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Abstract. Recent studies have revealed the vulnerability of trajectory prediction 

(TP) models to gradient-based adversarial attacks. However, existing gradient-

based attacks overlook the characteristics of trajectory data and model, limiting 

their effectiveness in robustness evaluation. Therefore, we propose a gradient-

based attack algorithm considering both rich physical information in data and 

common characteristics in model. For the data aspect, unlike adversarial attacks 

in the image, trajectory data carries more physical information than pixels. Con-

sidering this, our method introduces momentum in gradient-updates to reserve 

physical information in previous iterations to keep the generated adversarial tra-

jectory realistic. And in order to search for more possible adversarial trajectories, 

it updates with different initial states and update with different step sizes. For the 

aspect of model, unlike convolutional neural networks (CNNs) used for image 

recognition, trajectory prediction models are typically based on recurrent neural 

networks (RNNs) which tend to focus more on specific points within the data 

rather than treating all inputs with equal importance. An attention loss function 

is designed to guide the attack to focus on that the model concern about. Experi-

ments on three models and two datasets show that our attack algorithm increases 

mean displacement error(ADE) over 7.94% of the trajectory prediction error 

compared to previous state-of-the-art gradient-based attack. Our code is open 

source at Github : https://anonymous.4open.science/r/RMS-PGD. 

Keywords: adversarial example, gradient-based attack, trajectory prediction, 

robustness evaluation 

1 Introduction 

Autonomous vehicles (AVs) are becoming popular among the public and changing the 

way we drive today. Trajectory prediction (TP) is a critical component of the prediction 

module, predicting future trajectories of surrounding vehicles based on history trajec-

tories. As TP generates future results that affect driving behaviors, accurate trajectory 

predictions must be required for safe AVs driving. Recently, state-of-the-art TP models 

https://anonymous.4open.science/r/RMS-PGD


are mainly based on deep neural networks [7,13,14,18,28], but their prediction errors 

may increase sharply when facing adversarial attacks [5,26 ,28]. PGD [15] was initially 

proposed by Madry et. al to attack the field of image classification, causing the detected 

images to be misclassified. Due to its fast attack iteration and attack effectiveness, it 

was first transferred from image classification to trajectory prediction by Zhang et. al 

[5] to attack trajectory prediction models, resulting in significant errors. Subsequently, 

Yin et al. [26] also applied PGD and reconstruct the trajectory from scratch to generate 

smoother adversarial trajectories. The generated trajectories have smaller accelerations 

which are more realistic. 

 
Figure 1. An attack scenario on trajectory prediction: fool the AV cause a 

brake. 
However, existing gradient-based attacks, including PGD, have been directly trans-

ferred from image classification to trajectory prediction (TP) making it challenging to 

generate effective and realistic adversarial trajectories [4,5]. Yin et. al [26] smooth the 

adversarial trajectories to enhance authenticity and effective. However, the smoothing 

points may result in exceeding the tracking distance, making it impossible to achieve 

smoothness. Moreover, the application of trajectory reconstruction is prone to large 

perturbation value at some time step. This challenge arises due to the lack of consider-

ation in data format and model structure. Specifically, trajectory data is sequential and 

contains more traffic semantics and physical information than image. Additionally, TP 

models often bases on recurrent neural networks(RNNs) to handle regression tasks. 

During predicting, models tend to rely heavily on the last points in sequence, often 

'forget' earlier data, a phenomenon known as the long-term dependency issue [11]. 

Regarding the above challenges, we propose a gradient-based attack called RMS-

PGD. In terms of data, we use multiple random initializations and adaptive learning 

rate to generate more possible adversarial trajectories. And we introduce momentum in 

gradient-updates to ensure that the physical information is kept between the generated 

adversarial trajectory and the original trajectory. In terms of models, the attention loss 

function guide the attack to consider more about the last points of trajectory which the 

TP models focus more on. Our goal is to generate adversarial trajectories that are both 

highly effective and realistic. We evaluate RMS-PGD on 6 different combinations of 

prediction models [13,14,18] and trajectory datasets [3,10]. Compared to the previous 

state-of-art gradient-based attacks [26,28], RMS-PGD has a 7.94% increase in average 

displacement error (ADE) and an average increase of 6.06% across four commonly 

used evaluation metrics of displacement error. 
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Our main contributions are summarized as follows: 

⚫ We propose a gradient based attack on trajectory prediction models considering 

both the characteristics of trajectory data and model. From the data perspective, 

this method fully exploits the physical characteristics of trajectory data, including 

exploring a broader trajectory space and simulating the physical inertia during 

update iterations. On the model side, a novel attention-based loss function is in-

troduced to guide the attack towards time frames emphasized by model. 

