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Abstract. Image-text retrieval is a crucial task, which targets at finding the coun-

terparts from the opposing modalities. Scene graph based image-text retrieval 

methods leverage the object and predicate features to reason the cross-modal sim-

ilarity, therefore increasing the retrieval accuracy. However, existing scene graph 

based image-text retrieval methods simply fuse the similarity calculations for fea-

tures at each granularity in a single network, which only brings a slight improve-

ment in the retrieval performance. The features of the scene graph fail to be ef-

fectively utilized. Therefore, this paper proposes a Coarse-to-Fine Scene Graph 

Similarity Reasoning (CFSGR) method to conduct coarse-grained and fine-

grained cross-modal similarity reasoning, separately. CFSGR includes two net-

works: coarse-grained similarity reasoning network for graphs, fine-grained sim-

ilarity reasoning network for objects and predicates. Moreover, CFSGR conducts 

local and global alignments for each feature, ensuring that the similarities at each 

granularity of visual and textual scene graphs are fully exploited. The evaluation 

and ablation study on Flickr30K demonstrates the superiority of CFSGR among 

the SOTA(State-Of-The-Art) image-text retrieval methods, and CFSGR achieves 

competitive results with 𝑅𝑠𝑢𝑚  as 506. The source code is available at 

https://github.com/okeike/CFSGR. 

Keywords: Image-text retrieval, Multi-modal similarity reasoning, Scene 

graph, Contrastive learning. 

1 Introduction 

Image-text retrieval, a cross-modal retrieval task, aims at bridging the gap between two 

heterogeneous modalities, images and texts, by measuring their cross-modal similarity. 

This task involves retrieving the most relevant image given a text query, or vice versa, 
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which requires understanding the complex relationship between visual and textual ele-

ments. Image-text retrieval plays a vital role in various computer vision and natural 

language processing tasks, such as image captioning [2, 18] and visual question an-

swering [2, 16].  

Scene graph based image-text retrieval methods are significant as they support both 

coarse-grained local and global similarities reasoning, as well as fine-grained object 

and predicate similarities reasoning, demonstrating crucial implications in image-text 

retrieval. For example, methods like SGM [15] focus on local matching of objects and 

their relationships, while LGSGM [11] additionally introduces global matching, aiming 

to align visual and textual graph structures. However, existing scene graph based meth-

ods do not effectively make use of the coarse-grained and fine-grained features to rea-

son the cross-modal similarity, as they simply combine the similarity calculations for 

features at each granularity in a single network. This implementation causes the net-

work easily converge to a local optimum, thus the features of scene graph are not fully 

leveraged.  

To address this limitation in image-text retrieval, this paper introduces a novel 

Coarse-to-Fine Scene Graph Similarity Reasoning (CFSGR) method. The CFSGR 

framework is designed to enhance retrieval performance by integrating different local 

and global cross-modal alignments in coarse-grained and fine-grained similarity rea-

soning networks. Specifically, it designs coarse-grained graph similarity reasoning 

alongside fine-grained object and predicate similarity reasoning, ensuring a compre-

hensive understanding of scene graphs. 

For local alignment in the coarse-grained similarity reasoning for graphs, CFSGR 

calculates cross-modal similarities for local features within scene graphs. In terms of 

coarse-grained global alignment, the CFSGR derives global features from local features 

and conducts comprehensive graph similarity reasoning, incorporating both global and 

local features. For fine-grained global alignment of objects and predicates, CFSGR cal-

culates cosine similarities of their respective global representations. To achieve fine-

grained local alignment, CFSGR performs detailed similarity reasoning based on the 

local and global representations of objects and predicates, individually.  

The main contributions of this paper: 

(1) This paper proposes a novel scene graph based image-text retrieval method 

CFSGR, which contains two networks: coarse-grained graph similarity reasoning net-

work, fine-grained object and predicate similarity reasoning network. These two net-

works enable CFSGR to fully utilize the features at each granularity in scene graphs. 

(2) CFSGR conducts local and global alignments in both the coarse-grained and fine-

grained similarity reasoning networks, and the implementations of these alignments 

differ across the two granularities. For instance, at the coarse-grained level, local align-

ment is achieved through dot-product calculations. At the fine-grained level, the local 

alignment is realized using a detailed similarity reasoning module. By integrating these 

diverse alignment strategies, CFSGR achieves better performance. 

(3) The proposed CFSGR achieves competitive results on a benchmark dataset 

Flickr30K [19], and it scores 506 in terms of 𝑅𝑠𝑢𝑚, demonstrating superiority among 

scene graph based methods. The ablation study for CFSGR on Flickr30K [19] proves 

the effectiveness of the main components designed. 
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2 Related Work 

Existing image-text retrieval methods can be divided into two main categories: object 

feature based methods and scene graph based methods. Object feature based methods 

extract object features from images, offering flexibility and computational efficiency 

in calculating the text-to-object similarity. Scene graph based methods typically con-

struct a graph structure for both the image and text and then align the corresponding 

components (objects, predicates) across modalities. With these features, scene graph 

based methods can perform sophisticated reasoning. 

