 

characterized as events that significantly deviate from established behavioral norms, 

thus offering a transformative resolution to the constraints inherent in conventional 

monitoring methodologies. 

In recent years, the extensive rollout of surveillance technologies has markedly in-

creased the importance of VAD in practical settings. Its utility includes intelligent sur-



veillance to enhance public safety, real-time traffic oversight, detection of violent hu-

man behavior, and interpretation of medical imaging. Despite significant progress in 

recent years, current VAD methods still confront two formidable challenges: (1) the 

inherent scarcity of anomalous events in real-world settings, which introduces pro-

nounced data imbalance and complicates model training, and (2) the substantial diffi-

culty in annotating anomalous segments, driven by the labor-intensive nature of human 

annotation, the diversity of abnormal behaviors, and their contextual reliance on spe-

cific scenes. To address these issues, state-of-the-art approaches predominantly adopt 

semi-supervised VAD (SS-VAD) and weakly supervised VAD (WS-VAD) frame-

works, which offer promising avenues for balancing efficacy and annotation effi-

ciency in practical deployments. To address the problem of data imbalance, where 

collecting adequate anomalous training samples is impractical, semi-supervised SS-

VAD, such as ConvAE [1], employs only normal samples for training. This method 

learns to distinguish normal from abnormal patterns, flagging deviations from normal-

ity as anomalies. To address the difficulty of obtaining fine-grained labels, WS-

VAD requires only coarse video-level annotations following the extraction of pre-

trained features, achieving strong performance in complex and crowded scenes.  

Beyond the core challenges, numerous studies have identified additional critical fac-

tors impacting VAD performance. For instance, while convolutional neural networks 

(CNNs) are highly effective at extracting spatial features, their integration with long 

short-term memory (LSTM) [2] bolsters temporal modeling by adeptly capturing se-

quential dependencies, resulting in enhanced accuracy. Moreover, using middle-level 

features like skeleton trajectory [3] for training provides a robust approach to mitigate 

noise stemming from dynamic background variations. Additionally, current innovative 

multi-modal frameworks like CLIP [4], [5] can learn from high-level semantic signals, 

which enable generalization to unseen datasets via natural language prompting, surpas-

sing traditional pre-trained models dependent on fixed class labels and exhibiting 

greater adaptability across diverse real-world contexts. 

The discussion above clearly demonstrates that multifaceted challenges in VAD re-

quire resolution. To ensure robust and generalizable conclusions, it is imperative to con-

duct a comprehensive analysis and systematic comparison of different types of existing meth-

ods across diverse datasets, enabling a thorough understanding of their characteristics. There-

fore, there is an urgent necessity for a systematic overview of existing works to serve as a 

guide for newcomers and provide valuable references for established researchers. 

In this survey, we focus on the progress of deep learning-based VAD, offering a system-

atic and rigorous analysis to illuminate the multifaceted challenges faced by VAD across 

diverse settings, alongside their respective solutions. Our objectives extend to exposing the 

limitations of current methodologies and charting potential avenues for future research. We 

commence by curating a collection of seminal VAD reviews from recent years, distilling 

their insights in Table 1. For instance, Ramachandra et al. [6] confined their scope to single-

scene VAD, omitting a broader taxonomic synthesis; Ren et al. [7] examined VAD chal-

lenges and opportunities from a systems perspective, yet fell short of detailed methodological 

comparisons; Ericsson et al. [8] honed in on representation learning for self-supervised VAD, 

without probing its broader methodological ramifications; Berroukham et al. [9] surveyed 
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deep learning approaches within existing frameworks, but overlooked the latest advance-

ments; Cao et al. [10] targeted static image anomaly detection, leaving video-specific con-

texts underexplored; and Wu et al. [11] tracked emerging trends like large-scale pre-trained 

models and explainability, yet offered limited depth on multi-modal fusion strategies. In con-

trast, this survey not only synthesizes these foundational contributions and incorporates cut-

ting-edge developments, but also proposes a novel classification framework. By integrating 

multi-modal approaches with current research frontiers, this framework addresses critical 

gaps in the VAD landscape, providing a forward-looking guidance for future investigations. 