⚫ We compared our method with two state-of-the-art attack methods on various 

prediction models and trajectory datasets in six evaluations. Extensive experi-

mental and visualization results demonstrate that our method is more effective 

and adheres to fundamental physical constraints with a small perturbation size. 

⚫ We explore defensive mechanisms against adversarial examples via data augmen-

tation and trajectory smoothing.  

⚫ We conducted ablation experiments, demonstrating the necessity of three im-

provement methods of RMS-PGD and exploring the sensitivity of the main pa-

rameters. 

2 Background and Related Work 

Trajectory prediction (TP). TP is required by the prediction module of autonomous 

vehicle (AV) systems (e.g., Baidu Apollo [1], Tesla Autoware [22]). As the perception 

module of autonomous driving system, TP models are typically based on deep neural 

networks [13,14,18,27]. It takes the position coordinates of surrounding vehicles from 

the past few seconds along with additional data such as semantic maps to predict the 

future spatial coordinates of nearby vehicles. Different ways of manufacturing and uti-

lizing additional data from trajectories can be used to classify different types of models. 

FQA [13] represents a group of traditional models based on a form of kinematics and 

statistics to predict trajectories, considering vehicle speed and acceleration. Tra-

jectron++ [18] represents a method that utilizes graphs to process trajectory data. In this 

model, scenes are represented as spatiotemporal graphs, where nodes represent agents 

and edges denote their interactions. Local maps are processed by convolutional neural 

networks (CNNs), trajectories are encoded using Long Short-Term Memory (LSTM) 

networks, and multimodal solutions are addressed through Conditional Variational Au-

toencoders (CVAEs). Additionally, the trajectory decoder is based on Gated Recurrent 

Units (GRUs). GRIP++ [14] introduces a graph-based interactive perception trajectory 

prediction model. It employs a graph convolutional model composed of several convo-

lutional layers and graph operations to model interactions between vehicles. The output 

of the graph convolutional model is fed into an LSTM encoder-decoder to predict mul-

tiple trajectories. 

 Although these models perform well in many normal situations and make accurate 

predictions, for safety reasons, we still need to focus on the robustness of trajectory 

prediction models, despite achieving high accuracy on different datasets. Especially 

under malicious adversarial attacks, whether these models can maintain their original 

prediction accuracy is an important issue. 



 Adversarial attacks against Trajectory prediction. Adversarial attacks were the 

first introduced by Szegedy et al. [17] to explore the stability of neural networks. For-

mally, an adversarial perturbation can be defined as the minimal perturbation 𝑅 that 

alters the output 𝑓 of a given classifier: 
𝑚𝑖𝑛 ‖𝑅‖𝑞

𝑠. 𝑡.  𝑓(𝑋 + 𝑅) ≠ 𝑓(𝑋),
 

where 𝑋 is the input image, and ‖‖𝑞 represents q-norm, which means  the Euclidean 

size when 𝑞 is equals to 2. 

 Recent studies have demonstrated various types of attacks against TP models in 

AVs, including generating adversarial trajectories [4,5,9,17,21,23,29]. Previous studies 

have employed gradient-based attacks to generate adversarial examples targeting TP 

modles. In [5], the authors were the first to use PGD to attack TP models. However, the 

PGD method was directly transferred from the image field without considering the 

characteristics of the data and model. The generated adversarial trajectories did not 

cause significant prediction errors, nor did they generate relatively realistic trajectories. 

Yin et al. reconstruct the trajectory from scratch by fusing future trajectory trends and 

curvature constraints to generate trajectories with lower acceleration, but it may exceed 

the tracking distance in some situations [26]. And the generated perturbation may be 

relatively large at some time step, causing poor invisibility and authenticity because of 

the search of no hard constraints. The research we conducted is a white box attack, and 

the scenario described is shown in Figure 1 . It depicts a possible scenario where the 

other vehicle (OV) travels along a carefully crafted adversarial trajectory. The AV pre-

dicts that the OV will deviate and collide with itself, but in reality it did not. AV makes 

dangerous sudden braking or evasive maneuvers. 