2.1 Object Feature based Methods 

Object feature based methods mainly focus on obtaining the local object features and 

global features. Unlike scene graph based methods, which explicitly model objects and 

relations as nodes to form a heterogeneous graph, these methods primarily rely on direct 

extraction of object features, and conduct similarity reasoning on them.  

Object features based methods focus on matching fine-grained details between im-

ages and texts, such as individual objects and relations. Ji et al. [8] propose SHAN, a 

step-wise hierarchical alignment network that decomposes image-text retrieval into 

multi-step cross-modal reasoning process. Chen et al. [3] propose 𝑉𝑆𝐸∞, a General-

ized Pooling Operator (GPO) that autonomously adapts to the optimal pooling strategy 

for various features. Shi et al. [13] propose DCPA, a novel decoupled manner for train-

ing and inferencing, where image-to-sentence matching is executed in textual semantic 

space and sentence-to image matching is executed in visual semantic space. Wang et 

al. [17] propose WCGL to construct and encode graphs for cross-modal samples and 

utilize a Wasserstein coupled dictionary for feature transformation. Diao et al. [5] pro-

pose SGRAF to enhance image-text retrieval by learning vector-based similarity repre-

sentations and using a graph-based reasoning module to infer relation-aware similari-

ties. Cheng et al. [4]  propose CGMN, leveraging fully-connected graphs for intra-re-

lation reasoning and a novel graph node matching loss for inter-relation reasoning, 

which explores both intra- and inter-relations without introducing network interaction. 

In summary, while object feature based methods achieve high efficiency in matching 

visual and textual representations, they often fall short in modeling the deep, relational 

semantics between objects and their interactions. Scene graph based methods, on the 

other hand, excel at capturing these relationships but can still benefit from more detailed 

and multi-level semantic reasoning, as demonstrated by our model, CFSGR. 

2.2 Scene Graph based Methods 

Scene graph based methods have gained significant attention in image-text retrieval due 

to their ability to capture detailed relationships between objects in both images and 

texts. These methods construct scene graphs for both modalities, explicitly modeling 

objects, their relationships, and attributes.  

For instance, Wang et al. [15]  propose SGM, focusing on local matching between 

objects and their relations within scene graphs. Nguyen et al. [11] propose LGSGM, 



which expands upon SGM [15] by incorporating global matching. Duan et al. [6]  pro-

pose HSGMP, which introduces metapaths along with Heterogeneous Message Passing 

to extract semantic relationships and enhance cross-modal similarity measurement. Fan 

et al. . [7] propose SSAMT to construct scene graphs solely for textual data, integrating 

word, phrase, and sentence-level features. However, their model lacks a corresponding 

visual scene graph and does not perform reasoning based on scene graph structures. Pei 

et al. [12] propose SGSIN to conduct semantic inference within each modality inde-

pendently, but their model fails to capture the multi-level hierarchical structure of scene 

graphs. 

Above all, These scene graph based methods suffer from the limited utilization of 

scene graph features, which leads to suboptimal performance. To address this limita-

tion, this paper proposes CFSGR, which is a hierarchical similarity reasoning frame-

work that separately conducts coarse-grained and fine-grained cross-modal similarity 

reasoning, ensuring a more comprehensive and effective utilization of scene graph fea-

tures. 

3 Method 

As is illustrated in Figure 1, CFSGR firstly builds the visual and textual scene graphs 

by using the off-the-shelf Neural Motifs  [20] and SPICE [1] separately. Then, the ob-

ject and predicate nodes in visual and textual scene graphs are fed into their correspond-

ing embedding layers. 

For visual scene graph  𝑆𝐺𝐼 = (𝑂𝐼 , 𝑅𝐼) , 𝑂𝐼 = 𝑜𝐼1, 𝑜𝐼2, … , 𝑜𝐼𝑣𝑜  and 𝑅𝐼 =

𝑟𝐼1, 𝑟𝐼2, … , 𝑟𝐼𝑣𝑟 respectively refer to the object and predicate sets. As shown in the visual 

scene graph of figure 1, the blue bounding boxes with their corresponding linguistic 

labels such as ``Woman'' and ``Knife'' denote the object nodes, while the linguistic la-

bels on green arrows such as ``Hold'' and ``On'' denote the predicates between the 

source objects and target objects.  