Table 1. A summary of recent reviews. 

Paper Year Main Contribution Focus 

Ramachandra et al. [6] 2020 
A profound analysis of single-scene VAD 

methodology. 
Single-Scene VAD 

Ren et al. [7] 2021 
Summarized opportunities and challenges 

in various applications of VAD. 

Intelligent VAD 

Systems 

Ericsson et al. [8] 2022 

Classified and explained self-supervised 

representation learning, discussing its ap-

plications in various domains. 

Self-Supervised 

Representation 

Learning 

Berroukham et al. [9] 2023 
A classification and summary of deep 

learning-based methods of VAD. 

Deep Learning-

based Methods of 

VAD 

Cao et al. [10] 2024 
Emphasized the latest advancements in 

visual anomaly detection. 

Visual Anomaly 

Detection 

Wu et al. [11] 2024 

A  review of deep learning-based methods 

for VAD within the framework of existing 

classification schemes. 

Deep Learning for 

VAD 

 

Overall, this survey makes the following key contributions: 

(1) We provided a novel taxonomy that systematically classified the existing approaches 

into three categories based on their model inputs: raw-video input, middle-level visual input 

and high-level visual-semantic input. Our classification framework is illustrated in Figure 1, 

using the following abbreviations: OCC: One-Class Classifier, SS-VAD: Semi-Supervised, 

SF-VAD: Self-Supervised, FS-VAD: Fully-Supervised, US-VAD: Unsupervised, WS-

VAD: Weakly-Supervised. We hope to resolve the limitations of existing categorization. 

(2) We proposed a detailed overview of representative methods within each category 

and compared their performance across various benchmark datasets. In addition, we 

discussed the pros and cons of these approaches, allowing readers to intuitively grasp 

their applicability to various real-world scenarios. 

(3) We overview the latest VAD research trends, highlighting the potential of CLIP 

and MLLMs in the VAD domain, providing future research directions. 



 

Fig. 1. The basic framework of our taxonomy. 

2 A Taxonomy Of  VAD Approaches 

2.1 Related Benchmark Datasets 

Benchmark datasets are essential for effectively evaluating VAD approaches. However, 

due to the rarity of anomalous events, collecting comprehensive datasets is inherently 

challenging. This difficulty makes publicly available benchmark datasets particularly 

valuable for their standardized evaluation frameworks and fair comparisons between 

diverse algorithms. Despite of great challenges, many prominent datasets are continu-

ously updated and expanded through tireless efforts, which offer profound resources in 

diverse abnormal detection in different scenarios. We have illustrated some widely used 

datasets in Table 2. 

UCSD Ped1 & Ped2 [12]: Designed for the purpose of VAD in crowded pedestrian 

scenes, the datasets use a single stationary camera to capture naturally occurring events 

like non-pedestrian entities (e.g., bicycles, skateboards) and unusual motions (e.g., 

walking on grass), with frame-level annotations and a subset offering pixel-level binary 

masks. 

CUHK Avenue [13]: Built for abnormal event detection in surveillance, CUHK Ave-

nue uses a single fixed camera to capture 30,652 frames across 15 sequences, including 

anomalies like running, throwing objects, and loitering with pixel-level annotations. 
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ShanghaiTech [16]. The large dataset is created for the purpose of complex real-world 

VAD, employing multiple surveillance cameras across a university campus to record 

dynamic anomalies (e.g., chasing and brawling) with frame-level annotations. 

UCF-Crime [15]. Focused on detecting realistic illegal anomalies, UCF-Crime gathers 

128 hours of CCTV footage from YouTube and LiveLeak, featuring 13 anomalies (e.g., 

fighting, burglary, robbery) with weak labels, checked via strict criteria to ensure au-

thenticity. 