3 Method 

3.1 Problem statement 

Trajectory prediction models observe the state information and predict the future tra-

jectories of surrounding vehicles for each time frame. First, the state of vehicle 𝑣 at 

time frame 𝑡 is denoted as 𝑠𝑡
𝑣. We define the state sequence of vehicle  from time frame 

𝑡1 to time frame 𝑡2 as 𝑠𝑡1:𝑡2
𝑣 = {𝑠𝑡1

𝑣 , . . . , 𝑠𝑡2
𝑣 }. At a specific time frame 𝑡, we assume there 

are 𝑁 surrounding vehicles. The trajectory prediction algorithm collects history trajec-

tory frames with a length of L𝐻 and predicts future trajectory frames with a length of 

𝐿𝑃. Thus, the history trajectories of all surrounding vehicles can be defined as 𝐻𝑡 =
{𝐻𝑡

𝑣 = ℎ𝑡−𝐿𝐻+1:𝑡
𝑣 |𝑣 ∈ [1, 𝑁]} , the predicted trajectories are defined as 𝑃𝑡 = {𝑃𝑡

𝑣 =

𝑝𝑡+1:𝑡+𝐿𝑃
𝑣 |𝑣 ∈ [1, 𝑁]}, and the actual trajectories of vehicles are denoted as 𝑅𝑡 = {𝑅𝑡

𝑣 =

𝑟𝑡+1:𝑡+𝐿𝑃
𝑣 |𝑣 ∈ [1, 𝑁]} (ℎ𝑡

𝑣 , 𝑝𝑡
𝑣, 𝑟𝑡

𝑣 , and 𝑠𝑡
𝑣 represent the state of vehicle 𝑣 at time frame 

𝑡). 

The objective of this work is to design a minor perturbation 𝛥𝑡−𝐿𝐻+1:𝑡
𝑣 =

[𝛥𝑡−𝐿𝐻+1
𝑣 , . . . , 𝛥𝑡−1

𝑣 , 𝛥𝑡
𝑣]  to generate adversarial history trajectories ~ℎ𝑡−𝐿𝐻+1:𝑡

𝑣 =

[~ℎ𝑡−𝐿𝐻+1
𝑣 , . . . ,~ℎ𝑡−1

𝑣 , ~ℎ𝑡
𝑣]  to fool TP model predicting trajectories that differ 
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significantly from the true trajectory, where ~ℎ𝑡−𝐿𝐻+1:𝑡
𝑣 = ℎ𝑡−𝐿𝐻+1:𝑡

𝑣 + 𝛥𝑡−𝐿𝐻+1:𝑡
𝑣 =

[ℎ𝑡−𝐿𝐻+1
𝑣 + 𝛥𝑡−𝐿𝐻+1

𝑣 , . . . , ℎ𝑡−1
𝑣 + 𝛥𝑡−1

𝑣 , ℎ𝑡
𝑣 + 𝛥𝑡

𝑣]. Trajectory prediction model 𝐷  takes 

adversarial trajectories as input and outputs the predicted trajectories ~𝑃𝑡
𝑣 =

𝐷(~ℎ𝑡−𝐿𝐻+1:𝑡
𝑣 ). The goal is to maximize the displacement distance between ~𝑃𝑡

𝑣𝑎𝑛𝑑𝑅𝑡
𝑣. 

To avoid being detected, perturbations added to trajectories must be controlled 

within a specific range. Imperceptible perturbations can be represented as follows: 

𝛥𝑡−𝐿𝐻+1:𝑡
𝑣 = ||~ℎ𝑡−𝐿𝐻+1:𝑡

𝑣 − ℎ𝑡−𝐿𝐻+1:𝑡
𝑣 ||∞ < 𝜀 

where 𝜀 is the bound which is the half of the lane-width according to the dataset. More-

over, minor perturbations on trajectories may not always align with "normal driving 

trajectories", thus adversarial trajectories must exhibit the attribute of being "suffi-

ciently natural" obeying physical laws. To meet this two condition, we uses the linear 

constraint. Iterate through all trajectories, calculating the mean (𝜇) and standard devia-

tion (𝜎) of average velocity, horizontal and vertical accelerations, and the derivatives 

of horizontal and vertical accelerations. For each generated adversarial trajectory, these 

three metrics should fall within 𝜇 ± 3𝜎. If they fall outside this range, they are mapped 

back into it, which can be expressed using the following formula: 
𝑚𝑎𝑥 𝜓,

𝑠. 𝑡. 𝐶(𝐻𝑣 + 𝜓𝛥),0 <= 𝜓 <= 1,
 

where 𝐶 denotes linear constraints function. For perturbations 𝛥 that exceed the con-

straints, we calculate the scaling factor 𝜓 to transform the perturbations into 𝜓𝛥 to sat-

isfying the constraints and ensure that the generated trajectory does not exceed physical 

laws. 