Upon acquiring the visual scene graphs, the object representations are obtained 

through fusing the features of bounding boxes 𝑒𝑚𝑏𝑜𝑏(𝑜𝐼𝑖) = 𝑊𝑜𝑏ℎ𝑜𝐼𝑖and their corre-

sponding linguistc labels 𝑒𝑚𝑏𝑜𝑙(𝑜𝐼𝑖) = 𝑊𝑜𝑙ℎ𝑜𝐼𝑖, while the predicate representations are 

obtained through fusing the features of bounding-box unions of source object and target 

object 𝑒𝑚𝑏𝑟𝑢(𝑟𝐼𝑘) = 𝑊𝑟𝑢ℎ𝑟𝐼𝑘  with linguistc labels of predicates 𝑒𝑚𝑏𝑟𝑙(𝑟𝐼𝑘) =

𝑊𝑟𝑙ℎ𝑟𝐼𝑘: 

𝑒𝑚𝑏(𝑜𝐼𝑖) = 𝑊𝐼𝑂 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏𝑜𝑏(𝑜𝐼𝑖), 𝑒𝑚𝑏𝑜𝑙(𝑜𝐼𝑖)))

𝑒𝑚𝑏(𝑟𝐼𝑘) = 𝑊𝐼𝑅 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏𝑟𝑢(𝑟𝐼𝑘), 𝑒𝑚𝑏𝑟𝑙(𝑟𝐼𝑘)))
(1) 

Textual scene graph 𝑆𝐺𝑇 = (𝑂𝑇 , 𝑅𝑇)  uses the 𝑂𝑇 = {𝑜𝑇1, 𝑜𝑇2, … , 𝑜𝑇𝑡𝑜}  and 𝑅𝑇 =

{𝑟𝑇1, 𝑟𝑇2, … , 𝑟𝑇𝑡𝑟} to separately refer to the object and predicate sets. As shown in the 

textual scene graph of Figure 1, the blue linguistic labels in rectangles such as ``Kitch-

en'' and ``Cup'' denote the object nodes, while the linguistic labels on green arrows such 
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as ``Cut'' and ``Surround by'' denote the predicates between the source objects and tar-

get objects. 

 

Fig. 1. Coarse-grained graph similarity reasoning of CFSGR. After building the visual and textual 

scene graphs, CFSGR calculates the local graph similarity reasoning based on the visual updated 

features 𝑒𝑚𝑏(𝑜𝐼)
′, 𝑒𝑚𝑏(𝑟𝐼)

′ and textual local features 𝑒𝑚𝑏(𝑤𝑇), 𝑒𝑚𝑏(𝑡𝑇). Then, CFSGR ob-

tains visual global feature 𝑓𝐼
𝑔

 and textual global feature 𝑓𝑇
𝑔

. Finally, CFSGR conducts compre-

hensive graph similarity reasoning with visual features 𝑓𝐼
𝑙, 𝑓𝐼

𝑔
 and textual features𝑓𝑇

𝑙， 𝑓𝑇
𝑔

. 

After obtaining the textual scene graph, CFSGR encodes the word-order paths 

𝑒𝑚𝑏(𝑤𝑖) of input text and triplet-order paths 𝑒𝑚𝑏(𝑡𝑖) of textual scene graph with their 

respective Bi-GRUs: 

𝑒𝑚𝑏(𝑤𝑇𝑖) =
𝐺𝑅𝑈𝑤(𝑒𝑚𝑏(𝑤𝑖))
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝐺𝑅𝑈𝑤(𝑒𝑚𝑏(𝑤𝑖))

⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

2

𝑒𝑚𝑏(𝑡𝑇𝑘) =
𝐺𝑅𝑈𝑡(𝑒𝑚𝑏(𝑡𝑘))
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝐺𝑅𝑈𝑡(𝑒𝑚𝑏(𝑡𝑘))

⃖⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

2

(2) 

3.1 Coarse-grained Graph Similarity Reasoning 

Regarding features of visual and textual scene graphs, CFSGR conducts graph similar-

ity reasoning by measuring the similarity between visual objects and textual words, 

visual predicates and textual triplets, visual and textual features.  

Before local graph similarity calculation, CFSGR updates the features of the visual 

scene graph by leveraging the GCN (Graph Convolutional Network) [9] . Concretely, 

given the features of visual scene graph  𝑆𝐺𝐼 = (𝑂𝐼 , 𝑅𝐼) (visual objects 𝑒𝑚𝑏(𝑜𝐼) and 

predicates 𝑒𝑚𝑏(𝑟𝐼), CFSGR uses a single-layer GCN to implement message pass for 

visual object and predicate features, a single-layer updating of GCN can be represented 

as: 

𝑒𝑚𝑏(𝑜𝐼𝑖)
′ = 𝑔𝑜

𝐼 (𝑒𝑚𝑏(𝑜𝐼𝑖))

𝑒𝑚𝑏(𝑟𝐼𝑘)
′ = 𝑔𝑟

𝐼 (𝑒𝑚𝑏(𝑜𝐼𝑖), 𝑒𝑚𝑏(𝑟𝐼𝑘), 𝑒𝑚𝑏(𝑜𝐼𝑗))
(3) 



The 𝑔𝑜 and 𝑔𝑟 are fully-connected layers with tanh activation functions. Given the up-

dated visual objects 𝑒𝑚𝑏(𝑜𝐼)
′ and textual words 𝑒𝑚𝑏(𝑤𝑇), we follow SGM [15] to cal-

culate their𝑁𝑤 × 𝑁𝑜score matrix by 𝑒𝑚𝑏(𝑤𝑇)
𝑇𝑒𝑚𝑏(𝑜𝐼)