XD Violence [14]. Designed for violence detection, this dataset collects untrimmed 

videos from movies and YouTube, featuring violence-related anomalies with weak la-

bels averaged from multiple annotators. Additionally, it emphasis on background con-

sistency to prevent discrimination. 

IITB-Corridor [18]. Designed at IIT Bombay for abnormal human activity detection, 

this dataset uses a single camera in a realistic corridor setting to capture anomalies like 

loitering, running, fighting, and chasing, including both individual and group behaviors 

with frame-level annotations, ensuring a profound resource for analyzing multiple types 

of abnormal behaviors. 

UBnormal [17]. Created as a benchmark for supervised open-set VAD, UBnormal uses 

Cinema4D to generate virtual scenes with 22 anomaly types (e.g., running, fighting, car 

crashes) across 29 real-world backgrounds, offering pixel-level annotations for train-

ing, which has better generalization to various abnormal activities. 

Table 2. Characteristics of VAD datasets. 

Dataset Total Frames Training Frames Testing Frames Abnormal Events 

UCSD Ped1 [12] 14000 6800 7200 40 

UCSD Ped2 [12] 4560 2550 2010 12 

CUHK Avenue [13] 30652 15328 15324 47 

XD-Violence [14] 4754 (videos) 3954 (videos) 800 (videos) 6 

UCF-Crime [15] 1900 (videos) 1610 (videos) 290 (videos) 950 (videos) 

ShanghaiTech [16] 317398 274575 42883 130 

Ubnormal [17] 236902 116087 92640 660 

IITB-Corridor [18] 482566 301999 181567 108278 

2.2 Raw-Video Input 

Raw-video inputs, such as RGB images and optical flow, are used directly for model 

training. The approach preserves full data integrity and primarily supports an end-to-

end learning framework based on fully CNNs avoiding spatial information loss from 



fully connected layers. OCC approaches usually learn a hypersphere to enclose normal 

data in feature space and labeling the points outside it as anomalies to achieve classifi-

cation within a unified framework. SS-VAD approaches leverage CNNs to learn regu-

lar patterns and flag the anomalous frames that deviate from these patterns. Therefore, 

this end-to-end learning framework is suitable for both of them in detecting mecha-

nisms. We have summarized representative approaches in this category as follows and 

compared their performance in Table 3. 

Table 3. The performances of raw-video input-based approaches on public datasets. 

 

One-Class Classification (OCC)-based methods. To overcome the challenge of 

learning effective representations under limited labeled data conditions, Lu et al. [19] 

proposed the appearance and motion deepnet (AMDN), which integrates stacked de-

noising autoencoders (SDAEs) to extract compact and robust features from both ap-

pearance and motion information. By training multiple one-class SVMs (OC-SVMs) 

on the learned representations, they constructed a unified VAD model capable of clas-

sifying normal patterns. This approach enhances the ability to jointly learn features and 

classifiers in an end-to-end fashion, reducing the reliance on hand- crafted features. 

However, as dimensionality increases, the computational cost of the kernel matrix es-

calates, resulting in overfitting and limiting the performances of OCC methods in high-

dimensional scenarios. 
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AMDN [19] BMVC 2015 Semi-Supervised OCC 92.1 90.8 - - - 

ConvAE [1] CVPR 2016 Semi-Supervised Reconstruction 81.8 82.9 78.3 - 80.7 

ConvLSTM [2] ICME 2017 Semi-Supervised Reconstruction 75.5 88.1 77.0 - 87.7 

GANs [20] CVPR 2017 Semi-Supervised Reconstruction 97.4 93.5 - - - 

FuturePred [21] CVPR 2018 Semi-Supervised Prediction 83.1 95.4 85.1 72.8 - 

MNAD [22] CVPR 2020 Semi-Supervised Reconstruction 97.0 88.5 70.5 - - 

SSMTL [23] CVPR 2021 Self-Supervised Multiple Tasks 99.8 92.8 90.2 - - 

GCL [24] CVPR 2022 Unsupervised Reconstruction - 94.1 78.9 71.2 - 

AED-MAE [25] CVPR 2024 Semi-Supervised Reconstruction - 95.4 91.3 79.1 - 
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Reconstruction-based methods.  To address the challenge of modeling sparse and ir-