3.2 Attack Model 

We focus on white-box attack, aiming at simulating the model's vulnerabilities under 

the worst scenarios. The attacker has access to all parameters of the AV prediction 

model. As the attacker drives the OV close to the AV and prepares to attack, they need 

to select a future time frames and predict the trajectories of surrounding road vehicles 

for that period. It is an essential preparation to generate adversarial samples for OV. 

Then the attacker computes adversarial samples of the AV's trajectory for the chosen 

future time frames and precisely follows this trajectory (e.g., using software control). 

Zhang et. al [28] have demonstrated that the impact of attack is primarily determined 

by the trajectory of the OV itself, ensuring the effectiveness and feasibility of attack. 

The OV and AV are two randomly selected vehicle trajectories, which ensures that 

attacks can occur on any two vehicle trajectories and guarantees the generality of this 

attack method. 

3.3 Generate Adversarial Examples by RMS-PGD 

RMS-PGD utilizes multiple random initializations with adaptive learning rate to ex-

plore wider search space and selects the one that causes the greatest prediction error. It 

ensures that adversarial trajectories follow physical laws through momentum-updated 

gradients and guides the attack to concern model’s focus using an attention loss 



function. As is described in Figure 2 Firstly, random perturbations are added to the 

history trajectory, and the model generates prediction results. The loss value is com-

puted using the loss function Equ. (2), and the perturbations are updated through an 

optimizer with adaptive learning rate. A portion of the perturbations is retained to ac-

count for the influence in the subsequent updates by the optimizer. Finally, the adver-

sarial trajectory with the strongest attack is selected by initializing the perturbation in 

times. 

 
Figure 2. RMS-PGD attack methodology overview. 

Multiple random initializations with adaptive learning rate. A direct way to im-

prove the effectiveness of attacks is to search and update adversarial trajectory in a 

larger search space. To achieve this goal, we need to use the physical information pre-

sent in trajectory data. We consider that the initialization of perturbations added to the 

history trajectory inherently represents a certain physical process. For instance, if the 

perturbation increases the distance between sampled points of a vehicle's history trajec-

tory, it implies a higher speed along that segment of the trajectory. The perturbations 

added on the trajectory represent the vehicle's speed and direction. In order to utilize 

the physical information of trajectory data and find a broader search space, we employ 

multiple random initializations (M times) to replace the single random initialization of 

PGD. And we design an adaptive learning rate (lr), which was initialized with a larger 

value at the beginning of the attack and half it when the prediction error no longer 

increases after a certain number of iterations to avoid getting stuck in local optimal 

solutions when updating perturbations. 

 Momentum-updated gradients. To ensure the authenticity of the adversarial tra-

jectory, a certain proportion of the adversarial perturbation generated in the previous 

iteration is retained in each iteration of the attack. This approach reflects the physical 

inertia inherent in real-world vehicle dynamics, where changes in driving speed and 

direction are influenced by the previous state. Since the computation of perturbations 

relies on gradients, simulating such inertia requires preserving a portion of the gradient 

from the previous iteration and combining it with the current gradient through weighted 

summation. It can be represented by the equation:  

𝑔𝑖+1 = 𝜃𝑔𝑖 + (1 − 𝜃)𝛻𝐻ℒ(𝐷(~𝐻𝑖), 𝑅), 

~𝐻𝑖+1 = ∏(~𝐻𝑖 + 𝑙𝑟 ⋅ 𝑛𝑜𝑟𝑚(𝑔𝑖+1))

𝐵𝜀

, 
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where 𝑔 denotes the gradient; 𝑖 denotes the number of iterations; 𝜃 signifies the pro-

portion of retained history gradients termed as history weight. It is noticed that the in-

troduction of momentum in this paper is not aimed at enhancing the transferability of 

the attack, as commonly observed in image-based attacks. Instead, it serves to simulate 

physical inertia, ensuring that the generated perturbations are not excessively large and 

that the trajectories remain realistic. 