′, shown as the blue matrix in 

Figure 1. Then, CFSGR implements max pooling for each row of score matrix, and 

averages them as the object-word score of visual and textual scene graphs, which can 

be represented as: 

𝑆𝑜
𝑙𝑜𝑐𝑎𝑙(𝐼, 𝑇) =

1

𝑁𝑤
∑𝑚𝑎𝑥𝑖∈[1,𝑁𝑜]𝑒𝑚𝑏(𝑤𝑇𝑗)

𝑇
𝑒𝑚𝑏(𝑜𝐼𝑖)

′

𝑁𝑤

𝑗=1

(4) 

The 𝑁𝑜 and 𝑁𝑤 separately denote the numbers of visual objects and textual words. Sim-

ilarly, given the updated visual predicates 𝑒𝑚𝑏(𝑟𝐼𝑘)
′  and textual triplets 𝑒𝑚𝑏(𝑡𝑇𝑘), 

CFSGR calculates their 𝑁𝑇 × 𝑁𝑜 score matrix by 𝑒𝑚𝑏(𝑡𝑇)
𝑇𝑒𝑚𝑏(𝑟𝐼)

′, which is repre-

sented as the green matrix in Figure 1. Then, CFSGR implements max-pooling and 

averaging operations for each row of score matrix: 

𝑆𝑝
𝑙𝑜𝑐𝑎𝑙(𝐼, 𝑇) =

1

𝑁𝑡
∑max𝑖∈[1,𝑁𝑟]𝑒𝑚𝑏(𝑡𝑇𝑗)

𝑇
𝑒𝑚𝑏(𝑟𝐼𝑖)

′

𝑁𝑡

𝑗=1

(5) 

The 𝑁𝑟 and 𝑁𝑡 separately denote the numbers of visual predicates and textual triplets. 

Besides calculating the local graph similarity for word-object pairs and predicate-triplet 

pairs, CFSGR conducts comprehensive graph similarity reasoning for all the nodes in 

visual and textual scene graphs. Concretely, CFSGR firstly calculates the global fea-

tures for concatenated visual local features 𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏(𝑜𝐼), 𝑒𝑚𝑏(𝑟𝐼)) and concate-

nated textual local features 𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏(𝑤𝑇), 𝑒𝑚𝑏(𝑡𝑇)) through their corresponding 

self-attention networks, the calculation of which is represented as Eq. . The visual local 

features and visual global feature are respectively represented as 𝑓𝑣
𝑙 =

𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏(𝑜𝐼), 𝑒𝑚𝑏(𝑟𝐼)) and 𝑓𝑣
𝑔

, while the textual local features and textual global 

feature are respectively represented as 𝑓𝑡
𝑙 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑒𝑚𝑏(𝑤𝑇), 𝑒𝑚𝑏(𝑡𝑇)) and 𝑓𝑡

𝑔
. For 

visual local features, CFSGR calculates the textual-attended representations of visual 

scene graph through SCAN [10] attention: 

𝑓𝑣
𝑡𝑎 = 𝑠𝑐𝑎𝑛_𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑓𝑡

𝑙 , 𝑓𝑣
𝑙) (6) 

The 𝑓𝑡
𝑙 serves as queries to calculate the attention weights for 𝑓𝑣

𝑙 by matrix multiplica-

tion. Then, the graph similarity representation 𝑟 for comprehensive graph similarity 

reasoning can be obtained through: 

𝑟𝑙 = 𝑙2𝑛𝑜𝑟𝑚((𝑓𝑡
𝑙 − 𝑓𝑣

𝑡𝑎)2)

𝑟𝑔 = 𝑙2𝑛𝑜𝑟𝑚 ((𝑓𝑡
𝑔
− 𝑓𝑣

𝑔
)
2
)

𝑟 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑟𝑔, 𝑟𝑙)

(7) 
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The 𝑙2𝑛𝑜𝑟𝑚(∗) denotes the 𝑙2 normalization function, 𝑐𝑜𝑛𝑐𝑎𝑡(∗) represents the con-

catenation operation. Finally, the comprehensive graph similarity is secured by graph 

similarity reasoning module, whose calculation can be represented as: 

𝑟𝑞 = 𝑀𝐿𝑃𝑞(𝑟)

𝑟𝑘 = 𝑀𝐿𝑃𝑘(𝑟)

𝑟𝑘 = 𝑀𝐿𝑃𝑘(𝑟)

𝑤 = 𝛿(𝑟𝑘
𝑇𝑟𝑞)

𝑟𝑠 = 𝑤 × 𝑟

𝑆𝑔𝑟𝑎𝑝ℎ = σ ((ϕ(𝑀𝐿𝑃𝑠(𝑟𝑠))))

(8) 