regular events through supervised learning, Hasan et al. [1] introduced an SS-VAD ap-

proach utilizing convolutional autoencoders (ConvAE) to directly learn temporal regu-

larities in video sequences and flag anomalies based on reconstruction errors. However, 

due to its poor ability to capture motion dynamics, ConvAE often misclassifies irregular 

motion, leading to a high false positive rate. 

To address this problem, Luo et al. [2] proposed the ConvLSTM framework, integrat-

ing CNNs with LSTM to better encode the change of appearance and motion for normal 

events, respectively, to reduce the possibility of false positives. However,it remains lim-

ited by the assumption that anomalies will always produce higher reconstruction errors, 

which may not hold if the model fails to generalize to unseen abnormal data. 

To address the limitation of traditional autoencoder-based models, i.e., the tendency to 

produce blurry reconstructions due to reliance on pixel-level reconstruction losses, which 

compromises VAD accuracy in high-dimensional settings, Ravanbakhsh et al. [20] pro-

posed a generative adversarial nets (GANs) approach. By training a generator-discrimi-

nator framework to learn the distribution of normal frames, their method enhances sensi-

tivity to anomalies, which enhances the ability to identify anomalies in high-dimensional 

situations. 

To improve feature discrimination in SS-VAD, Park et al. [22] introduced a memory 

module that employs feature compactness loss and feature separateness loss to ensure that 

normal data representations remain tightly clustered, while maintaining clear separation 

between different memory units. Therefore, this method achieves a larger reconstruction 

error gap between normal and abnormal frames, which improves the discrimination ca-

pability. 

In an effort to operate without labeled video data to ensure high generalization and 

scalability, Zaheer et al. [24] leveraged the low frequency of anomaly occurrences to in-

troduce a US-VAD framework called generative cooperative learning (GCL), where the 

generator and discriminator engage in cross-supervised training by iteratively exchanging 

pseudo-labels. Additionally, the generator employs negative learning (NL) to prevent the 

reconstruction of anomalous data, enhancing robustness of VAD in complex surveillance 

scenarios without label annotation. 

In recent studies, patch-based reconstruction strategies, which operate by inferring 

missing data from surrounding regions to enhance reconstruction quality, have garnered 

significant attention. To address the challenges of detecting rare and context-dependent 

abnormal events in video surveillance, Ristea et al. [25] proposed a lightweight self-dis-

tilled masked autoencoder  model. By leveraging motion gradient-weighted tokens, the 

model shifts focus from static backgrounds to dynamic foreground objects. Additionally, 

the integration of a teacher-student decoder framework and synthetic anomaly augmen-

tation during training enables the model to limit the model’s ability to reconstruct anom-

alies, thereby enhancing the balance between efficiency and accuracy in VAD. This ap-

proach tackles the issues of insufficient abnormal event data and excessive generalization 

of traditional models to anomalies, achieving a trade-off between speed and detection 

performance. 



Prediction-based methods. A major limitation of reconstruction-based models lies in 

their tendency to overfit to normal patterns, which makes it challenging to ensure con-

sistently higher reconstruction errors for anomalous inputs. To solve the problem, Fu-

turePred [21] is the first work making use of U-Net architectures with GAN-based video 

frame prediction to forecast future. By leveraging temporal consistency, predictive 

models offer superior robustness against normal variations while effectively capturing 

deviations caused by anomalous events. 

Multi-task learning methods. To address the detecting challenge of limited supervi-

sion due to the scarcity of labeled anomalous data, Georgescu et al. [23] proposed a 

multi-task SF-VAD framework, which integrates pretext tasks (temporal arrow predic-

tion, motion irregularity estimation, intermediate frame reconstruction and model dis-

tillation ) to jointly learn data representations, creating pseudo-labels as supervisory 

signals. This work converts the traditional single-objective detection task into a multi-

task learning paradigm, effectively addressing the issue of suboptimal performance 

stemming from single-task approaches. 