An attention loss function. The loss function quantifies the difference between the 

model's original predicted trajectory and the adversarial predicted trajectory. Our ob-

jective is to maximize this difference. Additionally, since perturbations are calculated 

based on the gradient of the input relative to the loss function, the loss function inher-

ently reflects the focal points of the attack. In classification tasks, the focus of attack 

aligns with model's focus, typically using cross-entropy loss to emphasize correct or 

incorrect result. Similarly, in trajectory prediction, the attack should also pay more at-

tention to what the trajectory model focuses on. As trajectories data consists of sequen-

tial format, the TP models usually incorporate sequence modules and often focus more 

on the last trajectory time steps and 'forget' the earlier data in sequence. For instance, 

the Trajectron++ [18] model comprises a LSTM [19] and GRU [8] network, primarily 

leveraging the last trajectory time steps during prediction. The loss function serve as a 

crucial objective for attack and guide attacks what to focus on in regression task such 

as TP. Specifically, ADE (average displacement error) and FDE (final displacement 

error) [6] are two most commonly used metrics for trajectory prediction models. The 

ADE focuses more on the overall error performance, while FDE emphasizes the per-

formance of last time frame. A naive method is to combine both factors using a param-

eter to balance their weights, allowing the attack to focus more on later time frames: 

ℒ𝐴𝐷𝐸(𝑃𝑣 , 𝑅𝑣) =
1

𝐿𝑃

∑ ‖𝑝𝑖
𝑣 − 𝑟𝑖

𝑣‖𝑞

𝐿𝑃

𝑖=1

, 

ℒ𝐹𝐷𝐸(𝑃𝑣 , 𝑅𝑣) = ‖𝑝𝑛
𝑣 − 𝑟𝑛

𝑣‖𝑞 , 

ℒ = ℒ𝐴𝐷𝐸(𝑃, 𝑅) + 𝛽 ⋅ ℒ𝐹𝐷𝐸(𝑃, 𝑅), (1) 

where 0 < 𝛽 is a tunable parameter referred to the balance parameter, utilized to adjust 

the proportion of FDE in combined loss function. 

However, the parameter 𝛽 is difficult to determine, and it does not implement the 

idea of "the attack focusing on what the model focuses on". The main drawback of 

Equ.(1) is that it gives a fixed of attention to specific time frame once parameter 𝛽 is 

fixed, primarily focusing on the last time frame. This limits the attack's ability to focus 

on an appropriate number of time frames, as this focus should vary according to the 

changes in different trajectories rather than being fixed. To address this issue, we allow 

the attack to autonomously focus on the time step itself. We introduce an attention 

mechanism where the attack assigns weights related to each agent's time step. The equa-

tion for the attention-based loss is as follows: 

𝑚𝑎𝑥
𝑅,𝑊

 𝑇𝑟(𝑊𝑇  ⋅ ‖𝒫𝑡
𝑣 − ℛ𝑡

𝑣‖𝑞) − 𝜆𝑟‖𝑅‖𝑞 + 𝜆𝜔‖𝑊‖𝑞 , 

𝑠. 𝑡. ∑ 𝑤𝑡

𝑡

= 1, 𝑤𝑡 ≥ 0, (2) 



Here, 𝑊 ∈ ℝ𝐿𝑃×1 represents the attention weight matrix, where 𝑤𝑡  denotes the atten-

tion weight for agent 𝑣 at time step 𝑡 in prediction. The loss function is defined as the 

trace(Tr) of the product of ‖𝑃𝑡
𝑣 − 𝑅𝑡

𝑣‖ and the transpose of 𝑊, plus a regularization on 

the perturbation with a balancing coefficient 𝜆𝑟 which encourages finding a small per-

turbation. Also, we discourage uniformity of weights by subtracting the Frobenius norm 

of 𝑊 multiplied by a scalar 𝜆𝜔. This trace operation 𝑇𝑟 actually sums the values of all 

elements in the matrix. The matrix 𝑊 is initialized with a uniform distribution, updated 

with its elements summed to 1, achieved through a single softmax layer [2]. 𝑊 is up-

dated iteratively, assigning higher weights to targets with a greater possibility of colli-

sion. The 𝑊 and 𝑅 are jointly optimized for each input sample. 

We simplify the definition of history trajectory, true trajectory and predict trajectory 

of attack vehicle 𝑣 as 𝐻, 𝑅 and 𝑃. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 is the Equ.(2) ensuring the speed and 

acceleration are in a reasonable range of dataset. RMS-PGD can be described as Algo-

rithm1. 