The δ(∗)denotes the Softmax activation function, ϕ(∗) denotes the ReLU activation 

function, σ(∗)denotes the Sigmoid function, 𝑀𝐿𝑃∗(∗) refers to the Multilayer Percep-

tron. The coarse-grained similarity between visual and textual scene graphs is the com-

bination of local graph similarity and comprehensive graph similarity: 

𝑆𝑖𝑚𝐶 = 𝑆𝑜
𝑙𝑜𝑐𝑎𝑙 + 𝑆𝑝

𝑙𝑜𝑐𝑎𝑙 + 𝑆𝑔𝑟𝑎𝑝ℎ (9) 

3.2 Fine-grained Object and Predicate Similarity Reasoning 

Same to the updating of visual scene graph in Eq. (3), for textual scene graph 𝑆𝐺𝑇 =
(𝑂𝑇 , 𝑅𝑇), CFSGR also obtains its updated features of objects and predicates from tri-

plet-order paths 𝑒𝑚𝑏(𝑡𝑇) through a single layer GCN: 

𝑒𝑚𝑏(𝑡𝑇) = (𝑒𝑚𝑏(𝑜𝑇𝑠), 𝑒𝑚𝑏(𝑟𝑇), 𝑒𝑚𝑏(𝑜𝑇𝑘))

𝑒𝑚𝑏(𝑜𝑇𝑖)
′ = 𝑔𝑜

𝑇(𝑒𝑚𝑏(𝑜𝑇𝑖))

𝑒𝑚𝑏(𝑟𝑇𝑘)
′ = 𝑔𝑟

𝑇 (𝑒𝑚𝑏(𝑜𝑇𝑖), 𝑒𝑚𝑏(𝑟𝑇𝑘), 𝑒𝑚𝑏(𝑜𝑇𝑗))

(10) 

As shown in Figure 2, regarding updated features of objects and predicates in visual 

and textual scene graphs, CFSGR firstly calculates their corresponding global repre-

sentations through self-attention network (for objects) and conv-attention network (for 

predicates). The calculations of the self-attention network can be represented as: 

𝑒𝑚𝑏(𝑜𝑞) = 𝑊𝑜𝜙(𝐴𝑣𝑒𝑃𝑜𝑜𝑙(𝑒𝑚𝑏(𝑜)
′))

𝑎𝑜 =  𝜎((𝑒𝑚𝑏(𝑜)
′𝑇𝑒𝑚𝑏(𝑜𝑞))

𝑒𝑚𝑏(𝑜𝑔) = 𝐴𝑣𝑒𝑃𝑜𝑜𝑙(𝑎𝑜
𝑇⊙𝑒𝑚𝑏(𝑜)′)

(11) 

The ϕ(∗) denotes the ReLU activation function, σ(∗) denotes the Sigmoid function, 

𝐴𝑣𝑒𝑃𝑜𝑜𝑙(∗) refers to the average pooling operation. The calculations of conv-attention 

network are represented as: 

𝑒𝑚𝑏(𝑟𝑑) = 𝑐𝑜𝑛𝑣1𝑑𝑑(𝑒𝑚𝑏(𝑟)
′)

𝑒𝑚𝑏(𝑟𝑔) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝑐𝑜𝑛𝑣1𝑑𝑢(𝑒𝑚𝑏(𝑟𝑑)))
(12) 



The 𝑐𝑜𝑛𝑣1𝑑𝑑(∗) and 𝑐𝑜𝑛𝑣1𝑑𝑢(∗) separately denote the 1d convolutional layers for 

scaling down and up the inputs, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(∗) refers to the max pooling operation.  

 

Fig. 2. Fine-grained object and predicate similarity reasoning. Regarding visual updated features 

𝑒𝑚𝑏(𝑜𝐼)
′, 𝑒𝑚𝑏(𝑟𝐼)

′ and textual updated features 𝑒𝑚𝑏(𝑜𝑇)
′, 𝑒𝑚𝑏(𝑟𝑇)

′, CFSGR firstly obtains 

global object representations 𝑒𝑚𝑏(𝑜𝐼
𝑔
), 𝑒𝑚𝑏(𝑜𝑇

𝑔
)  and global predicate representations 

𝑒𝑚𝑏(𝑟𝐼
𝑔
), 𝑒𝑚𝑏(𝑟𝐼

𝑔
). Then, CFSGR calculates the cosine similarity of objects and predicates with 

their corresponding global representations. Besides, CFSGR conducts detailed similarity reason-

ing for objects and predicates based on their local features𝑒𝑚𝑏(𝑜)′, 𝑒𝑚𝑏(𝑟)′ and global repre-

sentations 𝑒𝑚𝑏(𝑜𝑔), 𝑒𝑚𝑏(𝑟𝑔), separately. 