2.3 Middle-Level Visual Input 

Middle-level visual input primarily focuses on skeleton-based VAD, leveraging hu-

man pose estimation and skeletal motion trajectory modeling to detect abnormal 

behaviors. While raw-video input relying on pixel information is vulnerable to noise 

and occlusion in complex backgrounds, leveraging compact skeletal feature represen-

tations as input enables models to alleviate the background noise interference, which is 

particularly effective for VAD in crowded scenes. Middle-level visual input remains a 

promising prospect for human-centric VAD, offering a balance between compact rep-

resentation and effective motion analysis. 

Compared to raw-video input, the additional pose estimation techniques( e.g. Open-

Pose [29], AlphaPose [30] and PoseNet [31] and HRNet [32] ) enable real-time extrac-

tion of skeletal keypoints, motion trajectories, and pose maps from video data, making 

models adaptable to various situations. Combining with deep learning architectures like 

the graph convolutional network (GCN) [33], [34] and LSTM [35] network, middle-

level visual-based models can effectively capture spatio-temporal relationships. How-

ever, the performance relying on the accuracy of pose estimation algorithms also makes 

it particularly challenging in multi-object scenes with significant occlusions. In the fol-

lowing sections, we analyze existing methods based on skeleton-level visual input, 

which is summarized on Table 4. 
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Table 4. The performances of middle-level visual input-based approaches on public datasets. 

Approach Publication Methodology 
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GCAE [26] CVPR 2020 
Reconstruction 

+ Clustering 

Alphapose, 

Openpose 
- 76.10 - - 

HSTGCNN [27] TCSVT 2021 Prediction HRNet 88.65 83.40 70.50 - 

Multi-timescale [18] TNNLS 2021 Prediction Openpose 88.33 77.04 67.10 - 

MPED-RNN [3] CVPR 2021 
Reconstruction 

+ Prediction 
Alphapose 86.30 75.40 - - 

MoCoDAD [28] ICCV 2023 
Reconstruction 

+ Diffusion 

Alphapose, 

Openpose 
89.00 - - 68.30 

 

Reconstruction + Prediction-based approaches. To address the challenge of detect-

ing human-related anomalies in surveillance videos with noisy and high-dimensional 

pixel- based features, Morais et al. [3] proposed a skeleton trajectory- based method, 

decomposing skeletal movements into global and local components. They employed a 

message-passing encoder-decoder recurrent neural network (MPED-RNN) to construct 

a spatio-temporal model, aiming to enhance the interpretability compared to traditional 

appearance-based approaches. 

Prediction-based approaches. To effectively capture abnormal activities across dif-

ferent temporal scales, Rodrigues et al. [18] proposed a multi-timescale model to detect 

human anomalies at varying time scales. By performing bidirectional (past and future) 

multi-scale predictions on skeleton trajectory inputs and combining a hierarchical su-

pervised approach, the model is able to learn effective representations at different tem-

poral scales. 

Reconstruction + Clustering-based approaches. To address the limitations of exist-

ing methods when dealing with complex scenes and diverse actions, Markovitz et al. 

[26] proposed a graph-based approach, using GCN to directly model dynamic body 

posture graphs and reduce background noise interference. They employed deep embed-

ding clustering to effectively capture action diversity, followed by a Dirichlet process 

mixture model (DPMM) scoring mechanism to detect anomalies. 

Diffusion-based approaches. To address the challenges posed by the complexity of 

human behaviors and the multi-modality of skeletal motion, Flaborea et al. [28] pro-

posed a diffusion-based technique in the skeleton framework. They utilized the multi-



modal generative capabilities of diffusion models to design a motion conditioned dif-

fusion anomaly detection (MoCoDAD) model. This model leverages the coverage abil-

ity of the diffusion process to capture normal diversity and detects anomalies by aggre-

gating future sequences, improving anomaly identification in multi-modal skeletal mo-

tion scenarios. 