 

4 Experiments 

4.1 Experiment settings 

Datasets. We use Apolloscape [1] and nuScenes [3]. They both contains diverse urban 

scene data, including various weather, lighting, seasonal and traffic conditions. Accord-

ing to the official recommendations, for the nuScenes, we select history trajectory 

length (𝐿𝐻 = 4) and future trajectory length (𝐿𝑃 = 12). For the Apolloscape dataset, 

we select history trajectory length (𝐿𝐻 = 6) and future trajectory length (𝐿𝑃 = 6). We 

randomly selected 100 scenes from each dataset as test cases.  

Trajectory prediction models. We use three state-of-the-art trajectory prediction 

models FQA[13], GRIP++[14], and Trajectron++ [18]. The FQA is based on physics 

modeling to predict trajectories, including considerations of vehicle speed and acceler-

ation. The GRIP++ model utilizes graph models to model the relationship between 



 

 

 

 

2025 International Conference on Intelligent Computing 

July 26-29, Ningbo, China 

https://www.ic-icc.cn/2025/index.php 

 

 

interaction behavior and trajectory prediction. By constructing interaction graphs, it 

captures interaction information between different behavioral entities. The Tra-

jectron++ model features handling multi-agent interaction, considering uncertainty and 

multi-modal prediction, and integrating kinematics and social rules. In addition, for 

Trajectron++, we select the predicted trajectory with the highest probability as the final 

result.  

Baselines. We select the search-based attack proposed by Zhang et. al [28] and the 

speed-adaptive attack [26] as two baselines, henceforth referred to as search and sa-

attack. The sa-attack causes higher errors by searching without constrains, but it cause 

larger perturbations. To make fair comparisons, the parameter values shared among the 

three methods remain consistent, and detailed values will be provided below. 

Parameter settings. We employ the SGD optimizer with a multi-random initializa-

tion count of 𝑁 set to 10. The PGD iteration count 𝑖𝑡𝑒𝑟 is set to 100, initial learning 

rate 𝑙𝑟 is set to 0.01, and a maximum counter 𝑀𝑎𝑥_𝐶𝑜𝑢𝑛𝑡 for halving the learning rate 

is set to 10. The history weight 𝜃 for momentum update gradients is 0.2. The scalar 𝜃 

and 𝜆𝜔 for the attention loss function is set to 0.1 and 0.1. We set the threshold of dan-

gerous offset distance 𝜀 at 1.8 meters, which corresponds to half the width of a lane. If 

a vehicle's deviation exceeds half a lane width, it is considered sufficiently hazardous. 

Metrics. (1) Average Displacement Error(ADE) / Final Displacement Error(FDE): 

the average / final displacement error between the model's predictions and the ground-

truth which is a commonly utilized metric for assessing the performance of trajectory 

prediction models. This metric is expressed in meters. (2) Horizontal Displacement Er-

ror(HDE) / Vertical Displacement Error(VDE): these metrics are used to evaluate the 

difference between two trajectories in the horizontal and vertical directions. The HDE 

can reflect the vehicle's lane departure condition, while the VDE can indicate the extent 

of the vehicle's forward or backward movement. They can be described as follows: 

𝒢 = −
1

𝐿𝑃

∑ (𝑝𝛼
𝑣 − 𝑟𝛼

𝑣)𝑇

𝑡+𝐿𝑃

𝛼=𝑡+1

⋅ 𝐹(𝑟𝛼+1
𝑣 , 𝑟𝛼

𝑣), 

where 𝑡 denotes the time frame index, 𝐹 is a function generating specific directions. 

For example, the vertical component can be approximated as 𝑟𝛼+1
𝑣 − 𝑟𝛼

𝑣 . (3) Off-Road 

Rate(ORR): The probability of lane deviation, which is can be determined by horizontal 

displacement error and lane width. (4) The maximum size of perturbation(P-max): the 

maximum size of perturbation sizes at each time step. For P-max, smaller perturbations 

are less likely to be detected, so we hope to gain the small perturbation. The greater the 

prediction error caused in the targeted model by the attack, the stronger the attack’s 

effectiveness. And the smaller perturbations introduced by the attack are less likely to 

be detected, thereby enhancing the trajectory’s authenticity. 

4.2 Main results 

Attack effectiveness. Firstly, for each combination of model and dataset, we analyzed 

the effectiveness of the rms. Table 1 presents the average prediction error before and 

after attack. Compared to normal predictions, rms increases the average displacement 

error (ADE) and final displacement error (FDE) by 144.47% and 134.69%. 



Furthermore, we utilized metrics such as off-road rate(ORR) and the maximum size of 

perturbation(P-max) to further describe the model's ability to predict the true trajectory. 