Regarding global object representations 𝑒𝑚𝑏(𝑜𝑣
𝑔
) and 𝑒𝑚𝑏(𝑜𝑡

𝑔
), CFSGR takes their 

cosine similarity as global object similarity:  

𝑆𝑜
𝑔
=
𝑎𝑏𝑠 (𝑒𝑚𝑏(𝑜𝐼

𝑔
) − 𝑒𝑚𝑏(𝑜𝑇

𝑔
))

||𝑒𝑚𝑏(𝑜𝐼
𝑔
) − 𝑒𝑚𝑏(𝑜𝑇

𝑔
)||1

(13) 

Where 𝑎𝑏𝑠(∗) obtains the absolute value of inputs. Similarly, for global predicate rep-

resentations 𝑒𝑚𝑏(𝑟𝑣
𝑔
) and 𝑒𝑚𝑏(𝑟𝑡

𝑔
), CFSGR takes their cosine similarity as global ob-

ject similarity:  

𝑆𝑟
𝑔
=
𝑎𝑏𝑠 (𝑒𝑚𝑏(𝑟𝐼

𝑔
) − 𝑒𝑚𝑏(𝑟𝑇

𝑔
))

||𝑒𝑚𝑏(𝑟𝐼
𝑔
) − 𝑒𝑚𝑏(𝑟𝑇

𝑔
)||1

(14) 

Besides cosine similarity calculation for global representations, CFSGR also separately 

performs detailed similarity reasoning for object similarity representation 𝑟𝑜 and pred-

icate similarity representation 𝑟𝑝 . Same to graph representation 𝑟 calculation in Eq. 

(7),𝑟𝑜  and 𝑟𝑝 are calculated as Eq. (15): 
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𝑟𝑜
𝑙 = 𝑙2𝑛𝑜𝑟𝑚(𝑒𝑚𝑏(𝑜𝐼)

′ − 𝑒𝑚𝑏(𝑜𝑇)
′)

𝑟𝑜
𝑔
= 𝑙2𝑛𝑜𝑟𝑚 (𝑒𝑚𝑏(𝑜𝐼

𝑔
) − 𝑒𝑚𝑏(𝑜𝑇

𝑔
))

𝑟𝑜 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑟𝑜
𝑔
, 𝑟𝑜
𝑙)

𝑟𝑝
𝑙 = 𝑙2𝑛𝑜𝑟𝑚(𝑒𝑚𝑏(𝑟𝐼)

′ − 𝑒𝑚𝑏(𝑟𝑇)
′)

𝑟𝑝
𝑔
= 𝑙2𝑛𝑜𝑟𝑚 (𝑒𝑚𝑏(𝑟𝐼

𝑔
) − 𝑒𝑚𝑏(𝑟𝑇

𝑔
))

𝑟𝑝 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑟𝑝
𝑔
, 𝑟𝑝
𝑙)

(15) 

Finally, the detailed object similarity and predicate similarity are calculated as Eq. (16): 

𝑟𝑜
𝑎𝑡𝑡𝑛 = 𝑙1𝑛𝑜𝑟𝑚 (σ (𝐵𝑁(𝑀𝐿𝑃(𝑟𝑜))))

𝑆𝑜
𝑑 = 𝑙2𝑛𝑜𝑟𝑚((𝑟𝑜

𝑎𝑡𝑡𝑛)𝑇𝑟𝑜)

𝑟𝑝
𝑎𝑡𝑡𝑛 = 𝑙1𝑛𝑜𝑟𝑚 (σ(𝐵𝑁 (𝑀𝐿𝑃(𝑟𝑝))))

𝑆𝑝
𝑑 = 𝑙2𝑛𝑜𝑟𝑚 ((𝑟𝑝

𝑎𝑡𝑡𝑛)
𝑇
𝑟𝑝)

(16) 

The 𝑙1𝑛𝑜𝑟𝑚(∗) denotes the𝑙1  normalization function, while the 𝐵𝑁(∗) refers to the 

batch normalization function. The fine-grained similarity of objects and predicates in 

visual and textual scene graphs is the combination of their cosine similarity and detailed 

similarity: 

𝑆𝑖𝑚𝐹 = 𝑆𝑜
𝑔
+ 𝑆𝑝

𝑔
+ 𝑆𝑜

𝑑 + 𝑆𝑝
𝑑 (17) 

3.3 Loss function for training the CFSGR 

CFSGR simply uses hinge-based triplet ranking loss with hard negative mining loss 

function [3] 𝐿𝑜𝑠𝑠𝐻 , which is widely adopted by existing image-text retrieval methods, 

to individually train the coarse-grained and fine-grained similarity reasoning of 

CFSGR, as shown in Eq. (18): 

𝐿𝑜𝑠𝑠𝐻 = 𝑚𝑎𝑥 (0,𝑚 − 𝑆𝑖𝑚∗(𝐼, 𝑇) + 𝑆𝑖𝑚∗(𝐼, 𝑇))

+𝑚𝑎𝑥 (0,𝑚 − 𝑆𝑖𝑚∗(𝐼, 𝑇) + 𝑆𝑖𝑚∗(𝐼, 𝑇))
(18) 

The  𝑚  denotes the margin parameter,  𝑆𝑖𝑚(𝐼, 𝑇) denotes the similarity score for 

matched image-text pairs in the mini-batch,  𝐼  and 𝑇 refers to the hardest negative im-

age and text of  𝑇 and  𝐼 in the mini-batch, respectively. 