2.4 High-Level Visual- Semantic Input 

The low level representations derived from raw-video inputs are often coarse and inad-

equate for modeling complex events in VAD. To address this limitation, an growing 

number of studies have adopted a two-stage VAD framework, using pre- trained models 

(such as ResNet [36], C3D [37] and Swin-T [38]) to extract high-level features. Unlike 

raw video data, high-level representations inherently capture more abstract and hybrid 

information cues such as appearance, motion and semantic context. This framework not 

only improves generalization across diverse scenarios but also enables the model to 

detect subtle and complex anomalies, even only given the coarse-grained labels. For a 

constructive understanding, a comparative summary of various high-level feature ex-

traction methods is presented in Table 5. 

Table 5. The performances of high-level visual-semantic input-based approaches on datasets. 

Approach Publication Feature 

UCF-

Crime 

XD-

Violence 

Shang-

haiTech 

UCSD 

Ped2 

AUC(%) AP (%) AUC(%) AUC(%) 

DeepMIL [37] CVPR 2018 C3DRGB 75.40 - - - 

GCN [43] CVPR 2019 TSNRGB 82.12 - 84.44 - 

HLNet [39] ECCV 2020 I3DRGB 82.44 75.41 - - 

RTFM [40] ICCV 2021 I3DRGB 84.30 77.81 97.21 98.60 

MSL [41] AAAI 2022 VideoSwinRGB 85.62 78.59 97.32 - 

TEVAD [44] CVPR 2023 I3DRGB 84.90 79.80 98.10 98.70 

PE-MIL [45] CVPR 2024 I3DRGB 86.83 88.05 98.35 - 

VadCLIP [4] AAAI 2024 CLIP 88.02 84.51 - - 

STPrompt [46] ACMMM 2024 CLIP 88.08 - 97.81 - 

SUVAD [47] ICASSP 2025 MLLM 82.3 80.1 76.8 96.2 

Weakly Supervised Video Anomaly Detection (WS-VAD). For large-scale video 

data, providing clip-level annotations is extremely challenging. In addition, clip-level 

annotations are more prone to inconsistent labeling criteria due to the lack of a stand-

ardized definition of anomalies, which can negatively affect model performance. To 

solve these problems, many researches have shifted their focus toward WS-VAD, which 

utilizes weakly labeled training videos. Therefore, WS-VAD methods are typically for-

mulated within the multiple instance learning (MIL) framework, where videos contain-

ing normal or abnormal clips were respectively represented as negative or positive bags. 
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Sultani et al. [37] was the first to employ this framework to construct a deep ranking 

model. This paradigm enables more effective identification of anomalous events in am-

biguous patterns. However, despite significant progress in WS-VAD, several major 

challenges remain: (1) It is difficult to learn discriminative features of normal and 

anomalous clips through coarse-grained labels due to data imbalance. (2) WS-VAD 

framework usually assumes that each instance is independent, which challenges cap-

turing long-range dependencies and local representations between clips. (3) Most WS-

VAD methods can only provide clip-level anomalies, failing to localize anomalous ob-

jects. To resolve these challenges, many methods have been proposed to effectively 

optimize the traditional WS-VAD framework, increasing the probability of selecting 

abnormal clips from abnormal videos. 

To address the limitations of WS-VAD for violence detection, where reliance on 

single-modal features and poor modeling of inter-clip relationships limit the effective 

localization of events. Wu et al. [39] proposed a method named holistic and localized 

network (HL-Net), leveraging multi-modal (audio-visual) fusion to enhance feature 

richness. They also employed holistic and localized branches with similarity and prox-

imity priors to capture long and short-range clip dependencies. This method enhances 

the capability to localize violent events accurately. 