Our experiments demonstrate that the rms is effective across different datasets and 

models. The results also indicate that Trajectron++ achieves higher prediction accuracy 

than the other models, attributable to the integration of heterogeneous data. However, 

Trajectron++ exhibits higher sensitivity to adversarial attacks compared to Grip++. As 

shown in Table 1, the rms has a more significant impact on Trajectron++ than on 

Grip++. 

Table 1. The average prediction performance before and after different attacks.. 

Model & Dataset Attack ADE FDE HDE VDE ORR(%) 
P-

max 

FQA & Apol-

loscape 

origin 2.37 3.82 0.048 0.387 0% 0 

search 9.05 14.16 2.54 7.30 86% 1.00 

sa-at-

tack 
9.56 14.62 2.67 7.39 87% 2.36 

rms 10.10 14.85 2.96 7.88 92% 1.00 

FQA & nuScenes 

origin 5.82 10.00 0.299 0.814 0% 0 

search 7.65 14.14 1.15 3.25 48% 0.33 

sa-at-

tack 
7.82 14.19 1.20 3.23 52% 0.88 

rms 7.98 14.88 1.20 3.23 57% 0.30 

GRIP++ & Apol-

loscape 

origin 1.97 3.18 0.013 0.016 0% 0 

search 6.75 10.65 2.29 5.01 78% 0.95 

sa-at-

tack 
6.99 10.23 2.33 5.18 83% 2.36 

rms 7.65 11.10 2.44 5.14 86% 0.82 

GRIP++ & 

nuScenes 

origin 5.46 10.30 0.233 1.04 0% 0 

search 8.03 15.02 1.35 3.62 62% 0.32 

sa-at-

tack 
8.13 15.02 1.55 3.58 67% 1.03 

rms 8.94 15.58 1.67 4.12 76% 0.28 

Trajectron++ & 

Apol-loscape 

origin 3.79 5.94 0.15 0.35 0% 0 

search 8.81 13.95 2.46 6.68 82% 0.52 

sa-at-

tack 
10.11 15.80 2.60 6.70 85% 2.36 

rms 10.39 16.75 2.60 6.93 87% 0.52 

Trajectron++ & 

nuScenes 

origin 8.75 17.05 0.33 1.89 0% 0 

search 10.55 19.66 1.05 4.14 57% 0.33 

sa-at-

tack 
10.32 19.70 1.25 4.07 58% 0.73 

rms 11.58 19.98 1.39 4.21 60% 0.46 
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Figure 3. The examples under three different attacks with combination of Tra-
jectron++&Apolloscape. In the figure, x and y represent the scene’s coordinate 
axes, measured in meters. Each point on the figure corresponds to the two-dimen-
sional coordinates of a vehicle. 

Moreover, we compared the performance of rms against search and sa-attack across 

these combinations. As shown in Table 1, rms outperforms both search and sa-attack 

in terms of ADE and FDE metrics, demonstrating stronger attack effectiveness. Fur-

thermore, we used ORR and P-max as metrics to evaluate the authenticity of the gen-

erated adversarial trajectories. The results show that rms achieves higher ORR and 

lower P-max in most combinations, indicating that the adversarial trajectories generated 

by rms are more likely to cause hazardous deviations and maintain small perturbations 

at every time frame, which makes them harder to be detected. It is worth noting that sa-

attack, which employs trajectory reconstruction, generates larger perturbations among 

all time steps, causing the highest values across all combinations.  

In Figure 3, we visualize the adversarial trajectories generated by the three attack 

methods under the combination of Trajectron++&Apolloscape. Within the scenarios, 

our approach generates more effective attacks through small deceptive perturbations, 

resulting in greater prediction errors. However, the adversarial trajectories generated 

by sa-attack exhibit larger perturbations at the second history time step, making it easier 

to be detected. Such trajectories are prone to being flagged as anomalies, which limits 

their effectiveness in the presence of defensive mechanisms.  

Performance after applying defensive mechanisms. We aimed to evaluate the per-

formance of the attack methods when defense mechanisms are applied by the models. 

Previous works have shown that adversarial training may exhibit poor robust generali-

zation on unseen attacks targeting trajectory prediction [4,11,16,24], so we use the gen-

eral defense mechanisms: trajectory smoothing and data augmentation. We assume that 

the attacker has complete knowledge of the mitigation methods and applies the same 

defense mechanism during white-box attacks for each prediction. Our convolution-

based trajectory smoothing approach is differentiable, allowing gradients to directly 

account for the mitigation's effects. Even if the smoothing method were replaced with 

a non-differentiable one, the attacker could approximate the gradients using a differen-

tiable function, provided they have sufficient knowledge of the smoothing algorithm. 