4 Experiments 

4.1 Dataset and Metrics 

To achieve a comprehensive evaluation, CFSGR is evaluated on a commonly used re-

trieval dataset, Flickr30K [19] , which contains 31,000 images. Each image in both 

datasets has 5 matched captions. CFSGR takes 29,000 images for training, 1,000 im-

ages for validation,  1,000 images for testing.   

The proposed CFSGR and methods for comparison are evaluated with 

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾(𝑅@𝐾), which denotes the proportion of query 𝑖𝑚𝑎𝑔𝑒/𝑡𝑒𝑥𝑡 whose cross-

modal counterparts are in the top-K ranking results. The 𝐾 is set as 1, 5, and 10. In 

addition, the overall evaluation metric 𝑅𝑠𝑢𝑚 is defined as Eq. (19): 

𝑅𝑠𝑢𝑚 = 𝑅@1 + 𝑅@5 + 𝑅10⏟            
𝑇𝑒𝑥𝑡 𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙

+ 𝑅@1 + 𝑅@5 + 𝑅10⏟            
𝐼𝑚𝑎𝑔𝑒 𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙

(19)
 

4.2 Environment and Setup 

The CFSGR framework is implemented on the PyTorch platform, with all experiments 

conducted on a single Nvidia RTX 4090 GPU. Following LGSGM [11], visual object 

and predicate features are extracted using EfficientNet-b5[14]. The initial learning rates 

for both the coarse-grained graph similarity reasoning network and the fine-grained 

similarity reasoning network are set to 4𝑒 − 4. The training epochs are configured as 

45 for the coarse-grained module and 60 for the fine-grained module. 

4.3 Results and Analysis 

CFSGR picks several SOTA works at their release moments from object feature based 

methods and scene graph based methods for comparison, as introduced in Section 2. 

For object feature based methods for comparison, they are SHAN [8], VSE∞ [3], 

DCPA [13], WCGL [17], SGRAF [5] and CGMN [4]. For scene graph based methods 

for comparison, they are SGM [5], LGSGM [11], HSGMP [6], SSAMT [7] and SGSIN 

[12]. 

Table 1 reports the bidirectional retrieval results of CFSGR and methods for com-

parison on Flickr30K [19]. It can be observed that the CFSGR outperforms all the meth-

ods with the best 𝑅𝑠𝑢𝑚 of 506. Among scene graph based methods, CFSGR achieves 

the best performance in 6 out of 7 metrics. In image retrieval, CFSGR demonstrates 

notable improvements across multiple metrics compared to both object feature based 

and scene graph based methods.  

When compared with CGMN [4] and LGSGM [11], two methods that achieve the 

best performance in their respective categories, CFSGR attains a value of 61.8 in 𝑅@1 

of image retrieval. This is 1.9 points higher than CGMN [4] (59.9) and 4.4 points higher 

than LGSGM [11] (57.4), as highlighted in Table 1. For 𝑅@5, CFSGR scores 86.4, 

outperforming CGMN [4] (85.1) by 1.3 points and LGSGM [11] (84.1) by 2.3 points. 

In 𝑅@10 , CFSGR reaches 92.1, surpassing CGMN [4] (90.6) by 1.5 points and 
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LGSGM [11] (90.2) by 1.9 points. These results highlight CFSGR's consistent and sig-

nificant performance improvements in image retrieval on Flickr30K [19]. 

Table 1. Methods' performance on Flickr30K [19]. The 𝒃𝒐𝒍𝒅 results of each metric denotes the 

best among scene graph based methods. The 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒𝑑 results denote the best among all meth-

ods. 

Model 
Text retrieval Image retrieval 

𝑅𝑠𝑢𝑚 
𝑅@1 𝑅@5 𝑅@10 𝑅@1 𝑅@5 𝑅@10 

Object Feature based Method 

𝑆𝐻𝐴𝑁 74.6 93.5 96.9 55.3 81.3 88.4 490.0 

𝑉𝑆𝐸∞ 76.5 94.2 97.7 56.4 83.4 89.9 498.1 

𝐷𝐶𝑃𝐴 75.3 93.7 97.5 59.9 85.0 91.9 502.5 

𝑊𝐶𝐺𝐿 74.8 93.3 96.8 54.8 80.6 87.5 487.8 

𝑆𝐺𝑅𝐴𝐹 77.8 94.1 97.4 58.5 83.0 88.8 499.6 

𝐶𝐺𝑀𝑁 77.9 93.8 96.8 59.9 85.1 90.6 504.1 

Scene Graph based Methods 

 