To improve the discriminability learning within a video, i.e., the dominance of nor-

mal clips and subtle differences between normal and abnormal events often bias exist-

ing methods, Tian et al. [40] proposed a method called robust temporal feature magni-

tude learning (RTFM), which leverages a feature magnitude learning function to max-

imize the disparity between normal and abnormal features to improve discriminability. 

They also utilized dilated convolutions and self-attention to capture subtle anomalies. 

This approach improves the robustness to negative instances, alleviating the impact of 

data imbalance. 

To reduce the probability of selection errors caused by ignoring the temporal conti-

nuity of abnormal events across multiple clips, Li et al. [41] proposed a multi-sequence 

learning (MSL) method, which uses a sequence composed of multiple clips as the op-

timization unit instead of single instance. Furthermore, they incorporated a transformer-

based network architecture via self-attention to dynamically model complex inter-clip 

relationships and local perception, improving the accuracy of abnormal selection. Su et 

al. [42] integrates object detection and hierarchical disentanglement strategies. Through 

heterogeneous cross-scale correlation learning and a position-scale awareness inference 

mechanism, it simultaneously generates clip-level anomaly scores and spatially local-

izes anomalous targets. 

Semantic + Visual Framework. The definition of anomaly is scene-dependent. Due 

to the diversity of visual features and their sensitivity to variations in feature extractors, 

object characteristic (e.g., density, scale and shooting viewing angle), a significant vis-

ual-semantic gap often arises. Moreover, existing WS-VAD methods predominantly 

follow a classification paradigm that relies heavily on visual features while neglecting 

the semantic alignment between video content and textual labels. To overcome these 

challenges, recent research has increasingly focused on the potential of multi-modal 

models where visual features are fused with rich semantic context. These approaches 



usually incorporate static knowledge bases or contrastive learning techniques, which 

can help models capture nuanced relationships between visual inputs and natural lan-

guage semantics. This not only bridges the visual-semantic gap but also enhances the 

understanding of high-level concepts, paving the way for broader applications in the 

future. 

To address the challenge of relying solely on visual features struggles to capture the 

deep semantic meanings in complex scenarios, Chen et al. [44] proposed a novel frame-

work called text empowered VAD (TEVAD), leveraging video captions generated by 

the SwinBERT [48] model to obtain high-level semantic text features. The model fuses 

visual and textual features to address the semantic gap inherent in visual representa-

tions, which can interpret deep and rich semantic meanings. However, it remains de-

pendent on video-level labeled training samples and high computational cost of Swin-

BERT, which limited the applicability in complex scenarios. 

Su et al. [49] utilized a cross-modal detection network and dual consistency learning 

at the semantic-to-target and target-to-snippet levels to enhance discriminative repre-

sentations of anomalies, enabling comprehensive identification, localization, and 

recognition of abnormal events in diverse scenarios. 

To address the limitations of single-modal approaches in VAD, particularly their 

inability to perform effective cross-modal inference, Cao et al. [50] pioneered the ap-

plication of GPT-4V for VAD. GPT-4V exhibits strong semantic understanding and 

reasoning abilities, enabling cross-modal inference through prompt engineering and ex-

hibiting notable adaptability and generalization. They validated its great effec- tiveness 

in pedestrian and traffic scenes using the UCF-Crime [15] dataset. However, current 

research on GPT-4V relies on carefully designed prompts. Moreover, the high compu-

tational requirements also presents significant challenges for real-world deployment. 

While traditional pre-trained models are dependent on fixed class datasets and ignore 

textual information, CLIP [51], however, uses natural language supervision on a large 

number of internet-sourced (image, text) pairs by contrastive learning, enabling multi-

modal modeling and zero-shot transfer to diverse tasks without labeled data. Wu et al. 

[4] was the first to employ CLIP into VAD. They leveraged frozen CLIP without addi-

tional fine-tuning. This method utilizes a local-global temporal adapter (LGT-Adapter) 

and a dual-branch framework with learnable prompts to harness vision-language asso-

ciations. It has outperformed state-of-the-art methods on benchmarks like UCF-Crime 

[15] and XD-Violence [14], showing greater generalization across multiple contexts. 