Using three models and the Apolloscape dataset, we tested after the mitigation strate-

gies applied, and the results are illustrated in Table 2. We only compare search and rms 

in the table, as sa-attack demonstrates a significant performance drop after applying the 

defense mechanisms as showed in Figure 4. Compared to search, rms continues to cause 



higher prediction errors. Notably, after the application of defense measures, the maxi-

mum perturbation caused by the attacks does not show a significant change. 

Table 2. The average prediction performance of three attacks after applying dif-
ferent defensive mechanisms on Apolloscape. 

Model 
Defensive 

Mechanisms 

ADE FDE ORR P-max 

search/rms search/rms search/rms search/rms 

FQA 

smooth 6.44/6.64 8.87/10.03 70%/72% 1.00/0.99 

augment 9.30/9.35 14.28/14.36 81%/82% 1.00/1.00 

smooth & 

augment 
6.50/6.54 9.88/9.95 70%/70% 1.00/1.00 

Grip++ 

smooth 7.20/7.31 11.18/11.31 80%/83% 0.95/0.82 

augment 7.25/7.37 11.42/11.58 70%/70% 0.95/0.82 

smooth & 

augment 
7.16/7.24 11.05/11.23 74%/79% 0.95/0.82 

Tra-

jectron++ 

smooth 8.70/9.15 13.10/13.74 76%/79% 0.52/0.52 

augment 8.95/9.35 13.10/13.74 70%/70% 0.52/0.52 

smooth & 

augment 
6.14/6.38 9.27/9.70 70%/70% 0.52/0.52 

 

 
Figure 4. The average prediction performance of three attacks after applying data 
augmentation under combination of Trajectron++&Apolloscape. 

The effects of data augmentation and trajectory smoothing vary in different models. 

Results show that compared to no attack, the rms can still cause prediction errors ex-

ceeding 206%/197% on ADE/FDE, with horizontal and vertical deviations reaching 

2.3/4.9m. The data augmentation generates more complex trajectories alleviating over-

fitting issues, and trajectory smoothing reduces reliance on the final history time frame. 

We applied data augmentation during the train-time and trajectory smoothing during 

the test-time. Data augmentation and trajectory smoothing are effective for the Tra-

jectron++, with an average reduction of 6.26% and 6.76% in prediction error across its 

six evaluation metrics. Trajectory smoothing is effective for the FQA, reducing predic-

tion error by 29.56%. Figure 4 shows the performance of three methods in apolloscape 

dataset after applying data augmentation, rms causes the largest error. 

Ablation studies. We conducted ablation experiments to explore the contributions 

of three enhancement methods in rms. We remove one improvement method relative 

to rms each experiment. As shown in Figure 5, any combination of two improvement 
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methods cause larger errors than the search, and lacking any improvement method 

makes it difficult to achieve the performance of rms. From the impact of each improve-

ment method, the average error reduction without using attention loss is 5.68%, which 

is the most significant error reduction. It demonstrates that guiding the attack to focus 

on the time frames prioritized by model is effective. 

 
Figure 5. Prediction error (ADE and FDE) caused by removing different methods 
on the Apolloscape dataset. 

We specifically analyzed the impact of multiple random initializations. Increasing 

the number of initializations expands the search space, causing greater displacement 

prediction errors, but it still need a increased cost of computation. Experiments demon-

strate that 10 random initializations result in a 6.06% higher displacement error com-

pared to a single initialization, while 20 initializations yield an additional 2.55% in-

crease compared to 10. In practical attack scenarios, employing multiple random ini-

tializations may hinder timely generation of adversarial trajectories. However, during 

robustness evaluation phases where time constraints are less stringent, multiple random 

initializations can be used to maximize model prediction errors. This can achieve 

providing an accurate assessment of models robustness of the worst-case performance. 

5 Conclusion 

This paper proposes three improvements upon PGD tailored to the characteristics of 

trajectory data and prediction models for the malicious interference in vehicle trajectory 

prediction tasks. We employ multiple random initializations with adaptive learning rate 

to explore a broader search space. And we incorporate momentum in gradient updates 

to ensure that consecutive iterations produce trajectories conforming to certain physical 

rules. Last but most importantly, we propose an attention-based loss function to guide 

the attack focus on the time frames emphasized by the model during prediction. Exper-

iment results validate the effectiveness and authenticity of our method. 
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