93.9 

92.5 

92.6 

𝑆𝐺𝑀 71.8 91.7 95.5 53.5 79.6 86.5 478.6 

𝐿𝐺𝑆𝐺𝑀 71.0 91.9 96.1 57.4 84.1 90.2 490.7 

𝐻𝑆𝐺𝑀𝑃 73.4 93.0 96.8 55.0 81.4 88.2 487.8 

𝑆𝑆𝐴𝑀𝑇 75.4 92.6 96.4 54.8 81.5 88.0 488.7 

𝑆𝐺𝑆𝐼𝑁 73.1 93.6 96.8 53.9 80.1 87.2 484.0 

𝐶𝐹𝑆𝐺𝑅(𝑜𝑢𝑟𝑠) 75.1 93.4 97.2 61.8 86.4 92.1 506.0 

However, in text retrieval, CFSGR achieves the suboptimal among all methods and 

is slightly improved when compared with the scene graph based methods, The authors 

assume that the reason is the textual scene graphs built upon similar texts have close 

local and global vectors in the feature space, the similarities of matched pairs and un-

matched pairs are close to each other. Therefore, this phenomenon eventually results in 

weak improvements of text retrieval. 

4.4 Ablation Study 

The ablation study in Table 2 evaluates the contribution of main components in the 

CFSGR for image-text retrieval on Flickr30K [19]. The study examines the impact of 

three key components: coarse-grained graph similarity reasoning (coarse), fine-grained 

object similarity reasoning (fine-obj) and fine-grained predicate similarity reasoning 

(fine-pre). The full model, CFSGR, integrates all three components, and its perfor-

mance is compared against variants that exclude one of these components.  

In terms of 𝑅𝑠𝑢𝑚, CFSGR scores the highest 506.0, outperforming all ablated and 

single-module networks. This highlights the synergistic effect of combining coarse-

grained and fine-grained reasoning.  

By comparing the performance of CFSGR with all ablated networks, it is observed 

that removing fine-pre has the least impact on the performance degradation of CFSGR. 

The authors attribute this to the limited number of textual triples extracted from the 

dataset, which results in fewer predicate elements in the textual scene graphs, thereby 



diminishing the role of fine-pre. This reason is further supported by the fact that fine-

pre scores the lowest 𝑅𝑠𝑢𝑚 (487.1) compared to the other two single-module networks, 

coarse (489.3) and fine-obj (487.1). 

Table 2. Ablation study for CFSGR on Flickr30K [19]. The best results of each metric are 

in 𝒃𝒐𝒍𝒅. 'coarse' denotes the coarse-grained graph similarity reasoning network, 'fine-obj' de-

notes the fine-grained object similarity reasoning network, 'fine-pre' denotes the fine-grained 

predicate similarity reasoning network. 'w/o' refers to without. 

Model 
Text retrieval Image retrieval 

𝑅𝑠𝑢𝑚 
𝑅@1 𝑅@5 𝑅@10 𝑅@1 𝑅@5 𝑅@10 

𝑐𝑜𝑎𝑟𝑠𝑒 69.3 92.0 95.7 58.2 84.1 90.0 489.3 

𝑓𝑖𝑛𝑒 − 𝑜𝑏𝑗 69.9 92.3 96.2 57.1 83.3 89.7 488.5 

𝑓𝑖𝑛𝑒 − 𝑝𝑟𝑒 70.7 90.5 95.4 57.0 83.5 90.0 487.1 

𝐶𝐹𝑆𝐺𝑅 𝑤/𝑜 𝑐𝑜𝑎𝑟𝑠𝑒 73.7 93.9 96.3 60.2 85.6 91.2 500.0 

𝐶𝐹𝑆𝐺𝑅 𝑤/𝑜 𝑓𝑖𝑛𝑒 − 𝑜𝑏𝑗 72.5 93.4 96.8 61.0 85.6 91.4 500.7 

𝐶𝐹𝑆𝐺𝑅 𝑤/𝑜 𝑓𝑖𝑛𝑒 − 𝑝𝑟𝑒 72.8 93.7 97.1 60.8 85.6 91.4 501.4 

𝐶𝐹𝑆𝐺𝑅 75.1 93.4 97.2 61.8 86.4 92.1 506.0 

5 Conclusion 

In this paper, we introduce the Coarse-to-Fine Scene Graph Similarity Reasoning 

(CFSGR) method, a novel framework designed to enhance image-text retrieval by sep-

arately conducting coarse-grained and fine-grained cross-modal similarity reasoning. 

CFSGR devises local and global alignments at different granularities, ensuring a com-

prehensive utilization of scene graph features. The coarse-grained network focuses on 

graph-level similarity reasoning, while the fine-grained network aligns objects and 

predicates, enabling a more detailed and effective cross-modal matching. 

Experimental results on the benchmark dataset Flickr30K demonstrate the superior-

ity of CFSGR over SOTA methods, achieving a competitive 𝑅𝑠𝑢𝑚 score of 506. The 

ablation study further validates the effectiveness of each component, highlighting the 

synergistic impact of combining coarse-grained and fine-grained reasoning. Future 

work will explore enhancing the predicate reasoning component and extending the 

framework to other multi-modal retrieval tasks. 
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