Although CLIP-based VAD methods have demonstrated strong image-text align-

ment capability, they are limited in analyzing global temporal context. To address the 

limitation, Wu et al. [46] proposed a spatio-temporal prompt learning approach 

(STPrompt) based on pre-trained vision-language models (VLMs) that enables tem-

poral context modeling. Furthermore, they introduced a Spatial Attention Aggregation 

(SA²) mechanism to suppress background noise, which improves VAD accuracy. 

To address the challenge that CLIP-based VAD methods struggle to align video con-

tent with high-level semantic cues, Gao et al. [47] proposed a framework called seman-

tic-guided unified VAD (SUVAD). By incorporating a semantic completion module 

(SCM) and a visual prompt generator (VPG), the framework integrates multi-modal 

knowledge from MLLMs to enrich temporal features with semantic information and 
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generate prompts from scene- and object-level semantics. This design enables better 

guidance of visual features toward alignment with the semantic space, enhancing the 

capability of the model to detect semantic shifts and improving robustness in open-

world scenarios. 

 

3 Discussion 

In this paper, we have reviewed recent advancements in VAD, demonstrating signifi-

cant improvements in model performance on benchmark datasets. However, the prac-

tical effectiveness of these methods in real-world scenarios remains an open challenge. 

For instance, SS-VAD, while effective in leveraging unlabeled data, often fail to incor-

porate high-level semantic prior knowledge about anomalies. This limitation confines 

their focus to low-level pixel reconstruction or prediction tasks, leading to high false 

positive and false negative rates. On the other hand, WS-VAD methods, which rely on 

coarse annotations, have shown promise in improving detection performance. Never-

theless, these methods still face critical limitations, such as the inability to precisely 

localize anomalous regions and the reliance on two-stage optimization frameworks in-

volving pre-trained feature extractors and MIL. These constraints significantly hinder 

their scalability and generalization. 

Beyond these technical challenges, several critical issues in VAD remain underex-

plored. First, privacy preservation in surveillance videos has become increasingly im-

portant due to stringent regulations such as the General Data Protection Regulation 

(GDPR) and the California Consumer Privacy Act (CCPA). These regulations require 

the development of VAD models capable of protecting individual privacy, making dis-

tributed or privacy-aware learning frameworks a promising research direction [52]. 

Second, the heterogeneity of surveillance scenes—ranging from indoor environments 

to crowded public spaces—poses significant challenges for model generalization. Cur-

rent methods often struggle to adapt to diverse scenarios, highlighting the need for more 

robust and adaptive architectures. 

Furthermore, the real-time performance of VAD models is crucial for practical de-

ployment in surveillance systems. To address this, research on model compression tech-

niques, such as quantization and pruning, is essential to reduce computational overhead 

while maintaining detection accuracy. Finally, the integration of multi-modal data (e.g., 

combining visual and audio cues) and the exploration of SF-VAD learning paradigms 

could further enhance the robustness and efficiency of VAD systems. These directions 

not only address existing limitations but also open new avenues for future research in 

the field. 

4 Conclusion 

In this survey, we have conducted a comprehensive review of VAD approaches based 

on deep learning. We began by highlighting the predominant challenges in VAD, em-

phasizing the key limitations that hinder progress in the field. To provide a structured 



understanding, we introduced a novel taxonomy that categorizes existing methods into 

three levels based on their model inputs: raw-video input, middle-level visual input, 

and high-level visual-semantic input. For each category, we systematically  analyzed 

representative methods, comparing their performances on various benchmark datasets. 

Furthermore, we provided an in-depth discussion on the pros and cons of these ap-

proaches, offering insights into their applicability across different real-world scenarios. 

Finally, we outlined promising research directions that can address current challenges 

and drive future advancements in VAD, hoping to inspire novel methodologies that 

push the boundaries of this field. 
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